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Novel Techniques Il

E.M. Bakker

J. Hou, et al. Protein tertiary structure modeling driven by deep
learning and contact distance prediction in CASP13, 2019.

* CASP10 (2012) deep learning for contact and distance distribution prediction.

* CASP11 (2014) prediction of residue-residue distance relationships (e.g. contacts)
is the key direction to advance protein tertiary structure prediction.

* CASP11 and CASP12: successes of residue-residue co-evolutionary analysis

CASP13 (2018) MULTICOM (3™ place) a protein structure prediction system with
three major deep learning components:

contact distance prediction based on deep convolutional neural networks
contact distance-driven template-free (ab initio) modeling

protein model ranking empowered by deep learning and contact prediction
further components: template library, sequence database, and alignment tools.

MULTICOM was ranked 3rd out of all 98 predictors in both template-free and template-based
protein structure modeling in CASP13.
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[11] Jinbo Xu, Distance-based Protein Folding Powered
by Deep Learning. Nov. 2018.

* Deep ResNet for distance prediction, several classes of distances

* Predict inter-atom distance by deep 1D and 2D deep residual networks (ResNet)

* We discretize jnter-atom distance into 25 bins: <4A, 4-4.5A, 4.5-5A, 5-5.5A, ..., 15-15.54, 15.5-
16A, and >16A.

* Predict both CB 8 C, distance distribution, as well as distance distributions for: C_-C,, C C C
C§ and N-O. Here C is the first CG atom in an amino acid, if CG does not exist, O'Oéxor(’SG
used

* Predict secondary structure and torsion angles by 1D deep residual network
* predict 3-state secondary structure and backbone torsion angles ¢ and 1 for each residue.

* Folding by predicted distance, secondary structure and torsion angles
* first predict its inter-atom distance matrix, secondary structure and backbone torsion angles,
* then convert the predicted information into CNS* restraints
* finally build its 3D models by CNS28, a software program for experimental protein structure
determination.
*) CNS (Crystallography and NMR System) is a suite of programs designed for
crystallography and NMR.
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Distance-based Protein
Folding Powered by
Deep Learning. [11]

sequence profile and
predicted local structures
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[14] M. AlQuraishi, End-to-End Differentiable Learning of
Protein Structure, Cell Systems 8, 292—-301, April 24, 2019.

* Neural network predicts protein structure from sequence without

using co-evolution

* Model replaces structure prediction pipelines with one mathematical

function

* Achieves state-of-the-art performance on novel protein folds

* Learns a low-dimensional representation of protein sequence space
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[14] M. AlQuraishi, End-to-End Differentiable Learning of
Protein Structure, Cell Systems 8, 292—-301, April 24, 2019.
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[14] M. AlQuraishi, End-to-
End Differentiable Learning
of Protein Structure.

Conventional Protein Prediction Pipelines.
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[14] M. AlQuraishi, End-to-End Differentiable Learning of Protein Structure:
Recurrent Geometric Networks

«*%A*\.«H%

Existing Atoms Bond Bond Torsional
(Input) Rotation Extension Rotation
GEOMHRY @EEJ Nascent Structure
~ at=
@ ¢' Ole
el E &2
@ w =1 ClF:
J' [ | Internal State J-
lzmmi%A .
i 1

Protein Sequence

=

—» dRMSD «—

N
9@ &
& Sy
‘.. 3 &u‘,“e 4 ,‘.‘
o o "','
Output 0
= WNIC _
(Torsional Angles) ¢ ~ ¥ w Welghted
‘ ) | Average
4 Prior [ 4 N \
< State __f ) > ] L i /.‘
| Next )
2 4 x Clrcular
> — state ~ / Projection
«
XY DR 2L SR D)
I Input SOGRUYTY s

™ (Amino Acid)

Torsional Alphabet

[14] M. AlQuraishi, End-to-End Differentiable Learning of Protein Structure:
Recurrent Geometric Networks

Table 1. Comparative Accuracy of RGNs Using dRMSD

FM (Novel Folds) Category A)

TBM (Known Folds) Category A)

CASP7 CASP8 CASP9 CASP10 CASP11
RGN 9.3 7.3 8.7" 10.0 8.5
1tserver 9.3 8.3 9.0 10.3 93
2 server 9.9 86 9.1 106 96
39 server 10.0 9.2 97 10.9 11.2
4" server  10.1 9.9 10.1 1.7 11.7
5" server 104 10.4 135 12.0 129

