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Next Generation Sequencing

E.M. Bakker

Several slides are based on/taken from [7].

The Mapping Problem and 

the Assembly Problem

The Mapping Problem

INPUT: m reads S1,…, Sm of length l and  an 
approximate reference genome R.

QUESTION: What are the positions x1,…, xm along R where 
each read S1,…, Sm matches, respectively?

The Assembly Problem

INPUT: m reads S1,…, Sm of length l.

QUESTION: What is the sequence of the full genome?

The crucial difference between the problems of mapping and 
assembly is that in case of assembly we do not have a 
reference genome, and we must assemble the full 
sequence directly from the reads.
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The Mapping Problem

The Short Read Mapping Problem on reference genome R

INPUT: m reads S1,…, Sm of length l and an approximate 

reference genome R.

QUESTION: What are the positions x1,…, xm along R where each read 
S1,…, Sm matches, respectively?

For example: after sequencing the genome of a person we want to map it to an 
existing sequence of the human genome. 

• The new sample will not be 100% identical to the reference genome:
– natural variation in the population

– mismatches or gaps

– sequencing errors

– repetitive regions

Humans are diploid organisms
– different alleles on the maternal and paternal chromosomes 

– two slightly different reads mapping to the same location (some with mismatches)

• Viruses: high mutation rates, many variations haplotypes => hybrid 
mapping problem

The Bowtie Algorithm

Another way to map reads to a reference genome is 
given by the Bowtie algorithm, presented in 2009 
by Langmead et al.[1]. 

It solves the mapping problem using a space-efficient 
indexing scheme. 

The indexing scheme used is called the Burrows-
Wheeler Transform [2] and was originally 
developed for data compression purposes. 
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The Burrows-Wheeler Transform

Applying the Burrows-Wheeler transform BW(T) to the text 

T = "the next text that i index.":

1. First, we generate all cyclic shifts of T.

2. Next, we sort these shifts lexicographically. 

– define the character '.' as the minimum and we assume that it appears 
exactly once, as the last symbol in the text. 

– followed lexicographically by ' ‘ (space)

– followed by the English letters according to their natural ordering. 

– Call the resulting matrix M.

The transform BW(T) is defined as the sequence of the last characters in the 
rows of M. 

Note that, the last column is a permutation of all characters in the text since 
each character appears in the last position in exactly one cyclic shift.

Burrows-Wheeler Transform

Some of the cyclic shifts of T sorted lexicographically and indexed by the 
last character.
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Burrows-Wheeler Transform

• Storing BW(T) requires the same space as 

the size of the text T since it is a 

permutation of T. 

BW(the human genome)

Each base {A,C,T,G} represented by 2 bits => 

storing the permutation requires 2 times 3x109

bits (instead of ~30 times  3x109 for storing 

all indices of T).

Burrows-Wheeler Transform

The following holds for BW(T):

1. # occurrences of char c in T = # occurrences of char c in BW(T) 
(BW(T) permutation of the T).

2. The first column of the matrix M can be obtained by sorting 
BW(T) lexicographically. 

3. Determine the number of occurrences of the substring 'xt' in T:

– BW(T) is the last column of the lexicographical sorting of the 
shifts. 

– The character at the last position of a row appears in the 
text T immediately prior to the first character in the same 
row (each row is a cyclical shift). 

– => consider the interval of 't' in the first column, and check 
how many of these rows have an 'x‘ at the last position. 
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Burrows-Wheeler Transform

1. Some of the cyclic shifts of T sorted lexicographically and indexed by 
the last character.

Burrows-Wheeler Transform

The following holds for BW(T):

1. # occurrences of char c in T = # occurrences of char c in BW(T) 
(BW(T) permutation of the T).

2. The first column of the matrix M can be obtained by sorting 
BW(T) lexicographically. 

3. Determine the number of occurrences of the substring 'xt' in T:

– BW(T) is the last column of the lexicographical sorting of the 
shifts. 

