
Molecular docking 
and computation of protein-protein interactions



Molecular docking
• Molecular docking strategies identify the orientations of molecules that are 

optimal for their interactions. 
• In particular, applied for interactions between proteins and (small molecule) 

ligands that modulate protein functions. 
• Proteins can have specific binding cavities and active sites.

An example of docking of a ligand to two related proteins:
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Figure 9 The binding mode of MLS00088004 (Rac-pEC  = 7.70; Cdc42-pEC  = 7.23)

The figure shows the docking views of this compound in A) the biding cavity of Rac1, depicted in light green and B)
Cdc42 represented in grey. The relevant amino acids in both binding sites are rendered in ball-stick. The hydrogen
bonds are represented with dash line.
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Molecular docking
The first approximation of protein-ligand interaction: lock-and-key model.

• Both protein and ligand are considered to be rigid bodies. 
• The affinity is proportional to geometric fit. 
• The fit is searched in 6-dimensional translational/rotational space. 
• Binding free energy can be calculated as the sum of van der Waals, 

electrostatic and H-bonding interaction energies.

An example of approximated energy function for molecular docking:
733

Figure 1. (A) The functional form of the ligand-protein interaction energy. For steric interactions, A = 0.93B, C = 1.25B, D = 1.5B, E =
−0.4, F = 15.0, and B = rl + rp is the sum of the atomic radii for the ligand and protein atoms. For hydrogen bond interactions, A = 2.3, B =
2.6, C = 3.1, D = 3.4, E = −4.0, F = 15.0. For sulfur hydrogen bond interactions, A = 2.7, B = 30.0, C = 3.5, D = 3.8, E = −2.0, F = 15.0.
For chelating interactions with the metals A = 1.5, B = 1.7, C = 2.5, D = 3.0, E = −10.0, F = 15.0. For repulsive interactions, A = 3.2, E =
0.1, F = 15.0, and B, C, and D are not relevant. The units of A, B, C, and D are Å; for E and F the units are kcal/mol. (B) The hydrogen bond
interaction energy is multiplied by the hydrogen bond strength term, which is a function of the angle θ determined by the relative orientation of
the protein and ligand atoms.

programming [21] and Monte Carlo simulations [46,
48, 56–58]. The knowledge-based simplified ener-
getic model includes intramolecular energy terms for
the ligand, given by torsional and nonbonded func-
tions [59], and intermolecular ligand-protein steric
and hydrogen bond interaction terms calculated from
a piecewise linear potential (PL) summed over all
protein and ligand heavy atoms (Figure 1a). The pa-
rameters of the pairwise potential depend on the fol-
lowing different atom types: hydrogen-bond donor,
hydrogen-bond acceptor, both donor and acceptor,
carbon-sized nonpolar, fluorine-sized nonpolar and
sulfur-sized nonpolar. We have added an additional
iodine-sized nonpolar atom type in simulations with
the ligand-protein complex that contains iodines. The
atomic radius for carbon, oxygen, nitrogen atoms is
1.8 Å, for fluorine it is 1.8 Å, for sulfur 2.2 Å and
2.35 Å for iodine. A multiplicative desolvation penalty
of 1.0 is applied to the attractive portion of the inter-
action between non-polar and polar atoms. Primary
and secondary amines are defined to be donors, while
oxygen and nitrogen atoms with no bound hydrogens
are defined to be acceptors. Sulfur is modeled as being
capable of making long-range, weak hydrogen bonds
which allows for sulfur-donor closer contacts that are
seen in some of the crystal structures. Crystallographic
water molecules and hydroxyl groups are defined to
be both donor and acceptor, and carbon atoms are
defined to be nonpolar. The steric and hydrogen bond-
like potentials have the same functional form, with
an additional three-body contribution to the hydrogen

