
Protein structure prediction



Protein structure prediction

- Predictions of protein secondary structure 

- Homology modeling 

- Fold recognition 

- Ab initio structure prediction (energy minimization)
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Figure 3-3 The peptide bond

(a) A condensation reaction between two amino acids forms the peptide bond, which links all the adjacent residues in
a protein chain. (b) Side-chain groups (R) extend from the backbone of a protein chain, in which the amino N, α
carbon, carbonyl carbon sequence is repeated throughout.
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Model of the α helix
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(a) A condensation reaction between two amino acids forms the peptide bond, which links all the adjacent residues in
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Figure 3-6 Model of the α helix

The polypeptide backbone is folded into a spiral that is held in place by hydrogen bonds (black dots) between
backbone oxygen atoms and hydrogen atoms. Note that all the hydrogen bonds have the same polarity. The outer
surface of the helix is covered by the side-chain R groups.
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Lodish H, Berk A, Zipursky SL, et al.
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β sheets
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a protein chain. (b) Side-chain groups (R) extend from the backbone of a protein chain, in which the amino N, α
carbon, carbonyl carbon sequence is repeated throughout.
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Figure 3-8 β SHEETS

(a) A simple two-stranded β sheet with antiparallel β strands. A sheet is stabilized by hydrogen bonds (black dots)
between the β strands. The planarity of the peptide bond forces a β sheet to be pleated; hence, this structure is also
called a β pleated sheet, or simply a pleated sheet. (b) Side view of a β sheet showing how the R groups protrude
above and below the plane of the sheet. (c) Model of binding site in class I MHC (major histocompatibility complex)
molecules, which are involved in graft rejection. A sheet comprising eight antiparallel β strands (green) forms the
bottom of the binding cleft, which is lined by a pair of α helices (blue). A disulfide bond is shown as two connected
yellow spheres. The MHC binding cleft is large enough to bind a peptide 8–10 residues long. [Part (b) adapted from
C. Branden and J. Tooze, 1991, Introduction to Protein Structure, Garland.]
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Lodish H, Berk A, Zipursky SL, et al.
New York: W. H. Freeman; 2000.
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Protein secondary structure prediction
• Protein secondary structure models consider amino acids of a polypeptide 

chain to be in one of the states typical for protein structures. Most simple 
models consider three states: α-helix, β-strand and coil. 

• Secondary structure prediction algorithms identify a state for every amino acid. 
• For instance, below a result from the PSIPRED server is shown:

Conf:

Pred:

CCCCCCCCHHHHHHHHHHCCCCEEEEEECCCEEEEEEEEEPred:
MAERSQNLQDLFLNSVRKSKNPLTIFLINGVKLTGVVTSFAA:

10 20 30 40

Conf:

Pred:

CCEEEEEEECCEEEEEECCCEEEEECCCEEECCCCCCCCCPred:
DNFCVLLRRDGHSQLVYKHAISTIMPSQPVQMFDGEESQGAA:

50 60 70 80
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Pred:

CPred:
AAA:

Legend:
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 = coil 

Conf:  = confidence of prediction

- +
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(www.psipred.net) 
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Protein secondary structure prediction
• Algorithms for secondary structure prediction mostly try to recognize similar 

patterns in local structural elements and extrapolate information from known 
structures to target sequences. 

• The so-called first-generation algorithms were based on single amino acid 
propensities: for instance, Ala, Gln, Leu and Met are frequently found in 
helices, Gly, Tyr and Ser are not, Pro is a “helix-breaker”. A moving window 
with calculation of average propensity score along a sequence can indicate 
most likely states for sequence regions.

MAERSQNLQDLFLNSVRKSKNPLTIFLINGVKLTGVVTSF

[..Savg(α)..]
[..Savg(β)..]

“α-profile”
“β-profile”
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• Second-generation algorithms used propensities for segments of 3-51 amino 
acids. 

• Currently used algorithms exploit the information from multiple alignments of 
related protein families, constructing profiles of patterns (PWM, Markov 
models) that identify most likely structural predictions. 