– The character at the last position of a row appears in the 
text T immediately prior to the first character in the same 
row (each row is a cyclical shift). 

– => consider the interval of 't' in the first column, and check 
how many of these rows have an 'x‘ at the last position. 
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2. Recovering the first column (left) by sorting the last column.

3. Determine the number of occurrences of the substring 'xt' in T

BW(T)Sorted BW(T)

Burrows-Wheeler Transform
Given BW(T) also the second column can be derived: 

• 'xt' appears twice in the text, and three rows start with an 
'x'. 

• Two of the three must be followed by a 't‘, where the 
lexicographical sorting determines which 'x'. 

• The third 'x' is followed by a '.' (see first row) => '.' must 
follow the first 'x' in the first column since '.' is smaller 
lexicographically than 't'. 

• The second and third occurrences of 'x' in the first column 
are therefore followed by 't'. 

Note: We can use the same process to recover the characters at the second 
column for each interval, and then the third, etc.

. the next text that I index 1st x

…

t text that i index. the nex 2nd x

t that i index. the next tex 3rd x

text that i index.the next 

that i index. the next text 

the next text that i index.
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Last-first mapping: Each 't' character in L is linked to its position in F and no 
crossed links are possible.

The j-th occurrence of character X in L corresponds to the same text character as 
the j-th occurrence of X in F.

F LWe have actually:

Burrows-Wheeler Transform

The previous two central properties of the BW-transform are 
captured in the Lemma by Ferragina and Manzini[4]:

Lemma 12.1 (Last-First Mapping): 

Let M be the matrix whose rows are all cyclical shifts of T
sorted lexicographically, and let L(i) be the character at the 
last column of row i and F(i) be the first character in that 
row. Then:

1. In row i of M, L(i) precedes F(i) in the original text:                      
T =…L(i) F(i)…

2. The j-th occurrence of character X in L corresponds to 
the same text character as the j-th occurrence of X in F.
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Last-first mapping: j-th occurrence of character 't' character in L is linked 
to its j-th position in F and no crossed links are possible.

F L

Burrows-Wheeler Transform

Proof:

1. Follows directly from the fact that each row in M is a 
cyclical shift.

2. Let Xj denote the j-th occurrence of character X in L, and 
let α be the character following Xj in the text 

and β the character following Xj+1. 

Then, since Xj appears above Xj+1 in L, α appears at the 
beginning of a row above the row that starts with β. 

The rows are lexicographically ordered,                        
hence α must be equal or lexicographically smaller than β.  

Now clearly X α ≤lexicographically X β holds. 

Hence, as the rows are lexicographically ordered, if 
character Xj appears in F it is followed by α, and thus will 
be above Xj+1 which is followed by β. 

Thus proofing the Lemma.
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Reconstructing the Text

Algorithm UNPERMUTE for reconstructing a text T from its Burrows-Wheeler 
transform BW(T) utilizing Lemma 12.1 [4]: 

• assume the actual text T is of length u

• append a unique $ character (=‘.’) at the end, which is the smallest 
lexicographically

UNPERMUTE[BW(T)]

1. Compute the array C[1,…,|Σ|] : where 

C(c) is the number of characters {$, 1,…,c-1} in T, 

i.e., the number of characters  that are lexicographically smaller than c 

2. Construct the last-first mapping LF, tracing every character in L to its 
corresponding position in F:

LF[i] = C(L[i]) + r(L[i], i) + 1, where 

r(c, i) is the number of occurrences of character c in the prefix L[1, i -1]

3. Reconstruct T backwards:
s = 1, T(u) = L[1];

for i = u – 1,…, 1

do

s = LF[s]; 

T[i] = L[s];

od;

Last-first mapping: Each 't' character in L is linked to 
its position in F and no crossed links are possible.

C
0

1

1

1

1

1

6

7

8

…

Notice, that C(e) + 1 = 9 

is the position of the first 

occurrence of ‘e' in F.