CASP12
10.7"
11.0
1.2
1.3
11.4
13.0

CASP7 CASP8 CASP9 CASP10 CASP11 CASP12
5.6 5.9 6.5 6.9 74 6.9

4.0 4.3" 52 5.3 58" 4.7

4.0 4.6 52 5.4 6.0 4.8

41 4.8 54 5.7 6.5 5.6

4.2 5.0 54 5.9 6.8 5.8

4.8 5.0 55 7.2 6.9 5.9

The average dRMSD (lower is better; asterisk indicates best performing method) achieved by RGNs and the top five servers at each CASP is shown for
the novel folds (left) and known folds (right) categories. Numbers are based on commeon set of structures predicted by top 5 servers during each CASP.
A different RGN was trained for each CASP, using the corresponding ProteinNet training set containing all sequences and structures available prior to

the start of that CASP. See also Tables S1-S3.

dRMSD: root-mean-square deviation between the atoms in two configurations
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AlphaFold [9]
by DeepMind

* A7D is the best preforming algorithm in the Free Modelling

Category of CASP13

‘»\\ﬁ
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AANN}

B

An animation of the gradient descent method
predicting a structure for CASP13 target T1008

https://deepmind.com/blog/alphafold/

# ecﬁgde eﬁaﬂme #Domains Count e(iu,g.’\u?scnre e:?;a,;:‘]SUM Zscore ef\:’;iscnre e:l:;:‘]AVG Zscore _;Llongllscnre A:?:O?;]SLIM Zscore ¢t>\$llﬁnjls:we e:iaurj;]AVG Zscore
1 043 ATD 104 1 1 1 12314 1
Zhang 104 2 2 2 1.0403
089 MULTICOM 104 3 3 3 09614
145 QUARK 104 4 4 4 0.3804
Zhang-Server 104 5 5 5 0.8631
480 McGuffin 104 6 6 6 0.3116
w fAl-Cheng 104 7 7 7 07788 8
8 135 SBROD 102 9 2 2 0.
RaptorX-DeepModeller 104 8 9 9 0.7557 10
10 197 MESHI 104 709761 10 R 10 0. R
AlphaFold [9]
by DeepMind
60}
"] -2
. . il . y — 1st place
* Until CASP10 no big 5 Segiring of P bt
. Qo o-evolutionary e
improvements for a methods =1
decade.
. 1 20t
* CASP11: co-evolutionary
methods.
° H ’ 0 :
ReqUIred MSAS' BUt Free CASP10 CASP11 CASP12 CASP13

Modelling targets would
bhenefit only slightly from
this.

* CASP11 — CASP13 showed
further improvements
because of co-evolutionary
methods, e.g. Zhang (2"
place)

Curves show the best and second best predictors at each CASP, while the dashed line shows the ex-
pected improvement at CASP13 given the average rate of improvement from CASP10 to 12. Ranking is

based on CASP assessor's formula, and does not always coincide with highest mean GDT_TS [e.g
From10].

CASP10.) Error bars correspond to 95% confidence intervals
GDT_TS
GDT_TS - GlobalDistanceTest_TotalScore
GDT_TS = (GDT_P1 + GDT_P2 + GDT_P4 + GDT_P8)/4,
where GDT_Pn denotes percent of residues under
distance cutoff <= nA
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AlphaFold [9]
by DeepMind

* GDT_TS measures the #
quality of the overall
topology gives a distorted 80
image of the problem status.

* GDT_HA measures the
quality of the topology in
higher resolution, which is
more appropriate for further

GDT_HA

20

applications using the
predicted 3d structure

=>problem far from solved.
=local goodness of fit?

CASP10

CASF11 CASP12

From [10].

