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K. Paliwal, J. Lyons, R. Heffernan A Short Review of Deep
Learning Neural Networks in Protein Structure
Prediction Problems, Adv Tech Biol Med 3:3, 2015.

Deep Neural Network Architectures

Lot’s of available data
Data to be normalized

Various deep neural network architectures [3]:
* deep feed-forward neural networks

* recurrent neural networks

* neural Turing machines

* memory networks.
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Feed Forward Neural Networks

Many current state-of-the-art protein predictors are based on feedforward DNNs
* use a fixed-width window of amino acids, centered on the predicted residue.

. Thqdwindow is moved over the protein so that predictions can be made for each
residue.

Examples:

* PSIPRED (1999) a protein secondary structure predictor based on a neural
network with a single hidden layer
* accuracies of around 80% when predicting 3 states (Q3): helix, coil and sheet.

* SPINE-X, Scorpion, DNSS and SPIDER-2 use deeper neural networks and increased
accuracy to ~82% for the 3 states (Q3).

* Deep neural networks for more states (e.g. 8 state (Q8), etc.) helix coil, sheet,
Accg;si_ble Surface Area (ASA), phi and psi angles, theta, tau angles, and disorder
prediction.

Feed Forward Neural Networks

* Deep neural networks for more states e.g. 8 state (Q8) than helix cail,
sheet (Q3).

* Accessible Surface Area (ASA)
* Phi and psi angles, theta, tau angles
* Protein Disorder prediction.
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Other DNN Architectures

Recurrent Neural Networks (RNNs)

Used for time series, are also used for sequence prediction problems:
* Secondary structure prediction
* Protein disorder prediction
* 2-D RNNs for protein contact map prediction (for every pair of residues in a protein)
* Prediction of disulfide bridges.

* Pass information from one time step to the next.

* Context information contained earlier in the sequence can be utilized later
in the sequence.

* Bidirectional Recurrent Neural Networks (BRNNs)
* Can utilize information along the entire sequence.

RNNs with Memory

RNN'’s
* Can remember information over longer time periods.
* Are widely used for sequence prediction tasks.

Long Short Term Memory (LSTM) RNN’s and BRNN’s, etc.

* These networks can be trained to solve problems that basic RNNs are incapable
of solving, e.g., given examples of sorted and unsorted data, learn to sort new
unseen data.

* These architectures have not yet been applied to protein prediction problems
(2015) and it remains to be seen whether they will be able to succeed where
simpler architectures have not.
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S.K. Sgnderby, O. Winther, Protein Secondary Structure
Prediction with Long Short Term Memory Networks,
arXiv:1412.7828v2 [g-bio.QM] 4 Jan 2015. [7]
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Secondary Structure Prediction

Traditionally

* non-sequential models, typically feed-forward neural networks or SVM'’s
[Hua & Sun, 2001; Jones, 1999].

* Models originally for classifying fixed dimensional vector data: for
sequences/streams => sliding window are used

* These methods only learn dependencies within the input window

Recent methods (2014 - )
* learning other dependencies beyond window size
* Conditional random field hybrid models

* RNN’s can be applied to sequential data of any length => able to learn
long-term dependencies.

Secondary Structure Prediction

But RNN have some problems:
* Exploding or vanishing gradients [Bengio et al., 1994]

* Baldi et al. 1999: their RNN’s still were only able to learn dependencies of 15
amino acids relative to the target

Solution to RNN Problem

* Long Short Term Memory (LSTM) RNN'’s [Graves, 2012] against the vanishing
gradients problem

* LSTM networks able to learn dependencies over 100’s of time steps.

S.K. Sgnderby, O. Winther [7] propose a bidirectional LSTM network for protein
secondary structure prediction.




4/10/2019

Deep Neural Networks for Protein Structure
Prediction

* DNN’s state-of-the-art in speech recognition, image recognition,
natural language processing tasks, games such a chess and go, etc.

Various deep neural network architectures [3]:
* deep feed-forward neural networks (DNN)
* recurrent neural networks (RNN)

* Long Short Term Memory (LSTM) networks.

