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Biopolymer design 
(inverse folding)

• Inverse folding of biopolymers: searching for sequences that 
fold into a given target structure. 

• Inspired by the idea to design and exploit the molecules 
performing certain functions. 

• Relevant for both RNA and proteins.

• Hard computational problem: it is not sufficient to find a 
sequence with low free energy when folded into the target 
shape. It is necessary to ensure the absence of other 
conformations with even lower free energies. 

• Multiple different solutions are possible.



Inverse folding of RNA (secondary) structures 

Usually is done by a stochastic procedure. 

An algorithm starts from an initial seed sequence and improves it 
by an optimization algorithm. 

For instance, the following main steps (Busch & Backofen, 2007): 

 Step 1: Finding a sequence that has the lowest free energy an RNA 
may have if folded into the target structure (dynamic programming). 
However, this initial sequence may have a minimum free energy structure 
that differs from the target. 

 Step 2: Iterative process of mutations that intend to reach a sequence 
with the free energy minimum in the target structure. For any intermediate 
solution, a “structural distance” between the lowest free energy 
conformation and the target structure is estimated.

Structural distance: e.g. the number 
of unique base pairs in each of the 
structures.



Inverse folding of RNA (secondary) structures 

Usually is done by a stochastic procedure. 

An algorithm starts from an initial seed sequence and improves it 
by an optimization algorithm. 

For instance, the following main steps (Busch & Backofen, 2007): 

 Step 1: Finding a sequence that has the lowest free energy an RNA 
may have if folded into the target structure (dynamic programming). 
However, this initial sequence may have a minimum free energy structure 
that differs from the target. 

 Step 2: Iterative process of mutations that intend to reach a sequence 
with the free energy minimum in the target structure. For any intermediate 
solution, a “structural distance” between the lowest free energy 
conformation and the target structure is estimated.

Structural distance: e.g. the number 
of unique base pairs in each of the 
structures.

Additional features in the RNA design programs: 
• Certain sequence motif constraints. 
• Optimization of the ensemble of structures (target folding frequency).



Inverse folding of protein structures 

A stochastic procedure (e.g. Monte Carlo). 
Difficult problem even in lattice-model simulations.  

An interesting blind test of lattice-model-based strategies was published by the 
groups from Harvard University and University of California in San Francisco 
(UCSF) in 1995 (Yue et al.):

• The Harvard team used their inverse folding 
algorithm to design HP 48-mer sequences that 
should fold to 10 selected compact 
conformations. 

• The sequences, but not the structures, were sent 
to the UCSF group. 

• The UCSF group predicted the globally optimal 
conformations for the sequences. 

• The structures were compared (lower energies of 
UCSF-predicted structures would mean a failure 
of the Harvard inverse folding).

HP cubic lattice model: 
• Two monomer types: H, hydrophobic 

and P, polar. 
• Energy: E = -ε × h, where h is the 

number of H-H contacts between 
monomers that are not sequence 
neighbors, ε is a constant.
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FIG. 2. For sequences 2, 8, and 10, the respective PNS (Left) conformations and selected native conformations (Right) are shown.

global energy minimum (native state degeneracies gN). There
are at least approximately 103 to 106 global minima for each of
these HP sequences.

DISCUSSION
What do we learn from these results? First, the number of
global minima for these 10 48-mer HP sequences in three
dimensions is larger than 103. Random pairwise structural
comparisons indicate that two ground-state conformations of
the same sequence have only 35-55% of H-H contacts in
common, on average (Table 3). This implies that these 10
sequences do not fold uniquely as biological sequences do. But
biological uniqueness seems likely to require some design, and
appropriate designs may not be encoded within these 10
sequences. What does "unique" mean? At higher resolution,
the "unique" native states of real proteins are themselves
ensembles involving small fluctuations around native-like en-
ergies and structures (22, 23). We believe that in coarse-
grained lattice models, these fluctuations should be captured
largely within a single lattice conformation. Hence, the con-
clusion that these 10 sequences do not fold uniquely refers to
large-scale structural diversity of the ground states, not to

small perturbations around a single "fold." We point out that
other theorists are more agnostic about the nature of fluctu-
ations in native proteins (24). Honeycutt and Thirumalai (25)
have argued in agreement with Frauenfelder et at (26) that the
tier-zero substates or so-called taxonomic substates of folded
proteins may well correspond to slightly different overall folds.
How should we regard this high degeneracy of native

structures of these 10 sequences? Is ground-state conforma-
tional diversity characteristic of real random-sequence
polypeptides? We do not know. Designed polypeptides often
do not fold to unique structures (27). For both real polypep-
tides and lattice model sequences, there are good designs, with
little native conformational diversity, and bad designs (8). We
have found some HP sequences of 60-80 monomers that have
fewer than five native conformations (12), although we have
not yet found any that have only a single native conformation.
These particular HP sequences mimic real protein sequences
in having very limited native conformational diversity. Re-
placing two-letter codes (H and P, for example) by multiletter
codes undoubtedly helps reduce degeneracy, and this may be
more protein-like.

Second, the Harvard sequence design procedure does not
work for HP lattice model chains. The Harvard and UCSF
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ABSTRACT We report a blind test of lattice-model-based
search strategies for finding global minima of model protein
chains. One of us (E.I.S.) selected 10 compact conformations
of 48-mer chains on the three-dimensional cubic lattice and
used their inverse folding algorithm to design HP (H, hydro-
phobic; P, polar) sequences that should fold to those "target"
structures. The sequences, but not the structures, were sent to
the UCSF group (K.Y., K.M.F., P.D.T., H.S.C., and K.A.D.),
who used two methods to attempt to find the globally optimal
conformations: "hydrophobic zippers" and a constraint-
based hydrophobic core construction (CHCC) method. The
CHCC method found global minima in all cases, and the
hydrophobic zippers method found global minima in some
cases, in minutes to hours on workstations. In 9 out of 10
sequences, the CHCC method found lower energy conforma-
tions than the 48-mers were designed to fold to. Thus the
search strategies succeed for the HP model but the design
strategy does not. For every sequence the global energy
minimum was found to have multiple degeneracy with 103 to
106 conformations. We discuss the implications of these
results for (i) searching conformational spaces of simple
models of proteins and (ii) how these simple models relate to
proteins.