bond term. The hydrogen bond interaction energy is
multiplied by the hydrogen bond strength term, which
is a function of the angle θ determined by the relative
orientation of the protein and ligand atoms (Figure 1b).
θ is defined to be the angle between two vectors, one
of which points from the protein atom to the ligand
atom. For protein atoms with a single heavy atom
neighbor, the second vector connects the protein atom
with its heavy atom neighbor, while for protein atoms
with two heavy atom neighbors, it is the bisector of
the vectors connecting the protein atom with its two
neighbors. The long-range component of the repul-
sive term used for donor-donor, acceptor-acceptor, and
donor-metal close contacts is scaled according to the
relative positioning of the two atoms. The scaling is
equivalent to that used for hydrogen bonding, i.e. the
penalty is greatest when the angle θ is 180 degrees,
fading to zero at 90 degrees and below. The parameters
were refined to yield the experimental crystallographic
structure of a set of ligand-protein complexes as the
global energy minimum [21, 22]. No assumptions re-
garding either favorable ligand conformations or any
specific ligand-protein interactions were made, and all
buried crystallographic water molecules are included
in the simulations as part of the protein structure. The
standard AMBER force field [60, 61] is used in con-
junction with a solvation term [46, 48, 62], which
is added to the interaction potential to account for
the free energy of interactions between the explicitly
modeled atoms of the ligand-protein system and the
implicitly modeled solvent. The term was derived by

(Verkhivker et al., 2000)

(A) Steric interactions: 
B = sum of van der Waals radii of two atoms 
A = 0.93B; C = 1.25B; D = 1.5B; 
E = −0.4; F = 15

(B) H-bond energy:  
is multiplied by a strength 
term, which is a function of 
angle formed by proton 
donor and acceptor atoms

• More accurate energy functions can be used. 
• Docking algorithms consider large numbers of conformations. 
• Two main components of a docking protocol: scoring function (energy) and 

searching strategy, e.g. Molecular Dynamics, Monte Carlo algorithm etc.



Molecular docking
Conformations of interacting molecules change upon binding: 
induced-fit or flexible docking.

• Computationally more demanding than lock-and-key docking. 
• Various approximations, e.g. flexible ligand docking into rigid receptor, rigid backbone 

with flexible amino acid side chains etc. 
• Conformational changes may be either induced by binding or caused by stabilizing 

ligand binding to one of suboptimal protein conformations (selected-fit).

Induced-fit vs. selected-fit

[see Eq. (A8) in the Appendix]. For small ligand concen-
trations [L], or fast conformational relaxation s12 into
the ground-state conformation E1, we have sb[L] ! s12,
and the selected-fit on-rate per mole ligand is
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s12
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The selected-fit on-rate (7) just depends on the equi-
librium constant Ku of the conformations E1 and E2 in
the unbound state, and the binding rate sb of the confor-
mation E2. Since the equilibrium probability P(E2) 5
[E2]/([E1] 1[E2]) of conformation E2 is approximately
P(E2) " [E2]/[E1] 5 Ku for [E2] ! [E1], the selected-fit
on-rate (7) can also be directly understood as the prod-
uct of the probability that the protein is in conformation
E2 and the binding rate sb of this conformation.

The selected-fit off-rate is the dominant relaxation rate
of the process

E2L!
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from E2L to the E1. This process follows the same general
reaction scheme as the binding process (5). A reasonable,
simplifying assumption here is that the conformational
relaxation process from the excited state E2 to the ground
state E1 is significantly faster than the binding and
unbinding process, which implies s12 ) su and s12 )
sb[L]. The selected-fit off-rate then simply is

soff "su ð9Þ

[see Eq. (A9) in the Appendix]. The off-rate soff thus is
independent of the conformational transition rates
between E1 and E2. The off-rate is identical with the rate
su for the bottleneck step, the unbinding process from
E2L to E2.