Secondary Structure Prediction

Output Patterns Output Patterns

Internal

Units

Input Patterns Input Patterns

Feed Forward Neural Network Recurrent Neural Network
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DNN: AlexNet, VGG16, ResNet, etc.
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and

the number of neurons in the network’s remaining layers is given by 253,440-186,624-64.896-64.896—43.264—
4096-4096-1000.
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Bi-directional
LSTM RNN’s

LSTM layer

c;&%g% Feedforward net

tput
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LSTM memory cell Protein Sequence Input Protein Sequence Input
iz input gate,
f: forget gate, Uni-directional LSTM Bi-directional LSTM RNN
o: output gate, S.K. Sgnderby, O. Winther [7]

g: input modulation gate,
c: memory cell.

Bi-directional LSTM RNN

When predicting the secondary structure, the whole Amino
Acid Sequence Xy, ...,Xy is known.

* Inforward RNN’s only the past sequence xy,...,x, (t<N) is
used to do the next prediction.

* In our case this is not optimal.

Therefor bidirectional RNN’s were introduced:

* Two separate RNN’s, the forward RNN starts the recursion
from x, and goes forwards

* The backwards model starts at x, and’goes backwards.

* The predictions from the forward and backward networks
are combined and normalized.

* Normalize the activations from each layer in a softmax
layer.
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Bi-directional LSTM RNN

Therefor bidirectional RNN’s were introduced:

* Two separate RNN’s, the forward RNN starts the recursion
from x, and goes forwards

* The backwards model starts at x, and goes backwards.

* The predictions from the forward and backward networks
are combined and normalized.

* Normalize the activations from each layer in a softmax
layer.

Here the standard stacked bidirectional LSTM model is
extended:

* by a feed-forward network responsible for concatenating
the output from the forward and backward networks into a
single softmax prediction

* And a feed-forward network between recurrent hidden
states, along with shortcut connections between the
recurrent hidden layers.

Data

Troyanskaya (2014)
* Amino acid sequences labeled with secondary structure.

* Sequences and structures were downloaded from PDB and annotated with the DSSP program [Kabsch &
Sander, 1983].

* The 8-class DSSP output, the harder problem, is used.

* Each amino acid is encoded as an 42 dimensional vector, 21 dimensions for orthogonal encoding and 21
dimensions for sequence profiles.

* For further descriptions see Troyanskaya 2014.

Filtering and division:
* The full dataset has 6128 non-homologous sequences (identity less than 30%).

* This set is further filtered such that no sequences has more than 25% identity with the CB513 dataset [Cuff
& Barton, 1999].

* The dataset is divided into a training (n=5278) and a validation set (n=256).
* The CB513 dataset is used for testing.

DSSP (Define Secondary Structure Protein) “The DSSP program defines secondary structure, geometrical
features and solvent exposure of proteins, given atomic coordinates in Protein Data Bank format. The program
does NOT PREDICT protein structure.”
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Results

Table 2. Test set per amino acid accuracy for CB513. *Reported by Wang et al. 2011

Q8 accuracy

[Pollastri et al., 2002] (BRNN)*

Wang et al. 2011 (CNF - 5-model ensemble)

Troyanskaya 2014 (GSN)
LSTM small
LSTM large

0.511
0.649
0.664
0.671
0.674

The LSTM network obtains a correct classification rate of 0.674, improves:
* 0.664 by generative stochastic network (GSN) [Bengio & Thibodeau-Laufer, 2013; Troyanskaya, 2014]
* 0.649 by conditional neural field (CNF) [Lafferty et al., 2001; Peng et al., 2009].
* 0.511 by bidirectional RNN (BRNN) having a correct classification rate of 0.511 [Pollastri et al., 2002]

Secondary Structure Prediction
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Secondary Structure Prediction (Wikipedia 2019)

Method description

Fast, state-of-the-art ab initio prediction of protein secondary structure in 3 and 8 classes

The most comprehensive and accurate prediction by iterative Deep Meural Network (DNM) for protein structural
properties including secondary structure, local backbone angles. and accessible surface area (ASA)