Computer algorithms are emerging that attempt to predict the
three-dimensional structures of proteins from their amino acid
sequences (1-7). The best blind test of a folding algorithm is
the prediction of a protein structure that is already known to
someone but is not known to the predictor. Recently, proteins
have been modeled at low resolution as chains configured on
spatial lattices. Algorithms have arisen for inverse folding (8,
9) that design sequences to fold to a desired given conforma-
tion and for folding (1, 3, 10-12) that take sequences and
predict their native states. The virtue of lattice models is that
their native states can often be known exactly, many of their
properties are well understood, and in many respects, they
resemble those of real proteins. The best consistency check of
lattice model folding algorithms would be if someone "inverse
folded" a protein (i.e., designed a sequence to fold to a known
native state) and gave it to a "folder" to attempt to predict its
native state.

This is the idea behind the present paper. This work began
as a friendly wager. E.I.S. (representing the Harvard group)
proposed to design some 48-mer HP sequences (H, hydro-
phobic; P, polar; see refs. 13-15) that would fold to three-
dimensional simple cubic lattice target structures of his choice
and to give the sequences to the UCSF group (K.Y., K.M.F.,
P.D.T., H.S.C., and K.A.D.). The UCSF group would then
attempt to fold the sequences to the best possible structures,
based on the HP potential. By fold, we refer here only to
thermodynamics and not to kinetics: we mean that an algo-
rithm finds the lowest energy state, without consideration of
whether there is kinetic access to that state. For the present
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study, if structures with energies equal to or better than the
energy of the target (designed) structure were found, then this
would be considered successful folding. The UCSF group
would use two strategies: hydrophobic zippers (HZ) (10) and
a systematic assembly process using discrete geometry (con-
straint-based hydrophobic core construction, CHCC) (12, 16).
The Harvard group offered a six pack of beer if the UCSF
group could successfully fold 1 or more out of 10 sequences of
48-mers. This is a report of the results.

METHODS
HP Lattice Model. Proteins used in the HP lattice model are

specific sequences of H (hydrophobic) and P (polar) mono-
mers (13, 15, 17) configured on the three-dimensional simple
cubic lattice. Each chain configuration is a self-avoiding walk
on the lattice. Contacts between H monomers are favorable.
The energy E of a chain conformation is determined by the
number ofH-H contacts h: E = - I s I h, where I E is a positive
constant. (In this work E is given in units of |1.) The native
state of an HP sequence is defined as the set of conforma-
tion(s) with the largest possible number h of H-H contacts.
The energy of a native conformation is defined as EN, and the
number of conformations with this energy is the native state
degeneracy gN.

Sequence Design. Inverse folding was performed by the
Harvard group by iterative Monte Carlo interchanging of
monomers, for a given target structure, until convergence to
a low-energy sequence was achieved. We call these target
structures "putative native states" (PNS) because initially it
was not known whether the designed sequences could fold to
conformations with lower energies than the PNS energy. The
details of the design method are given in refs. 9 and 18. Ten
sequences designed this way were sent to the UCSF group.
These sequences are listed in Fig. 1. The UCSF group was
given only the HP monomer sequences and not the target
structures, so that it could be a legitimate blind test. All 10
designed structures chosen by the Harvard group are maxi-
mally compact (see Fig. 2). The Harvard group also gave the
UCSF group the PNS energy EPNS so that the UCSF group
could know if it had succeeded in meeting the criterion of
reaching either the PNS or a structure at least as good
energetically.

Folding of Designed Sequences. The UCSF group used two
procedures to find native states for the given sequences. The
first, HZ (10, 11), is an opportunistic process that begins with
randomly chosen H-H contacts that can be formed among
near neighbors in the sequence and zips up other H-H contacts
as they come into spatial proximity by virtue of preceding
contacts.
Two properties of HZ have previously been found. (i) HZ

can find global minima of short HP lattice model chains for
some sequences without exhaustive searching of conforma-

Abbreviations: HP, hydrophobic polar; HZ, hydrophobic zippers;
CHCC, constraint-based hydrophobic core construction; PNS, puta-
tive native states.
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In 9 out of 10 sequences, the UCSF 
group found lower energy 
conformations than the 48-mers 
were designed to fold to.



Inverse folding of protein structures 

For a long time, the only successful examples were relatively simple coiled coils. 
However, it is possible to use e.g. an iterative procedure (structure prediction/
sequence optimization, back and forwards) to design a desired topology. 

For instance, using Rosetta structure prediction protocols, a 93-residue protein 
with a desired topology was designed (Kuhlman et al., 2003). 
Starting from initial “rough” structure, 15 cycles of sequence design and backbone 
optimization:

Design of a Novel Globular
Protein Fold with

Atomic-Level Accuracy
Brian Kuhlman,1*† Gautam Dantas,1* Gregory C. Ireton,4

Gabriele Varani,1,2 Barry L. Stoddard,4 David Baker1,3‡

A major challenge of computational protein design is the creation of novel
proteins with arbitrarily chosen three-dimensional structures. Here, we used a
general computational strategy that iterates between sequence design and
structure prediction to design a 93-residue !/" protein called Top7 with a novel
sequence and topology. Top7 was found experimentally to be folded and
extremely stable, and the x-ray crystal structure of Top7 is similar (root mean
square deviation equals 1.2 angstroms) to the design model. The ability to
design a new protein fold makes possible the exploration of the large regions
of the protein universe not yet observed in nature.

There are a large but finite number of protein
folds observed thus far in nature, and it is not
clear whether the structures not yet observed
are physically unrealizable or have simply
not yet been sampled by the evolutionary
process or characterized by a structural biol-
ogist. Methods for de novo design of novel
protein structures provide a route to resolving
this question and, perhaps more importantly,
a possible route to novel protein machines
and therapeutics.

There has been considerable progress in
the development of computational methods
for identifying amino acid sequences compat-
ible with a target structure (1– 3), notably the
pioneering complete redesign of a zinc finger
protein by Mayo and co-workers (1). In gen-
eral, these methods have not been used to
create new protein structures but rather to
redesign naturally occurring proteins so that
they have enhanced stability or new function-
ality (4– 6). Because of the strong steric re-
strictions in the cores of globular proteins, the
packing of side chains in redesigned proteins
is often quite similar to that in the original
native protein (1, 7), and hence high-resolution
protein backbone coordinates contain some
memory of the original native sequence (8– 12).
When creating a new protein from scratch,

there is no such sequence memory to aid
the process, and it is not even known
whether the target backbone is designable.
Thus, the computational design of novel
protein structures is a more rigorous test of
current force fields and optimization meth-
odology than the redesign of naturally oc-
curring proteins.