C(e) = 8, as there are 8

characters in T that are 

smaller than ‘e’.

F L
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Example

T = acaacg$ (u = 6) is transformed to BW(T) = gc$aaac, and we now wish 
to reconstruct T from BW(T) using UNPERMUTE:

1. Compute array C. For example: C(c) = 4 since there are 4 occurrences 
of characters smaller than 'c' in T ('$' and 3 occurrences of 'a'). Now 
C(c) + 1 = 5 is the position of the first occurrence of 'c' in F.

2. Perform the LF mapping. For example, LF[c2] = C(c) + r(c,7) + 1 = 6, 
and indeed the second occurrence of 'c' in F is at F[6].

3. Determine the last character in T: T(6) = L(1) = 'g'.

4. Iterate backwards over all positions using the LF mapping. For 
example, to recover the character T(5), we use the LF mapping to trace 
L(1) to F(7), and then T(5) = L(7) = 'c'.

Remarks 

We do not actually hold F in memory, we only keep the array C
defined above, of size | Σ |, which we can easily obtained from L.

r(c,7) = # of occurences of ‘c’ in length 7-1 prefix, 

used as an offset to obtain the right ‘c’.

Example of running UNPERMUTE to recover 

the original text. Source: [1].

Determine its location in F and find its 

corresponding predecessor in L using

C(.) and r(.,.)

i.e., find corresponding ‘g’ using the last-first mapping

First           Last

Note: ‘$’ = ‘.’
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Exact Matching

EXACTMATCH exact matching of a query string P to T, 
given BW(T)[4] is similar to UNPERMUTE, we use 

• the same C and r(c, i)

• denote by sp the position of the first row in the interval of 
rows in M we are currently considering

• denote by ep the position of the first row beyond this 
interval of rows

=> the interval of rows is defined by the rows sp,…, ep - 1.

EXACTMATCH[P[1,…,p], BW(T)]

1. c = P[p]; sp = C[c] + 1; ep = C[c+1] + 1; i = p - 1;

2. while sp < ep and i >= 1
c = P[i];

sp = C[c] + r(c, sp) + 1;

ep = C[c] + r(c, ep) + 1;

i = i - 1;

3. if (sp == ep) return "no match"; else return sp, ep;

Example of running EXACTMATCH to find a query 

string in the text [1].

P = ‘aac’
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Inexact Matching

Sketch

• Each character in a read has a numeric quality value, with lower 
values indicating a higher likelihood of a sequencing error. 

• Similar to EXACTMATCH, calculating matrix intervals for 
successively longer query suffixes. 

• If the range becomes empty (a suffix does not occur in the text), then 
the algorithm selects an already-matched query position and substitute 
a different base there, introducing a mismatch into the alignment. 

• The EXACTMATCH search resumes from just after the substituted 
position. 

• The algorithm selects only those substitutions that 

– are consistent with the alignment policy and 

– yield a modified suffix that occurs at least once in the text. 

– If there are multiple candidate substitution positions, then the 
algorithm greedily selects a position with a maximal quality 
value. 

Example of running INEXACTMATCH to find a 

query string in the text [1].

P = ‘gac’

g g

No ‘g’ => substitute ‘a’ and proceed.
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The Assembly Problem

How to assemble an unknown genome based on many highly 
overlapping short reads from it?

Problem Sequence assembly

INPUT: m l-long reads S1,…, Sm.

QUESTION: What is the sequence of the full genome?

The crucial difference between the problems of mapping and 
assembly is that now we do not have a reference genome, 
and we must assemble the full sequence directly from the 
reads.

De Bruijn Graphs

Definition 

A k-dimensional de Bruijn graph of n symbols is a directed graph 
representing overlaps between sequences of symbols. 

It has nk vertices, consisting of all possible k-tuples of the given symbols. 
Note: the same symbol may appear multiple times in a tuple. 