Predicts disorder and secondary structure in one unified framework. Trained on solution-based NMR data.
predict both 3-state and 8-state secondary structure using conditional neural fields from PSI-BLAST profiles

Profile-based neural network

Information theory/Bayesian inference

Multiple Neural network assignment from PSI-BLAST and HVMMER profiles. Predicts secondary structure and solvent
accessibility
Consensus prediction of other servers
Knowledge-based database comparison
Profile-based neural network
two feed-forward neural networks which perform an analysis on output obtained from PSI-BLAST

Self OPtimised Prediction Method from multiple Alignments (based on nearest neighbour method)

Frequency analysis of amino acid residues observed in profeins

an improved dictionary based approach which captures local sequence similarities in a group of proteins

Cascaded SVM-based predictor using PSI-BLAST profiles

Multiple backpropagation neural network predictors from PSI-BLAST profiles

Hidropathy Clustering Assisted Method by detection of physicochemical patterns.

Prediction of both secondary structure and Shape Strings (discrete states of dihedral angles) using profile based
fragment matching
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B. Zhang, J. Li, Q. LU, Prediction of 8-state protein secondary
structures by a novel deep learning architecture. BMC
Bioinformatics, 19:293, 2018. [8]

A novel deep learning architecture for protein secondary structure prediction
by integrating a convolutional neural network, residual network, and
bidirectional recurrent neural network.

* A local block comprised of convolutional filters and original input is
designed for capturing local sequence features.

* A subsequent bidirectional recurrent neural network consisting of gated
recurrent units can capture global context features.

* The residual network improves the information flow between the hidden
layers and the cascaded recurrent neural network (integration).

4/10/2019
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B. Zhang, J. Li, Q. L4, Prediction of 8-state protein secondary
structures by a novel deep learning architecture. BMC
Bioinformatics, 19:293, 2018. (8]

The novel deep network achieved:

. (7&84;% accuracy on the benchmark CB513 dataset for the 8-state prediction
* The ensemble learning by our model achieved 74% accuracy.

* Better than the state-of-the-art methods on three other independent
datasets CASP10, CASP11 and CASP12 for both 8- and 3-state prediction.

Conclusion: Our experiment demonstrates that it is a valuable method for
redicting protein secondary structure, and capturing local and global
eatures concurrently is very useful in deep learning.

CRRNN Architecture

CE G BGRU Block
Local Block ) ock BGRU
Full Connected l CNN_ID 3 I [ CNN 1D 5 I :| 500

CNN_1D_]

“\
~
~ :
® T
(c)
Convolutional bidirectional recurrent neural network
Local features Global features

T @

Fig. 1 a CRRNN overall architecture. b A local block comprising of two 10 convolutional networks with 100 kernels, and the concatenation (Concat)
of their outputs with the original input data. ¢ the BGRU block. The concatenation of input from the previous layer and before the previous layer is
fed to the 1D convolutional filter. After reducing the dimensionality, the 500-dimensional data is transferred to the next BGRU layer
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Data

Table 1 Training and test data used in our work

label  Types TR6614 TR5534 | cesis | | caspio CASP11 cAsP12|
Count % Count % Count % Count % Count % Count %
H ahelx 517653 0352 405560 0345 26143 0309 6544 0297 6330 0309 3550 0337
B pbrdge 15321 0010 12096 0010 1180 0014 227 0010 221 o011 113 oon
: Bstrand 321156 0218 255887 0218 17994 0212 5225 0237 5089 0248 2223 0211
G Jphelix 55994 0038 46019 0039 3132 0037 79 003 716 0035 320 0030
! whelx 281 0 209 0 30 0 5 0 0 0 0 0
T Turn 160753 0109 132980 0113 10008 0118 2811 0128 2299 0112 1164 0111
s Bend 118800 0081 97298 0083 8310 0098 1780 0081 1751 0085 95 0091
L Coll 282584 0092 225493 0192 17904 0211 4652 0211 4092 0200 2201 0209
Al 1472542 1175542 84701 22041 20498 10526