Because it is unlikely that any arbitrarily
chosen protein backbone will be designable,
it is essential that the design procedure in-
clude a search of nearby conformational
space in addition to sequence space. With the
exception of the method used by Desjarlais
and Handel (2) to redesign the hydrophobic
core of a small naturally occurring protein,
most previous approaches have either opti-

mized the amino acid sequence for a large
number of fixed backbone conformations (4,
12– 14) or, as in the landmark design by
Harbury and colleagues of coiled coil oli-
gomers with a right-handed superhelical
twist (15), refined the backbone conforma-
tion for a large number of fixed amino acid
sequences (15, 16 ). The range of sequence-
structure pairs that can be searched with the
use of these approaches is restricted by the
need to specify, in advance, a limited num-
ber of backbone conformations or amino
acid sequences.

We have developed a general proce-
dure for identifying very low free energy
sequence-structure pairs that iterates be-
tween sequence optimization and structure
prediction and can be applied to the design
of any desired target structure. The same
energy function is used to guide the search
at all stages, and at each stage only the
lowest energy sequence or structure identi-
fied in the previous iteration is optimized,
thereby avoiding the large-scale and com-
putationally expensive enumeration of al-
ternative backbones or alternative sequenc-
es. Unlike the genetic algorithm of Desjar-
lais and Handel (2) in which randomly
selected torsion angles and residue identi-
ties were simultaneously perturbed, our
procedure iterates between full-scale opti-
mization of sequence for a fixed backbone
conformation and gradient-based optimiza-
tion of the backbone coordinates for a fixed
sequence. We used this approach to create
a 93-residue !/" protein with a topology
not present in the Protein Structure Data-
base (PDB).
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Fig. 1. A two-dimensional schematic of the target fold (hexagon, strand; square, helix; circle, other).
Hydrogen bond partners are shown as purple arrows. The amino acids shown are those in the final
designed (Top7) sequence.
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Like the design model, the Top7 crystal
structure is judged to be a novel topology by
the TOPS server. The strongest structural
similarity found in a Dali search of the PDB
(33) is to a discontinuous portion of the 668-
residue protein S-adenosylmethionine decar-
boxylase, which has a large 68-residue inser-
tion between strands 1 and 2, and the third
and fourth strands are connected by an unre-
fined loop instead of a helix. According to A.
Murzin, the curator of the Structural Classi-
fication of Proteins (SCOP) database, the
Top7 fold is not present in SCOP (34, 35).
Implications. The 1.17-Å backbone atom

RMSD between the Top7 design model and the
crystal structure implies that deep minima in the
free energy function used in design correspond
to deep minima in the actual free-energy land-
scape and hence are an important validation of
the accuracy of current potential functions. This
atomic-level accuracy contrasts sharply with
the low accuracy of ab initio structure predic-
tions for naturally occurring sequences: The
most accurate structure predictions in the Crit-
ical Assessment of Structure Prediction exper-
iments for 90- to 100-residue proteins have
RMSDs greater than 4 Å from the experimen-
tally determined structure. Why does the simul-
taneous optimization of sequence and structure
identify the global free energy minimum,
whereas the optimization of structure for fixed
sequence does not? The answer may involve
both of the challenges facing ab initio structure
prediction, the vast size and ruggedness of the
conformational space to be searched and the
limited accuracy of current potential functions.
The capability to alter the sequence and hence
reconfigure the landscape may greatly facilitate

the search for low-free-energy protein struc-
tures as compared to standard ab initio predic-
tion, where the sequence is fixed. In addition,
Top7 lacks functional constraints, which can
lead to locally suboptimal regions in native
structures that are particularly challenging for
structure prediction, and the more extensive
optimization of the folding free energy may
partially compensate for inaccuracies in the po-
tential functions. Finally, it should be noted that
the design process focused entirely on minimiz-
ing the free energy of the folded monomeric
structure; attaining a highly stable new structure
did not require extensive negative design
against possible alternative conformations (36,
37) nor consideration of the kinetic process of
protein folding (38).

The design of Top7 shows that globular
protein folds not yet observed in nature not
only are physically possible but can be ex-
tremely stable. This extends the earlier obser-
vation that helical coiled coil geometries not
found in nature can be generated by compu-
tational protein design (15). The protein ther-
apeutics and molecular machines of the fu-
ture should thus not be limited to the struc-
tures sampled by the biological evolutionary
process. The methods used to design Top7
are, in principle, applicable to any globular
protein structure and open the door to the
exploration and use of a vast new world of
protein structures and architectures.
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(C) Stereorepresentation of the effectively super-
posable side chains in the cores of the designed
model and the solved structure.
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Protein design

Some general principles (rules) can be used for the construction of local structures. 

The conformations at the junctions of the adjacent secondary structure elements (e.g. ββ, 
βα, αβ) follow fundamental rules. For instance:

(Koga et al., 2012)

collinear with the vector between the centres of the strand and
the helix. We define the orientation of a ba-unit to be parallel (P) if
the vector from strand to helix is parallel to the CaCb

!!!!
vector of the

last residue in the strand, and to be antiparallel (A) if the two are

antiparallel (Fig. 1b). The orientation of an ab-unit is P if the CaCb
!!!!

vector of the first residue in the strand is parallel to the vector from
helix to strand, and is A if the two are antiparallel (Fig. 1c) (see
Supplementary Methods 4 and 5 for details).

bb-rule
The chirality of b-hairpins is determined by the length of the loop
between the two strands. Rosetta folding simulations of a peptide
with two equal-length b-strands connected by a variable-length
loop were carried out on a sequence-independent backbone model
(Methods Summary, Methods and Supplementary Methods 1). The
chirality (Fig. 1d) of the end points of multiple independent Monte
Carlo trajectories was computed. The results (Fig. 1a, left) are quite
striking: two- and three-residue loops almost always give rise to
L-hairpins, whereas five-residue loops give rise primarily to R-hairpins.
These results suggest that the chirality of b-hairpins is determined by
the chirality (L-amino acids versus D-amino acids) and local structural
preferences of the polypeptide chain; indeed, only a restricted set of loop
types have been found to be compatible withbb-junctions23. Analysis of
bb-units in known protein structures (Supplementary Methods 3)
shows that the chirality of bb-units in native structures is correlated
with loop length in a manner very similar to the simulations (Fig. 1a,
right). Consistent with the idea that torsional strain is responsible for
the trends, the calculated torsion energies of loops in native structures
for two- and three-residue loops are lower for L-hairpins, and those for
five-residue loops are lower for R-hairpins (Supplementary Fig. 2). This
rule allows control over the pleating of b-hairpins.