If we have the set of symbols A = {a1,…,an} then the set of vertices is: 

V = { (a1 ,…, a1, a1), (a1 ,…, a1, a2) ,…, (a1 ,…, a1, an), 

(a1 ,…, a2, a1), …                   …, (an ,…, an, an)}

If a vertice w can be expressed by shifting all symbols of another vertex v 
by one place to the left and adding a new symbol at the end, then v has 
a directed edge to w. 

Thus the set of directed edges E is:

E = {( (v1, v2 ,…, vk), (w1,w2 ,…, wk) )| v2 = w1, v3 = w2 ,…, vk = wk-1, 
and wk new}
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A portion of a 4-dimensional de Bruijn graph.

The vertex CAAA has a directed edge to vertex 
AAAC, because if we shift the label CAAA to the 
left and add the symbol C we get the label AAAC.

In this way the word CAAAC defines a directed edge

De Bruijn Graphs

• Given a read, every contiguous (k+1)-long word 

in it corresponds to an edge in the k-dimensional 

de Bruijn graph of the symbols {A,C,T,G}. 

• Form a subgraph G of the full de Bruijn graph by 

introducing only the edges that correspond to 

(k+1)-long words in some read. 

• A path in this graph defines a potential 

subsequence in the genome. 

• Hence, we can convert a read to its corresponding 

path in the constructed subgraph G
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Using the graph from the previous slide, we construct the path 
corresponding to CCAACAAAAC:

• shift the sequence one position to the left each time, and 
marking the vertex with the label of the 4 first nucleotides.

De Bruijn Graphs

• Form paths for all the reads

• Identify common vertices on different paths

• Merge different read-paths through these 

common vertices of the paths into one long 

sequence
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• The two reads in (a) are converted to paths in the graph

• The common vertex TGAG is identified

• Combine these two paths into (b).

Merging of Paths using Common Vertices

De Bruijn Graphs

Velvet (2008), by Zerbino and Birney[6], Velvet GUI (2012) , 
is an algorithm which uses de Bruijn graphs to assemble 
reads; with the following difficulties:

• repeats will show up as cycles in the merged path that we 
form. We do not know how many times each cycle must be 
traversed in order to form the full sequence of the genome. 

• If we have two cycles starting at the same vertex, we cannot 
tell which one to traverse first. 

• Velvet attempts to address this issue by utilizing the extra 
information we have in the case of paired-ends sequencing
(both ends of a DNA fragment are sequenced in Read 1 and 
Read 2, respectively. The distance between each paired read 
is known).

TGACCA …… distance d ….. CCTACC

Read 1 Read 2
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Velvet (Wikipedia)

Reads

k-mers

De Bruijn Graph

Example of a bubble:

Remove tips if the edges are weak. 
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Other Assembly Algorithms

• HMM based

• Majority based

• Etc.

• Long reads: string graphs

Other Assembly Algorithms

K.R. Bradnan et al. Assemblathon 2: evaluating de novo

methods of genome assembly in three vertebrate species

(http://gigascience.biomedcentral.com/articles/10.1186/2047-217X-2-10, 2013)

“Many current genome assemblers produced useful 

assemblies, containing a significant representation of their 

genes and overall genome structure. 

However, the high degree of variability between the entries 

suggests that there is still much room for improvement in the 

field of genome assembly and that: 

approaches which work well in assembling the genome of one 

species may not necessarily work well for another.”

http://gigascience.biomedcentral.com/articles/10.1186/2047-217X-2-10
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Other Assembly Algorithms

Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren 

S, Treangen TJ, Schatz MC, Delcher AL, Roberts M, et al. 

Gage: A critical evaluation of genome assemblies and 

assembly algorithms. Genome Res. 2012; 22(3):557–67. 

Three conclusions: 

1.Quality: data quality, rather than the assembler itself, has a 

dramatic effect on the quality of an assembled genome

2.Variability: the degree of contiguity of an assembly varies 

enormously among different assemblers and different 

genomes

3.Correctness: the correctness of an assembly also varies 

widely and is not well correlated with statistics on contiguity.