Results

Table 4 A comparison of the Q8 accuracy(%) on CB513, CASP10,

Table 2 Q8 predictive precision of individual secondary CASP11 and CASP12 between CRRNN and other state-of-the-art
structures from|CB513 methods
Q8 Label CRRNN NCCNN MUFOLD-S5 DCRNN2® DCRNN DeepCNF method | cesi3 CASP10 CASPTI caspi2 |
H 0.86 0841 0855 0863 0832 0849 ol 664 ’ '
BLSTM 674 -
B 0466 0.676 0571 0571 0554 0433 )
DeepCNF 683 718 7170 0.6940
E 0.797 0767 0764 0768 0753 0748 — o i
G 0466 0.487 0413 0419 0429 049 DCRNNG? 704 739 712 a8
[ 0 0 0 0 0 0 NCCNN 703 -
T 0556 0577 0572 0.562 0559 053 NCCNN? 74 -
_cch
S 0494 0.548 0522 0509 0518 0487 MUFOLD-SS 705 742 76 69,5
CRRNN 714402 738405 716107 68.7+0.8
L 0.603 0565 0586 0571 0573 0571
eCRRNN? 74 76.3 73.9 70.7

?Data is generated by our experiment

a
N indicates ensemble model
Boldface numbers indicate best performance

"Data is generated by our experiment
Boldface numbers indicate best performance
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Table 5 F1 score of individual secondary structure labels usinglCBS] 3 |

Q8 Label CRRNN? CRRNN NCCNN® NCCNN MUFOLD-55 DCRNN2 DCRNN? DeepCNF
0.903 0892 0.88% 0.884 0.886 0.891 0.880 0876
B 0.138 0.139 0.088 0077 0.000 0.006 0050 0049
E 0.834 0814 0.802 0.793 0.789 0.803 0.789 0.788
G 0.463 0413 0374 0.360 0.387 0.387 0317 0.340
| 0 0 0 0 0 0 0 0
T 0.594 0555 0.565 0.549 0.561 0.550 0.540 0529
5 0.433 0397 0343 0.334 0373 0.342 0.336 0335
L 0.660 0629 0631 0621 0.622 0611 0610 061
macro-F1 0.503 0480 0462 0452 0452 0449 0.440 0441
micro_F 0.74 0714 0.714 0.704 0.705 0.704 0697 0683

*indicates ensemble model
Baldface numbers indicate best performance

Fl-score: F= (

2

-1
recall ! + precision ! ) B

precision - recall

precision + recall

Q3 Results

Table 6 Q3 accuracy(%) comparison on CB513 and CASP

datasets

Method CASP10 CASP11 CASP12 CB513
PSIPRED 812 80.7 80.52 79.2
JPRED 816 804 7882 81.7
DeepCNF 844 847 83.22 823
DCRNN - - - 84
NCCNN - - - -
MUFOLD-S52 843 823 81.1 82.7
CRRNN 86.1406 842405 826412 853404
eCRRNN 87.8 85.9 83.7 87.3

?Data is generated by our experiment

Boldface numbers indicate best performance
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Fig. 2 The accuracy of 3-state secondary structure prediction for
individual amino acids as compared with CRRNN, SPIDER3 and
SPIDERZ on the T51199 dataset
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Critical Assessment of protein Structure Prediction (CASP)
http://predictioncenter.org/

* CASP7 - CASP11

CASP7 CASP9 CASP11

Template Based Modeling

* Most accurate models.

First 10 years of CASP enormous improvements. Unmatched until CASP12.
From CASP11 to CASP12 the backbone accuracy of the submitted models

improved more than in the preceding 10 years.

This was due to:

more accurate alignment of the target sequence to that of available templates
combining multiple templates

improved accuracy of regions not covered by templates

successful refinement of models

better selection of models from decoy sets due to improved methods for estimation
of model accuracy.