ba-rule
The preferred orientation of ba-units is P for two-residue loops and A
for three-residue loops. Secondary-structure-constrained folding
simulations similar to those described in the previous paragraph
strongly show this trend, and it is also observed in native protein
structures (Fig. 1b). The rule arises in part from the bendability of
the protein backbone (Supplementary Fig. 3). This rule is very useful
for both positive and negative design, as it allows control of the side of
a b-sheet that a helix will pack onto.

ab-rule
The preferred orientation of ab-units is P. In secondary-structure-con-
strained folding simulations, this trend is observed strongly for loops two
residues in length and for longer lengths when the loop provides a
hydrogen-bonded capping interaction to stabilize the helix and does
not extend the strand (Fig. 1c, left, and Supplementary Fig. 4). A very
similar trend is again observed in native protein structures (Fig. 1c, right).

It must be emphasized that the three rules are largely independent
of the amino-acid sequence of the secondary structures or connecting
loops. As such, they must arise from the intrinsic chirality and local
structural preferences of the polypeptide chain rather than from
sequence-specific contributions. Whereas local sequence–structure
relationships have been extensively studied24–27, there has been much
less work on sequence-independent properties (the cataloguing of the
discrete sets of loops compatible with junctions between secondary
structure elements is a notable exception23). These rules provide a
powerful way to perform negative design at the backbone level.

Emergent rules
The next level of complexity in ab-proteins beyond two secondary
structure elements is segments of three consecutive secondary struc-
ture elements. Secondary-structure-constrained Rosetta folding simu-
lations revealed strong dependencies of the chirality (Supplementary
Fig. 1d) of bba- and abb-units and the foldability of bab-units on
the lengths of the connecting loops and the secondary structure ele-
ments. These dependencies are formulated in emergent rules (Sup-
plementary Fig. 1 and Supplementary Discussion 1), which follow
from the fundamental rules described in the previous section. The
rules specify how to choose the lengths of secondary structure
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Protein design

It can be reasoned that evolution of natural proteins explored only a small region 
of the sequence space. 
      The number of amino acid sequences with typical protein length: 20200. 
      The number of distinct proteins in extant organisms: ~1012. 

(Huang et al., 2016)

• Protein design can be based on an energy function that takes into account the 
interactions of the atoms in proteins with each other and with the solvent 
molecules.      The same function as the one used in protein structure prediction. 

• In the protein design, both the amino acid sequence and the conformational 
states of amino acid side chains are unknown. 

• In the general de novo design, both the sequence and the conformations of the 
backbone and the side chains should be found. 

• The sequence optimization identifies the lowest-energy sequence for a given 
structure, and structure prediction checks whether the target structure is the 
lowest-energy conformation of the designed sequence. 

• Computational complexity of the combination of these two tasks can be reduced 
by general constraints in protein building blocks.
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Repeat proteins
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Exploring the repeat protein universe through 
computational protein design
TJ Brunette1,2*, Fabio Parmeggiani1,2*, Po-Ssu Huang1,2*, Gira Bhabha3, Damian C. Ekiert4, Susan E. Tsutakawa5,  
Greg L. Hura5,6, John A. Tainer5,7 & David Baker1,2,8

A central question in protein evolution is the extent to which 
naturally occurring proteins sample the space of folded structures 
accessible to the polypeptide chain. Repeat proteins composed of 
multiple tandem copies of a modular structure unit1 are widespread 
in nature and have critical roles in molecular recognition, 
signalling, and other essential biological processes2. Naturally 
occurring repeat proteins have been re-engineered for molecular 
recognition and modular scaffolding applications3–5. Here we use 
computational protein design to investigate the space of folded 
structures that can be generated by tandem repeating a simple 
helix–loop–helix–loop structural motif. Eighty-three designs with 
sequences unrelated to known repeat proteins were experimentally 
characterized. Of these, 53 are monomeric and stable at 95 °C, and 
43 have solution X-ray scattering spectra consistent with the design 
models. Crystal structures of 15 designs spanning a broad range 
of curvatures are in close agreement with the design models with 
root mean square deviations ranging from 0.7 to 2.5 Å. Our results 
show that existing repeat proteins occupy only a small fraction 
of the possible repeat protein sequence and structure space and 
that it is possible to design novel repeat proteins with precisely 
specified geometries, opening up a wide array of new possibilities 
for biomolecular engineering.

In repeat proteins, the interactions between adjacent units define 
the shape and curvature of the overall structure6. While in nature 
the sequences of these units generally differ, stable repeat proteins 
with identical units have been designed for several families7–21 and, 
for leucine-rich repeats, customized units have allowed for the con-
trol of curvature22 and design of new architectures17. To our knowl-
edge, all designed repeat protein structures to date have been based 
on naturally occurring families. These families may cover all stable 
repeat protein structures that can be built from the 20 amino acids 
or, alternatively, natural evolution may only have sampled a subset 
of what is possible.

To explore the range of possible repeat protein structures, we gen-
erated new repeat protein backbone arrangements and designed 
sequences predicted to fold into these structures (Fig. 1 and Extended 
Data Figs 1 and 2). Our designs are entirely de novo; they are not based 
on naturally occurring repeat proteins. The well-packed repeating 
structures that can be obtained from a simple helix–loop repeat unit 
are limited to straight rods, and hence we focused on the helix–loop–
helix–loop unit from which repeat proteins with a wide diversity of 
curvatures can be generated. The lengths of the two helices were varied 
between 10 and 28 residues, and the lengths of the two turns from 1 
to 4 residues. Starting conformations for four tandem repeats of each 
of the 5,776 (19 × 19 × 4 × 4) independent combinations of helix and 
loop lengths were generated by setting the backbone torsion angles 

to ideal helix values for helices and extended chain values for loops. 
Rosetta Monte Carlo fragment assembly23 was carried out to generate 
compact structures; each Monte Carlo move was made at the equivalent 
position in each repeat to preserve symmetry20. Rosetta design calcu-
lations24 were then used to identify low-energy amino acid sequences 
with good core packing25. At each step in the Monte Carlo-simulated 
annealing design process, a position is picked at random, and the cur-
rent residue is replaced by a randomly selected amino acid and side-
chain conformation (rotamer); a detailed all-atom energy function is 
then evaluated. Identical substitutions were carried out in each unit to 
maintain sequence identity between the four repeats; exposed hydro-
phobic residues in the N- and C-terminal repeats were switched to 
polar residues in a second round of sequence design to increase solu-
bility. All steps in the design process were completely automated, and 
the calculations were carried out without manual intervention. Designs 
with low energies and complementary core side-chain packing were 
identified, and for the amino acid sequence of each of these designs, 
multiple independent Rosetta de novo folding trajectories26 were car-
ried out starting from an extended chain. The structures and energies 
of the sampled conformations map out an energy landscape for each 
protein (Extended Data Fig. 3).