Induced-fit binding kinetics

The on-rate along the induced-fit binding route of our
model (see Figs. 1 and 3) is the dominant relaxation rate
of the process
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E2L ð10Þ

Here, rb is the binding rate of conformation E1 per mole
ligand, ru is the unbinding rate, and r21 is the rate for the
conformational transition into the bound ground state E2L.
The induced-fit binding process (10) is similar to the
selected-fit unbinding process (8). As before, we assume
that the conformational transition into the ground state is
much faster than the binding and unbinding processes, i.e.
we assume r21 ) rb[L] and r21 ) ru. The induced-fit on-
rate per mole ligand then is (see Appendix)

ron "rb ð11Þ

The induced-fit unbinding rate is the dominant relaxa-
tion rate of the process
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which is similar to the selected-fit binding process (5). Since
E2L is the ground-state conformation in the bound state of
the protein, we have Kb 5 r21/r12 ) 1. The dominant relax-
ation rate of (12) then is

roff "
r12ru

r21 þru
ð13Þ

[see Eq. (A8) in the Appendix]. For fast conformational
relaxation into the bound ground state with rate r21 ) ru,
the induced-fit off-rate is approximately

Figure 2
Binding kinetics along the selected-fit route of our model (see Fig. 1).
Here, s21 and s12 are the rates for the conformational transitions in the
unbound state, sb is the binding rate of conformation E2 per mole
ligand, and su the unbinding rate. Since E1 is the ground state and E2
the excited state, we have Ku 5 s21/s12 ! 1. If the conformational
transition rate s12 into the ground state is much larger than the binding
and unbinding rates sb[L] and su, the on-rate along the selected-fit
route is approximately son "Kusb, and the off-rate is soff "su [see Eqs.
(7) and (9)].

Figure 3
Binding kinetics along the induced-fit route of our model (see Fig. 1).
Here, r12 and r21 are the rates for the conformational transitions in the
bound state, rb is the binding rate of conformation E1 per mole ligand,
and ru the unbinding rate. Because E2L is the ground state, we have Kb

5 r21/r12 ) 1. For conformational transition rates r21 into the bound
ground state that are much larger than the binding and unbinding rates
rb[L] and ru, the on- and off-rates along the induced-fit route are
approximately ron"rb and roff"su/Kb [see Eqs. (11) and (14)].
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Molecular docking
Conformations of interacting molecules change upon binding: 
induced-fit or flexible docking.

• Computationally more demanding than lock-and-key docking. 
• Various docking protocols.

and Kuhn [5!]. Their docking algorithm, SLIDE,
attempts to resolve ligand–receptor steric clashes by a
minimal number of side-chain rotations, with the cost of
side-chain movement evaluated as a product of the
rotation angle and the number of atoms moved.

Depending on the specific system, side-chain flexibility
alone may or may not be sufficient for adequate modeling.
For example, conformational variability in the HIV pro-
tease binding site is apparently well described in terms of
movements of several side-chains and a water molecule
[6]. On the contrary, many kinases exhibit loop rearrange-
ments as well as large-scale mutual movement of the two
‘lobes’ delimiting the active site [7]. Diversity in ligand
binding mechanisms and the frequent unpredictability of
receptor movement types makes the use of pre-deter-
mined (by experimental or computational means)
multiple receptor conformations (MRC) an attractive
practical alternative.

Problems beyond receptor flexibility
Detailed case analysis of a large number of incorrect
ligand–receptor docking poses or inadequate binding
scores finds many alternative sources of error beyond
receptor flexibility. They include ‘fantasy’ (outside the
electron density) positions of the ligand pocket atoms
(side-chains or loops), incorrect orientations of His, Asn,
and Gln side-chains, improperly assigned histidine tau-
tomers and charged states for aspartate, glutatame and
histidine, and improper proline ring puckering, among
others [8!]. In some cases, protonation or isomeric states
may be ligand dependent. These inevitable receptor
ambiguities affect the MRC method in two different
ways. First, we need to take those possibilities into
account upon adding any protein structure to the MRC
set. Second, as an added benefit, the multiple receptor
structures may represent those uncertainties in specific
atomic details of the receptor binding pocket, including
alternative tautomers, isomers, ring puckering, protona-
tion states, hydrogen positions, and presence/absence of
specific water molecules potentially participating in
ligand binding.