[Kryshtafovych et al, 2018]
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Contact Prediction

No contact restrictions With contact restrictions

Progress in recent CASPs (2014, 2016) due to better methods for predicting three-dimensional
contacts between pairs of residues in structures.

Average precision of the best CASP12 compared to that of the best CASP11 predictor increased
from 27% to 47%.

Overall 26 methods in CASP12 showed better results than the best method in CASP11.
[Schaarschmidt et al, 2018]

Theoretical advance in contact prediction lead to improved accuracy of 3D models, especially for
ab initio modeling.

CASP13 (2018) big improvement in accuracy of contact prediction, with the average precision of
the best contact prediction group increasing by 23% (compared to CASP12) and reaching 70%.

Ab Initio Modeling

* Modeling proteins with no or marginal similarity to existing structures (ab initio, new fold, non-
template or free modeling) is the most challenging task in tertiary structure prediction.

* Probably the first ab initio model of reasonable accuracy was built in CASP4.
* Since then progress but mainly for small proteins (120 residues or less).

* In CASP11 for the first time a larger new fold protein (256 residues, sequence identity to known
structures <5%) was built with unprecedented before accuracy for targets of this size.

* CASP11 and CASP12 experiments (2014, 2016) also showed a new trend in building better non-
template models by successful utilizing predicted contacts.

* CASP13 witnessed yet another substantial improvement in accuracy of template-free models
likely due to employing deep learning artificial intelligence techniques.

* The best models submitted on difficult for modeling targets showed substantial increase in
average GDTTS (see next slide) scores going from 52.9 in CASP12 up to 65.7 in CASP13.

17
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CASP GDTTS Scores

CASP’s metric to quantify the quality of individual models is the Global
Distance Test Total Score3 (GDTTS)

* a metric for model topology assessment.

* GDTTS reports an average of the maximum number of model residues that
can be superimposed onto the target under cutoffs of 1, 2, 4, and 8 A.

* The GDTTS score ranges between 0 and 100.
* <20 generally indicates poor models
* >50 generally indicates overall good topology.

* = 100 corresponds to a model that matches the full structure within 1 A
deviation in the Calpha coordinates of all residues.

J. Hou, et al. Protein tertiary structure modeling driven by deep
learning and contact distance prediction in CASP13, 2019.

* CASP10 (2012) deep learning for contact and distance distribution prediction.

* CASP11 (2014) prediction of residue-residue distance relationships (e.g. contacts)
is the key direction to advance protein tertiary structure prediction.

* CASP11 and CASP12: successes of residue-residue co-evolutionary analysis

CASP13 (2018) MULTICOM (3™ place) a protein structure prediction system with
three major deep learning components:

* contact distance prediction based on deep convolutional neural networks

* contact distance-driven template-free (ab initio) modeling

* protein model ranking empowered by deep learning and contact prediction

» further components: template library, sequence database, and alignment tools.

* MULTICOM was ranked 3rd out of all 98 predictors in both template-free and template-based
protein structure modeling in CASP13.

18
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co-evolutionary analysis

two amino acids in contact (or spatlally close according to a distance
threshold such as 84&) must co-evolve in order to maintain the contact
relationship during evolution

* if one amino acid is mutated to a positively charged residue, the other one
must change to a negatively charged one to be in contact.

* A number of co-evolutionary methods of calculating direct rather than
indirect/accidental correlated mutation scores has been developed

=> improve contact prediction.

The co-evolutionary scores can be used as input for machine learning
methods to further improve contact prediction.

MULTICOM ideas

Challenges for accurately predicting protein contact distance:

» few homologous sequences to generate co-evolutionary signals.
* folding proteins from noisy contact distances

* ranking models of hard targets.

MULTICOM Deep convolutional neural network:
* Utilize global information in pairwise residue-residue features

co-evolution scores to substantially improve inter-residue contact distance prediction,
* Integrated 1D structural features, 2D contact information, and 3D structural quality scores

to improve protein model quallty assessment

Note: the contact prediction enhances ranking of protein models for the first time.

Key: Protein contact distance prediction and model selection using deep learning.

19



4/10/2019

MULTICOM-Server
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