Designed helical repeat proteins (DHRs) for which the design model 
had much lower energy than any other conformation sampled in the 

1Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA. 2Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA. 3Department 
of Cellular and Molecular Pharmacology, UCSF, San Francisco, California 94158, USA. 4Department of Microbiology and Immunology, UCSF, San Francisco, California 94158, USA. 5Molecular 
Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. 6Department of Chemistry and Biochemistry, University of California, Santa Cruz, 
California 95064, USA. 7Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA. 8Howard Hughes Medical Institute, 
University of Washington, Seattle, Washington 98195, USA.
*These authors contributed equally to this work.

Helix 1 Helix 2

Loop 1

Loop 2

Right-handed repeat unit
16–3–17–3 

Left-handed repeat unit
22–4–20–4 

Figure 1 | Schematic overview of the computational design method. 
Helix–loop–helix–loop combinations are systematically sampled (left) 
and extended into repeating structures (right) using Rosetta Monte-Carlo 
fragment assembly. The red boxes on right indicate the individual repeat 
units; the numbers below, the lengths of helix 1, loop 1, helix 2, and loop 2 
for these two examples.

© 2015 Macmillan Publishers Limited. All rights reserved

E.g. repeating structures with helix-loop-helix-loop combinations were 
constructed using Rosetta Monte-Carlo fragment assembly:

(Brunette et al., 2015)



Protein design
Design of new functions, e.g. self-assembling nanomaterials

from Huang et al. (2016)

Repeat proteins
The effort to construct de novo proteins with ideal backbone arrange-
ments has led to the design of proteins with internal symmetry in 
which a single idealized unit is repeated numerous times39–41 (Fig. 3). 
Internal symmetry reduces the size of the sequence space that must be 
searched and enables a relatively small unit with a known sequence–
structure combination to be reused repeatedly to build larger proteins 
(Fig. 3a). The constraint of internal symmetry is particularly strong 
for closed structures in which the final repeat unit is juxtaposed with 
the first, such as in α-helical toroids41 (Fig. 3b) and the TIM barrel42 
(Fig. 3c). In the TIM barrel, the backbone design principles, together 
with the geometry of closed β-sheets, makes four-fold symmetry 
the highest that can be attained and forces the two α-helices in each 
α–β–α–β unit to differ in length42. Both closed-repeat and open-repeat 
protein designs have been produced by introducing synthetic genes 
into E. coli, followed by experimental characterization of the purified 
proteins. High-resolution X-ray crystallography structures for the 
designs were found to be almost identical to the design models. The 
α-helical repeat structures have sequences and structures (Fig. 3d) that 
differ greatly from those found so far in nature, which suggests that 
naturally occurring proteins sample only a tiny fraction of the stable 
protein structures that can be realized43. These new repeated proteins 
are exceptionally stable; several of the open structures are denatured 
only by guanidine hydrochloride at concentrations of more than 6 M 
(D. Barrick, personal communication). By contrast, an approach 
to ‘stitch’ protein structures together from large helix-containing 
fragments of naturally occurring proteins generates structures with 
irregularities that are similar to those found in native structures44 that 
present opportunities for the subsequent design of function. Contact 
information from native structures has also been used to guide the 
design of new backbone arrangements45, including a scaffold that 

presents an epitope from respiratory syncytial virus to elicit a neu-
tralizing immune response46.

Parametric helical bundles
The use of parametric equations is a complementary approach to gen-
erating ideal backbone arrangements that provides considerable control 
over the global structure. Equations developed by Francis Crick enable 
the generation of idealized bundles of α-helices in parallel or antiparal-
lel orientations in which the helices have arbitrary lengths, phasing, 
relative orientations and twists47 (Fig. 4a). The helical bundles can be 
used directly in sequence-design calculations, yielding multiple-subunit 
oligomeric structures, or the helices can first be connected with loops 
to yield a single chain. Many helical bundles have been designed in this 
way30,31,33,34,48–52 (Fig. 4), including a peptide that binds to carbon nano-
tubes53, parallel self-assembling helical channels31, an ion transporter34, 
cages54 and an α-helical barrel with installed hydrolytic activity55. The 
combination of parametric backbone generation with combinatorial 
side-chain optimization has enabled the design of larger, more diverse 
helical bundles33; like many de novo designed proteins, these parametri-
cally designed proteins are extremely stable, remaining folded in 7 M 
guanidine hydrochloride at 95 °C.

Hydrogen-bond networks
The principles we have outlined for the de novo design of monomeric 
folds are necessary but not sufficient for controlling the specificity of 
protein interactions, which despite progress56–60 remains a challenge61. 
Binding is driven by the balance between the burial of hydrophobic 
packing residues and peripheral polar interactions that help to solvate 
the monomeric state and provide structural specificity. In contrast to the 
double helix of DNA, in which regular arrays of central hydrogen bonds 
lead to the formation of a high-specificity heterodimer, the hydrogen 

Figure 5 | Designing self-assembling nanomaterials. a, C2, C3, C4 
and C5 symmetric homo-oligomers (ref. 78 and J. Fallas and G. Ueda, 
personal communication). b, Two-dimensional hexagonal lattice81. 
c–f, Self-assembling cages. c, A one-component tetrahedron (left) and 
a one-component octahedron79 (right). d, Two-component tetrahedral 

nanoparticles80; the two asymmetric components are coloured in blue and 
yellow. e, A one-component hyperstable icosahedron with a de novo helical 
bundle (red helices) fused in the centre of the face82. f, Two-component 
megadalton-scale icosahedra83; the two components of each are coloured in 
blue and yellow.
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DNA and RNA origami
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E.g. construction of a DNA cube:

(Chen & Seeman, 1991)



DNA and RNA origami

Various nanostructures can be constructed in a programmable way from 
multiple blocks