It is noteworthy that the limitations of single confor-
mation representation of experimental protein structure
have been recently brought to attention of X-ray crystal-
lography community [9!!]. Methods for generation of
crystallographic ensembles are being developed [10]. If
proposed deposition of crystallographic ensembles in
PDB becomes a common practice, these ensembles will
become another natural source of input for MRC docking
studies.

Ensemble docking
Given the variety and success of available flexible ligand/
rigid-receptor docking algorithms, the easiest way to
include multiple conformations of receptor in a docking

experiment is simply to run multiple independent simu-
lations (Figure 1). However, integration of MRC
sampling into the docking algorithm may offer advantages
in terms of calculation speed as well as simplification of

Flexible ligand docking to multiple receptor conformations Totrov and Abagyan 179

Figure 1

Multiple receptor conformation (MRC) docking flowchart. The filtering
step of the flowchart may be skipped if the number of initial
conformations is small. The refinement step is skipped in some
implementations of the MRC docking.

www.sciencedirect.com Current Opinion in Structural Biology 2008, 18:178–184

An example of docking 
flowchart:

from Totrov & Abagyan (2008)



Protein-protein docking
Various approximations for optimization of interacting conformations.

(Gray et al., 2003)

loops. All scores at this stage are based on a
reduced representation of the amino acid residues
based on side-chain centroid positions.20 These
scores are described in detail in Materials and
Methods.

After the low-resolution search, explicit side-
chains are added to the protein backbones using a
backbone-dependent rotamer packing algorithm.27

Rotamer choices are created from nine x1 angles
(three major rotamer angles and each of those
angles plus and minus the standard deviation of
that angle), three x2 angles (major rotamer angles),
plus major rotamer options for x3 and x4 angles
for appropriate residue types.28 Polar hydrogen
atoms are placed for use in hydrogen bond for-
mation. The optimal combination of rotamers is
found using a simulated-annealing Monte Carlo
search.

Once the proteins have side-chains, the rigid-
body displacement is optimized. The gradient of
the scoring function determines the starting direc-
tion (in the rigid-body translation/rotation space)
for a sequence of line minimizations. The
Davidon–Fletcher–Powell quasi-Newton minimiz-
ation technique29 finds the local minimum of the
energy function to within a given tolerance, here a
loose 1.0 scoring unit.

To simultaneously optimize the side-chain con-
formations and the rigid-body position, the side-
chain packing and minimization operations are
repeated 50 times (Figure 2). Before each cycle, the
position of one protein is perturbed by random
translations of mean 0.1 Å in each direction of
Cartesian space and by random rotations of mean
0.058 around each Cartesian axis. After each move,
packing, and minimization, a score is calculated.
The new position is kept or rejected according to
the standard Metropolis acceptance criterion.30

After the final cycle, the lowest-scoring confor-
mation is minimized once more to a fine tolerance
of 0.02 scoring unit. The repetition of rigid-body
and side-chain conformational moves is new to
this work; the predictions for the first CAPRI
experiments were completed with a preliminary
version of the protocol.26

Several measures are taken to ensure compu-
tational efficiency during these repeated cycles.
First, the side-chain packing algorithm usually
varies the conformation of only one residue at a
time while keeping the other side-chains fixed; a

Figure 1. Docking protocol.
(a) Process flowchart; (b) detail of
the refinement stage. 

 
 

 
 

 

 

 

  

 

Figure 2. The voyage over the free energy surface
during one refinement cycle. The steps are: (1) a random
perturbation (rigid-body translation and rotation) moves
the structure on the potential surface; (2) a packing step
optimizes the side-chain positions, thus changing the
energy surface; (3) an explicit minimization finds the
nearest local minimum accessible via a rigid-body trans-
lation and rotation. Start and finish positions are com-
pared by the Metropolis criterion, and the cycle is
repeated 50 times.