Other Assembly Algorithms

Scaffolding and completing genome assemblies in real-time with nanopore

sequencing

By Minh Duc Cao, Son Hoang Nguyen, Devika Ganesamoorthy, Alysha G. 

Elliott, Matthew A. Cooper & Lachlan J. M. Coin

Nature Communications 8, Article number: 14515 (2017)

“Long read sequencing technologies, for example Pacific 

Biosciences’ (PacBio) and Oxford Nanopore MinION

sequencing, allow users to generate reads spanning most 

repetitive sequences, which can be used to close gaps in 

fragmented assemblies.”
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Image from reference [8] (2017).

Existing contigs

De Novo Assembly of 

Viral Quasispecies using Overlap Graphs

Jasmijn A. Baaijens, A. Z. El Aabidine, E. Rivals, and A. 

Schönhuth, De Novo Assembly of Viral Quasispecies using 

Overlap Graphs. Genome Research, 27:835–848, 2017

Viruses HIV, Zika, and Ebola:

• Ensemble of genetically related but different mutant 

strains, viral quasispecies. 

• Each strains, each characterized by its own haplotypic

sequence: high mutation and recombination rates 

Goal: a viral quasispecies assembly 

• presenting all of the viral haplotypes, and

• their abundance rates. 
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Viral Quasispecies Assembly

Viruses HIV, Zika, and Ebola:

Goal: a viral quasispecies assembly 

• presenting all of the viral haplotypes, and

• their abundance rates. 

Problems:

- The number of different strains is usually unknown.

- Different strains can differ by only minor amounts of distinguishing 

mutations. 

- Abundance rates can be as low as the sequencing error rates

- Reference genomes representing high-quality consensus genome 

sequences can be obsolete (as a result of great diversity and high 

mutation rates)

SAVAGE Overview

The three stages of 

SAVAGE. Each 

assembles sequences 

into longer sequences.

Output by each stage: 

a) Contigs

b) maximally extended 

contigs

c) master contigs
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Overlap Graphs

Given a collection R of sequences over the alphabet {A,C,G,T, N} 

(N is unknown nucleotide), 

The overlap graph G = (V,E) is a directed graph, where 

- vertices v ∈ V correspond to reads/contigs R ∈ R and 

- directed edges connect reads/contigs Ri, Rj ∈ R whenever 

- a suffix of Ri of sufficient length matches a prefix of Rj and 

- QS(Ri, Rj) ≥ δ where QS:V × V→R is a quality score

• For local and global assembly of contigs, the statistical model of Töpfer et al. (2014) is 

used:  QS(Ri, Rj) ≥ δ reflects the quality of the overlaps of reads Ri and Rj , i.e. with high 

probability locally identical haplotypic sequence. 

• It includes a refined version of the (Phred-scaled (see next slide)) error profiles of the 

sequencing process. 

• For the assembly of the master strain, QS(Ri, Rj) ≥ δ indicates that two contigs share 

only a limited amount of mismatches in their overlaps => likely emerge from identical 

master strains sequences.

Phred Quality Score

Source: Wikipedia.
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Overlap Graphs

Principle of overlap 

graph construction 

Distinction among the 

reads between:

- errors and 

- shared mutations

Each stage has two 

steps: 

1. the overlap graph 

construction

2. assembly. 

This panel summarizes 

the differences in each 

step between the three 

stages. 

During overlap graph-

based assembly, steps 4 

to 6 are repeated 

iteratively until there 

are no edges left in the 

overlap graph.

Note: FM-index: Compressed self index as used in BWT.

FM = Full-text index in Minute space.
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Each stage has two steps: 

1. the overlap graph 

construction

2. assembly. 

This panel summarizes 

the differences in each 

step between the three 

stages. 

During overlap graph-

based assembly, steps 4 

to 6 are repeated 

iteratively until there are 

no edges left in the 

overlap graph.
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Benchmark Data Sets

Results
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