(Han et al., 2017)
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NUCLEIC ACID ORIGAMI

Single-stranded DNA and
RNA origami
Dongran Han,* Xiaodong Qi,* Cameron Myhrvold, Bei Wang, Mingjie Dai,
Shuoxing Jiang, Maxwell Bates, Yan Liu, Byoungkwon An,† Fei Zhang,†
Hao Yan,† Peng Yin†

INTRODUCTION: Self-foldingofan information-
carrying polymer into a compact particle with
defined structure and function (for example,
folding of a polypeptide into a protein) is foun-
dational to biology and offers attractive poten-
tial as a synthetic strategy. Over the past three
decades, nucleic acids have been used to create
a variety of complex nanoscale shapes and de-
vices. In particular, multiple DNA strands have
beendesigned to self-assemble intouser-specified
structures, with or without the help of a long
scaffold strand. In recent years, RNA has also
emerged as a unique, programmable material,
offering distinct advantages for molecular self-
assembly. On the other hand, biological macro-
molecules, such as proteins (or protein domains),
typically fold from a single polymer into a well-
defined compact structure. The ability to fold de
novo designed nucleic acid nanostructures in a
similar manner would enable unimolecular fold-
ing instead ofmultistrandassembly and even rep-
lication of such structures. However, a general

strategy to construct large [>1000 nucleotides
(nt)] single-stranded origami (ssOrigami) re-
mains tobedemonstratedwhereasingle-stranded
nucleic acid folds into a user-specified shape.

RATIONALE: The key challenge for construct-
ingacompactsingle-strandedstructure is toachieve
structural complexity, programmability, and
generality while maintaining the topological
simplicity of strand routing (to avoid putative
kinetic traps imposed by knots) and hence
ensuring smooth folding. The key innovation
of our study is to use partially complemented
double-stranded DNA or RNA and parallel
crossover cohesion to construct such a struc-
turally complex yet knot-free structure that can
be folded smoothly from a single strand.

RESULTS: Here, we demonstrate a framework
to design and synthesize a single DNA or RNA
strand to efficiently self-fold into an unknotted
compact ssOrigami structure that approximates

an arbitrary user-prescribed target shape. The
generality of the method was validated by the
construction of 18 multikilobase DNA and 5
RNA ssOrigami, including a ~10,000-nt DNA
structure (37 times larger than the previous
largest discrete single-stranded DNA nano-
structure) and a ~6000-nt RNA structure (10
times larger than the previous largest RNA
structure). The raster-filling nature of ssOrigami

permitted the experimen-
talconstructionofprogram-
mable patterns of markers
(for example, a “smiley”
face) and cargoes on its sur-
face, its single-strandedness
enabled the demonstration

of facile replication of the strand in vitro and in
living cells, and its programmability allowed us
to codify the design process and develop a web-
based automated design tool.

CONCLUSION: The work here establishes
that unimolecular DNA or RNA folding, similar
to multicomponent self-assembly, is a funda-
mental, general, and practically tractable strategy
for constructing user-specified and replicable
nucleic acid nanostructures, and expands the
design space andmaterial scalability for bottom-
up nanotechnology.▪

RESEARCH
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Folding of DNA or
RNA ssOrigami
structures. (A) Multiple
DNA strands have been
designed to self-
assemble without (left)
or with (middle) a long
scaffold strand. Here,
we fold single long DNA
or RNA strands into
target shapes (right).
(B) Schematics and
atomic force micros-
copy images of single-
stranded DNA (top
three rows) and RNA
(bottom row) nano-
structures. (C) Size
comparison between
ssOrigami and previ-
ously reported single-
stranded nucleic acid
nanostructures.
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DNA and RNA origami

Various nanostructures can be constructed in a programmable way from 
multiple blocks

(Ong et al., 2017)

7 2  |  N A T U R E  |  V O L  5 5 2  |  7  D E C E M B E R  2 0 1 7

LETTER
doi:10.1038/nature24648

Programmable self-assembly of three-dimensional 
nanostructures from 10,000 unique components
Luvena L. Ong1,2, Nikita Hanikel1, Omar K. Yaghi1, Casey Grun1, Maximilian T. Strauss1,3,4, Patrick Bron5,  
Josephine Lai-Kee-Him5, Florian Schueder1,3,4, Bei Wang1,6, Pengfei Wang7, Jocelyn Y. Kishi1,8, Cameron Myhrvold1,8, 
Allen Zhu1, Ralf Jungmann3,4, Gaetan Bellot9, Yonggang Ke7,10 & Peng Yin1,8

Nucleic acids (DNA and RNA) are widely used to construct 
nanometre-scale structures with ever increasing complexity1–14, 
with possible application in fields such as structural biology, 
biophysics, synthetic biology and photonics. The nanostructures 
are formed through one-pot self-assembly, with early kilodalton-
scale examples containing typically tens of unique DNA strands. The 
introduction of DNA origami4, which uses many staple strands to 
fold one long scaffold strand into a desired structure, has provided 
access to megadalton-scale nanostructures that contain hundreds of 
unique DNA strands6,7,10–14. Even larger DNA origami structures are 
possible15,16, but manufacturing and manipulating an increasingly 
long scaffold strand remains a challenge. An alternative and more 
readily scalable approach involves the assembly of DNA bricks, 
which each consist of four short binding domains arranged so that 
the bricks can interlock8,9. This approach does not require a scaffold; 
instead, the short DNA brick strands self-assemble according 
to specific inter-brick interactions. First-generation bricks used 
to create three-dimensional structures are 32 nucleotides long, 
consisting of four eight-nucleotide binding domains. Protocols 
have been designed to direct the assembly of hundreds of distinct 
bricks into well formed structures, but attempts to create larger 
structures have encountered practical challenges and had limited 
success9. Here we show that DNA bricks with longer, 13-nucleotide 
binding domains make it possible to self-assemble 0.1–1-gigadalton, 
three-dimensional nanostructures from tens of thousands of unique 
components, including a 0.5-gigadalton cuboid containing about 
30,000 unique bricks and a 1-gigadalton rotationally symmetric 
tetramer. We also assembled a cuboid that contains around 10,000 
bricks and about 20,000 uniquely addressable, 13-base-pair ‘voxels’ 
that serves as a molecular canvas for three-dimensional sculpting. 
Complex, user-prescribed, three-dimensional cavities can be 
produced within this molecular canvas, enabling the creation of 
shapes such as letters, a helicoid and a teddy bear. We anticipate 
that with further optimization of structure design, strand synthesis 
and assembly procedure even larger structures could be accessible, 
which could be useful for applications such as positioning functional 
components.