CASP13

— 1st place
2nd place

AlphaFold

Co-evolution method:

* evolutionary couplings from protein MSAs by detecting residues that co-evolve

* suggesting physical proximity in 3D space.
 predicted binary contact matrices frgm MSAs, i.e. whether two residues are “in contact” or not

typically defined as being within <8A),

* Used in geometric constraint satisfaction methods

Exploited by:

* coupling of such binary contacts with folding pipelines such as Rosetta and |-Tasser,

* convolutional networks and deeg architectures (residual networks) to integrate information with
tain more accurate contacts. Jinbo Xu’s group.

the matrix of raw couplings to o

* inter-residue distance prediction instead of binary contacts: predicted probabilities over a
discretized spatial range and then picked the highest probability one for feeding into CNS to fold
the protein. (Xu’s preprint before CASP13)

* Is one of the key ingredients of AlphaFold



https://www.rosettacommons.org/
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
http://ttic.uchicago.edu/~jinbo/
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Alpha Fold [9]
by DeepMind

* Predict Physical Properties

T0954 /6CVZ

T0965 / 6D2V T0955 / SW9F

Ground truth

Average predicted distance
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Structures:
Ground truth (green)
Predicted (blue)
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AlphaFold characterized as in [10]

General ideas [10]:

. ﬁ‘ softmax over discretized spatial ranges gives a predicted probability distribution over
istances

(Note: value distribution vs Value [12])

* The convolutional ResNet uses the distribution as a (protein-specific) statistical
(normalized) potential function

* Normalizing is done using a learned reference state.

* Minimizes the statistical potential function using gradient descent (L-BFGS), to generate
the protein fold.

Details:
* The L-BFGS minimizer operates independently from the neural network.

* The energy potential is coupled with a more traditional physics-based potential. The
combined energy function is minimized.

* The potentials are a consequence of the MSA (or sequence + PSSM).

* A smooth potential surface for the given protein family is constructed, and whose
minimum closely matches that of the native protein (-family average) fold.

AlphaFold characterized as in [10]

In most methods the following paradigm was used when handling co-
evolutionary data:

* predict contacts - feed into complex folding algorithm

But:

* More complex approaches were tried, such as fragment assembly
using a generative variational autoencoder.

* But the more simple and direct minimization of their predicted
energy function was found to be more effective in predicting a high
accuracy fold.
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AlphaFold Compared [10]

Zhang Xu [11] AlphaFold [2,3] | NEMO RGN
Inputs MSA MSA MSA Sequence or PSSM PSSM
Outputs (pre- Binary ) Distributions over | Cartesian coordinates (fold- Cartesian coordinates
} Contacts Distances : o . e R
folding) distances ing internal) {folding internal)
. Differentiable Langevin dy- B
Folding l-Tasser CNS L-BFGS : Implicit
namics
Eneray fuhction Explicit, fixed None Explicit, learned Explicit, learned, and Implicit, learned, and
gy and universal ' and MSA-specific | sequence- or PSSM-specific PSSM-specific
Uses templates  Yes NO No No NO
End-to-end differ-
. No No No Yes Yes
entiable

Both AlphaFold and Xu use simple folding engines L-BFGS (L- Broyden—Fletcher—Goldfarb—
Shanno (BFGS)) and CNS (Crystallography and NMR System), respectively, i.e., improvements
come from a better energy potential using distributional information.

NB: important slide for the Final Assighment.

M. AlQuraishi, ProteinNet: a standardized data set for
machine learning of protein structure. Feb 2019

ProteinNet data for training and validating ML Protein Structure Predictors:

* Integrated data: sequence, structure, and evolutionary information
* Multiple sequence alignments of all structurally characterized proteins

* Standardized data to emulate past CASP (Critical Assessment of protein
Structure Prediction) experiments by capturing the historical states for
CASP7 — CASP12.

* New validation sets constructed using evolution-based distance metrics to
segregate distantly related proteins

Availability: Data sets and associated TensorFlow-based parser are available
for download at https://github.com/aglaboratory/proteinnet
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https://en.wikipedia.org/wiki/BFGS_method
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M. AlQuraishi, ProteinNet: a standardized data set for
machine learning of protein structure. Feb 2019

Data set Cutoff date Structures* Sequences®
ProteinNet 7 2006/5/1 34,557 4.817.827
ProteinNet 8 2008/5/5 48.087 15.756.117
ProteinNet 9 2010/5/3 60.350 24.688.095
ProteinNet 10 2012/5/1 73.116 63.477.198
ProteinNet 11 2014/5/1 87.573 173.908.140
ProteinNet 12 2016/5/1 104,059 332.283.871
* Non-redundant
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