Protein–Protein Docking 283
An example:

Low-resolution rigid-body MC: translating and rotating one 
partner around the surface of the other (500 MC moves). 
Energy functions for side-chain centroids.

Explicit side-chains are added ("packing" algorithm). 
Rigid-body displacement is optimized. 
Packing/displacement optimization is repeated 50 times.

Search procedure is repeated to create ~105 configurations.

The best 200 configurations are clustered. 
The clusters with the most members are selected as the final predictions.



Protein-protein interactions
Direct (physical) and indirect (functional) associations

• Can be derived from various databases and used for the development of databases 
that integrate this information => computation of association networks. 

An example of an association network in the STRING database (https://string-db.org): 
(yeast prion-like protein URE2 was used as input)

Nucleic Acids Research, 2019, Vol. 47, Database issue D609

Figure 1. A typical association network in STRING. The yeast prion-like protein URE2 has been selected as input. The network has been expanded by an
additional 10 proteins (via the ‘More’ button in the STRING interface), and the confidence cutoff for showing interaction links has been set to ‘highest’
(0.900). The insets at the right show how many items of the various evidence types in STRING contributed to this particular network (counts denote how
many records covered at least two of the proteins in the network; not all of these records contributed high-scoring links after score calibration).

defined in eggNOG (32), in order to transfer associations
between organisms where applicable (described in (29)).

The individual protein associations in the various chan-
nels are derived, briefly, as follows:

The three genomic context prediction channels (neigh-
borhood, fusion, gene co-occurrence) are the result of sys-
tematic all-against-all genome comparisons, aiming to as-
sess the consequences of past genome rearrangements, gene
gains and losses, as well as gene fusion events. These evolu-
tionary events are known to be retained non-randomly with
respect to the functional roles of genes, and thus allow the
inference of functional associations between genes even for
otherwise rarely studied organisms (genomic context tech-
niques are reviewed in (44,45)).

The co-expression channel is based on gene-by-gene cor-
relation tests across a large number of gene expression
datasets (using both transcriptome measurements as well
as proteome measurements). In the case of transcript data,
STRING re-processes and maps the large number of ex-
periments stored in the NCBI Gene Expression Omnibus
(46), followed by normalization, redundancy reduction and
Pearson correlation (described in (29)). For version 11, we
have further improved the RNAseq co-expression infer-
ence pipeline. This was achieved by processing a higher
number of RNAseq samples and using the robust biweight
midcorrelation (47). In addition to NCBI Geo, for a sub-

set of species, gene count data was downloaded from the
ARCHS4 and ARCHS4 zoo collections (48).

Protein-based co-expression analysis is new in version 11
of STRING, and as of now it is restricted to one dataset
imported as is: namely the ProteomeHD dataset of the
Juri Rappsilber lab (unpublished, https://www.proteomehd.
net/), covering 294 biological conditions measured using
SILAC in human cells. ProteomeHD is not based on
Pearson correlation, but instead uses the treeClust algo-
rithm (49); for STRING, the results of this algorithm
are recalibrated and scored using the KEGG benchmark.
Each ProteomeHD-provided interaction features a cross-
link through which the underlying evidence can be in-
spected at the ProteomeHD website.

For the experiments channel, all interaction records from
the IMEx databases (plus BioGRID), are re-mapped and
re-processed: first, duplicate records and datasets are re-
moved, and then entire groups of records are benchmarked
against KEGG and scored accordingly.

The database channel is based on manually curated in-
teraction records assembled by expert curators, at KEGG
(41), Reactome (50), BioCyc (51) and Gene Ontology (52),
as well as legacy datasets from PID and BioCarta. STRING
only retains associations between direct pathway members
or within protein complexes. The database channel is the
only channel for which score calibration does not apply; in-
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