Without altering the fundamental design principle of the original 
32-nucleotide DNA bricks, we empirically optimized domain dimen-
sions to generate 52-nucleotide DNA bricks that enable the self-assembly  
of 0.1–1-GDa structures from 104 bricks (Fig. 1a, b, Supplementary 
Figs 2–15; see Supplementary Methods for experimental details). We 
investigated structure formation yields by tuning the original bricks to 
lengths of 52 (four 13-nucleotide domains) or 74 (two 18-nucleotide 
and two 19-nucleotide domains) nucleotides in such a way that the 

inter-brick binding pattern remains perpendicular; for example, two 
neighbouring 52-nucleotide DNA bricks form a 13-base-pair duplex 
that corresponds to a 90° inter-brick angle. Comparing cuboids of the 
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Figure 1 | Three-dimensional nanostructures self-assembled from DNA 
bricks. a, 3D DNA origami can be used to construct nanostructures with 
masses of around 5 MDa from about 200 unique components (scaffold 
(black) and staple (coloured) strands)4,6. The DNA brick nanostructures 
assembled here have masses of up to 500 MDa and contain up to about 
30,000 unique components (bricks). b, Detailed helical (top) and brick 
(bottom) models of two 52-nucleotide DNA bricks bound to each 
other with a 90° dihedral angle via a 13-base-pair interaction. c, An 
approximately 150-MDa DNA brick cuboid (left) consisting of about 
10,000 unique components can be used as a molecular canvas (middle) 
with about 20,000 voxels (right), each containing 13 base pairs (see inset). 
Scale bar for a and c (shown in a), 100 nm. d, A 3D rendering of a teddy 
bear (left) can be approximated using the 20,000-voxel canvas (middle) to 
form the cavity of a cuboid structure (right).
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Design of bistable RNA structures 

• Design of RNA molecules with two different alternatives: a 
conformational switch.  

• Much more complex optimization problem. 
• Some algorithms were suggested. 

Höner zu Siederdissen et al. (2013)



Design of riboswitches / RNA sensors
RNA elements that adopt alternative conformations can sense the presence of ligands. 
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the ribosome complex, and the start codon, mainly AUG, of the downstream protein coding region;
both can be sequestered by local RNA structures. On this basis, riboswitches easily link manifold
environmental changes to either the formation of terminator structures or the accessibility of sequences
important for efficient translation. Natural riboswitches sense the concentration of small ligands such
as enzyme cofactors (SAM and TPP), nucleotide precursors (guanine, adenine and 20-deoxyguanosine),
amino acids (lysine) and metal ions (magnesium) [2]. Moreover, changes in temperature [3] and
pH-value [4] are sensed by riboswitches. As these regulatory elements are encoded on messenger
RNA (mRNA) level they give access to directly alter protein expression at an early stage, which saves
resources and is potentially faster than regulation by proteins such as transcription factors, which need
to be produced on demand.

5’ 5’5’

Ligand

Figure 1. Illustration of the general riboswitch mechanism. Typically, two structural alternatives
(left and middle) dominate the ensemble of a riboswitch sequence. The one that contains the correctly
folded aptamer structure (middle) is further stabilized upon ligand addition and the system gets
trapped in the bound conformation (right).

Going beyond naturally evolved riboswitches, it is highly attractive to design analogous,
but artificial, regulatory RNA elements, which respond to arbitrary environmental changes,
e.g., sensing small molecules. Aptamers against any small molecule of interest can—at least
in principle—be selected utilizing the SELEX (Systematic Evolution of Ligands by Exponential
enrichment) protocol [5,6]. A rational riboswitch design process on this basis paves the way for
manifold applications. For instance in white biotechnology, where heterologous or synthetic pathways
are implemented in a host organism to produce specific chemicals from renewable resources, it is
essential to sense and react on the accumulation of presumably toxic intermediates [7]. Furthermore,
it has been shown that riboswitches can function as biosensors with medical applications and to
modulate cell behavior such as motility (recently reviewed in [8]). In this context, synthetic constructs
are of particular interest [9,10]. Synthetic riboswitches based on artificial aptamers are particularly
valuable gadgets because they can respond to ligands that are orthogonal to the host organism’s native
metabolites and thus can be triggered without affecting vital functions of the host. Theophylline
riboswitches may serve as an example [11]. The corresponding aptamer as well as other—artificial or
naturally occurring—ligand-binding RNA structures are used as components in a whole variety of
different conceptual principles in the design of synthetic riboswitches. A detailed description of these
RNA regulators is given in several recent reviews [12–15]. In addition, there no guarantee that there
exists a naturally evolved riboswitches that is sensitive to a ligand of interest in an engineering context,
such as the design of a drug sensor.

In this contribution we first review essential components of riboswitches and read-out mechanisms
from experimental perspective. We then focus on thermodynamic and kinetic aspects to de novo
design or further investigate riboswitches in silico. Finally, recent design attempts are briefly outlined
and graphically summarized.

2. Components

2.1. RNA Aptamers

Aptamers are RNA (or less relevant for us in the present context, DNA) molecules that specifically
bind to target molecules. Over the last 25 years, aptamers for a wide variety of targets have been
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that a particular sequence motif is present in a structural context, e.g., partially structured binding
site in the equilibrium ensemble, can also be obtained computationally e.g., using the constraint
framework implemented in the ViennaRNA package [96]. In either case one computes, in addition to
the total partition function Z, the constrained partition function Z⇤ that enforces the presence of the
required structural motif. This allows calculating its probability p⇤ = Z⇤/Z and the refolding energy
DGconf = �RT ln p⇤ that is required to force the ensemble into the binding conformation. This simple
relationship was tested experimentally already a decade ago for the binding of the HuR to unpaired
RNA sequence motifs [97]. The total binding energy can thus be modeled as

DGbind = DGconf + DGmotif, (3)

where DGmotif is the binding energy of the ligand to an ideally structured binding site. The latter has
to be determined empirically and will in general strongly depend on the sequence. For interactions
with small ligands, one pragmatically assumes that the sequence of the native binding site is necessary
and must form a coherent unit, modeled as specific loop, in any secondary structure that binds the
ligand. In this approximation only a single empirical energy parameter DGmotif needs to be determined,
Figure 2.

Figure 2. Ligand binding and structural stabilization of the aptamer—schematic illustration based on
the theophylline aptamer. The sub-ensemble of binding competent structures (middle) is raised over
the unbound structure ensemble (left) by the energy DGconf required for the formation of the binding
pocket. Due to the RNA–ligand binding energy DGmotif the RNA–ligand complex (right) is stabilized
over the unbound structures by the energy DGbind. Note that the ensembles are simply visualized by
representative structures—while consisting of many secondary structures.

3.2. Kinetic of RNA Folding

RNA secondary structure as model system has the key advantage that kinetic effects can be
studied consistently with the thermodynamic considerations outlined in the previous section. To this
end, one defines the energy landscape of a given RNA that consists of all possible secondary structures
x of the RNA together with their energies E(x) in the underlying thermodynamic model; two secondary
structures are adjacent if they differ by the opening or closing of a single base pair. Since each secondary
structure represents an equivalence class of actual 3D conformations, the insertion or deletion of a base
pair approximates the actual motion of the molecule in continuous, three-dimensional space. In other
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the ribosome complex, and the start codon, mainly AUG, of the downstream protein coding region;
both can be sequestered by local RNA structures. On this basis, riboswitches easily link manifold
environmental changes to either the formation of terminator structures or the accessibility of sequences
important for efficient translation. Natural riboswitches sense the concentration of small ligands such
as enzyme cofactors (SAM and TPP), nucleotide precursors (guanine, adenine and 20-deoxyguanosine),
amino acids (lysine) and metal ions (magnesium) [2]. Moreover, changes in temperature [3] and
pH-value [4] are sensed by riboswitches. As these regulatory elements are encoded on messenger
RNA (mRNA) level they give access to directly alter protein expression at an early stage, which saves
resources and is potentially faster than regulation by proteins such as transcription factors, which need
to be produced on demand.
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Figure 1. Illustration of the general riboswitch mechanism. Typically, two structural alternatives
(left and middle) dominate the ensemble of a riboswitch sequence. The one that contains the correctly
folded aptamer structure (middle) is further stabilized upon ligand addition and the system gets
trapped in the bound conformation (right).

Going beyond naturally evolved riboswitches, it is highly attractive to design analogous,
but artificial, regulatory RNA elements, which respond to arbitrary environmental changes,
e.g., sensing small molecules. Aptamers against any small molecule of interest can—at least
in principle—be selected utilizing the SELEX (Systematic Evolution of Ligands by Exponential
enrichment) protocol [5,6]. A rational riboswitch design process on this basis paves the way for
manifold applications. For instance in white biotechnology, where heterologous or synthetic pathways
are implemented in a host organism to produce specific chemicals from renewable resources, it is
essential to sense and react on the accumulation of presumably toxic intermediates [7]. Furthermore,
it has been shown that riboswitches can function as biosensors with medical applications and to
modulate cell behavior such as motility (recently reviewed in [8]). In this context, synthetic constructs
are of particular interest [9,10]. Synthetic riboswitches based on artificial aptamers are particularly
valuable gadgets because they can respond to ligands that are orthogonal to the host organism’s native
metabolites and thus can be triggered without affecting vital functions of the host. Theophylline
riboswitches may serve as an example [11]. The corresponding aptamer as well as other—artificial or
naturally occurring—ligand-binding RNA structures are used as components in a whole variety of
different conceptual principles in the design of synthetic riboswitches. A detailed description of these
RNA regulators is given in several recent reviews [12–15]. In addition, there no guarantee that there
exists a naturally evolved riboswitches that is sensitive to a ligand of interest in an engineering context,
such as the design of a drug sensor.

In this contribution we first review essential components of riboswitches and read-out mechanisms
from experimental perspective. We then focus on thermodynamic and kinetic aspects to de novo
design or further investigate riboswitches in silico. Finally, recent design attempts are briefly outlined
and graphically summarized.

2. Components

2.1. RNA Aptamers

Aptamers are RNA (or less relevant for us in the present context, DNA) molecules that specifically
bind to target molecules. Over the last 25 years, aptamers for a wide variety of targets have been

Illustration of the general mechanism (Findeiß et al., 2017):

 (From Findeiß et al., 2017)

Thermodynamics and 
kinetics of alternative 
structures should be 
calculated with 
constraints imposed by 
ligand binding:



Design of riboswitches / RNA sensors

expected, uidA::Switch A only exhibits the blue/green wild-type
phenotype upon expression of trigger A. Similarly, uidA::Switch
B activates b-glucoronidase only with cognate trigger B.

The edited strain lacZ::Switch C provides more complicated
behavior because the lac operon is regulated at the transcrip-

tional level by lactose or chemical analogs such as IPTG. Thus,
lacZ::Switch C requires both lactose/IPTG and trigger RNA C
to turn on expression of b-galactosidase. This behavior results
in a genetic AND circuit combining transcriptional and posttran-
scriptional regulation. We tested this AND circuit by expressing
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Figure 4. Toehold Switch Activated by mRNA and Endogenous Small RNA Triggers
(A) Design schematic and putative activation pathway of the toehold switch mRNA sensors. Switch common sequence element is outlined in pink.

(B) Mode GFP and mCherry fluorescence obtained from flow cytometry of threemCherry sensors in their repressed and activated states, as well as positive and

negative controls. Error bars are the SD from at least three biological replicates.

(C) ON/OFF GFP fluorescence ratios for a series of toehold switches activated by themCherrymRNA, and cat and aadAmRNAs, which confer chloramphenicol

and spectinomycin resistance, respectively. Relative errors for the mRNA sensor ON/OFF ratios were obtained by adding the relative errors of the sensor ON and

OFF state fluorescence measurements in quadrature. Relative errors for ON and OFF states are from the SD of at least three biological replicates.

(D) Endogenous and synthetic gene networks used for sensing the RyhB sRNA.

(E) Transfer function for the RyhB sensor (purple curve) as a function of RyhB inducer concentration. Output of a constitutive GFP expression cassette is shown for

comparison (green curve). Error bars are the SD from at least three biological replicates.

See also Figure S3 and Table S4.
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 (Green et al., 2014)

• Toehold switches are 
designed to sense the 
presence of specific RNA, 
e.g. virus mRNA. 

• The sensor contains a 
reporter gene, e.g. the green 
fluorescent protein (GFP). 

• The GFP expression is 
suppressed by structures 
prohibiting ribosome binding. 

• The conformational switch 
triggered by the sensed RNA 
binding releases the GFP 
translation.