• E.g. PSIPRED algorithm is based on profiles yielded by PSI-BLAST.  8



PSI-BLAST 
(position-specific iterated BLAST)

(Altschul et al., 1997)

Sequence query Q

Collection of all BLAST hits aligned to the query with 
E-value below a threshold (default 0.01).

Multiple alignment M.

Alignment columns involving gaps inserted into the query are 
ignored, so M has the same length as the query.

The PSSM matrix is calculated, using sequence weighting to avoid “outvoting” a small number of 
divergent sequences by a large set of closely related ones.

                           PSSM is submitted to BLAST as a query 
(only minor modifications to the code as compared with single sequence querying). 

 9

PSSM: position-specific score matrix (pronounced "possum") - a 
profile constructed using alignment of related sequences. PSSM 
dimensions are 4×N (nucleic acids) or 20×N (proteins), where N 
is the size of the aligned region (motif). PSSM columns 
correspond to motif positions, the matrix items reflect monomer 
frequencies at these positions. 



Homology modeling

- Basic idea: “extrapolation” of the known structures to proteins with 
homologous sequences 

Similar sequences may fold into very similar structures, e.g. below the 
superposition (stereoview) of the Cα backbones of three proteins (elastase, 
tonin and trypsin) [Šali & Blundell, 1993].



Main steps of homology modeling

P1: FPX/FOZ/fop/fok P2: FHN/FDR/fgi QC: FhN/fgm T1: FhN

April 6, 2000 16:12 Annual Reviews AR098-11

?
COMPARATIVE MODELING 293

Figure 1 Steps in comparative protein structure modeling. See text for description.
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Algorithms used in homology modeling

• Search for template proteins of known structure. Based on alignments of the 
target sequence against sequences stored in the database of structures (PDB). The 
best template(s) is (are) found using multiple alignments of sequences and profiles or 
profile hidden Markov models (HMMs). 

• Alignment of the target to template(s) can be optimized after finding the best 
template(s). 

• Model building. A number of algorithms exist. For instance, the core regions of the 
target can be modeled by averaging the positions of backbone atoms in the 
templates. Alternatively, the spatial restraints can be retrieved from multiple alignment 
and used to guide the modeling. The model is derived by minimizing the violations of 
restraints. 

• Loop modeling. The regions with poor or no similarity to template sequences are 
modeled separately. E.g. using the conformations of similar fragments in the structure 
database or ab initio predictions.



A general idea to compute a pairwise interaction 
potential: 

Eabk(r) = - RT ln [ fabk (r) ] 

where frequency fabk (r) is obtained from a 
database of known structures  
(a and b: some amino acid types), 
R - universal gas constant, 
T - temperature (K). 

("Inverse" Boltzmann law)

Reference state can be defined as  Ek(r) = - RT ln [ fk (r) ], 
where fk (r) is an average value over all amino acid types. 

Thus: 

𝝙Eabk(r) = Eabk(r) - Ek(r) =  - RT ln [ fabk (r) / fk (r) ].

Calculation of knowledge-based (mean force) potentials 
using a database of protein structures

(M. Sippl, 1993)



Sequence/structure alignment (threading)

In sequence/structure threading, first the 
changes of total interaction energies of residues 
are calculated in assumption of the template 
structure interactions. E.g. amino acid at position 
i of the structure is replaced by amino acid j of 
the sequence, yielding the element [i,j] of the 
comparison matrix. 

(frozen approximation) 

The alignment is computed by dynamic 
programming, yielding a structural model for 
the query sequence. 
The quality of such models can be tested using 
calculations of total energies and energy 
profiles.

(M. Sippl, 1993)



Using energy profiles to evaluate structure models

The profiles are smoothened using “gliding 
average” (e.g.  over 10 residues). 

Good models have relatively low energies along 
a sequence. The 2GN5 model does not seem 
to be good (positive peaks).

(M. Sippl, 1993)
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Ab initio (de novo) protein structure prediction

- Lattice models 

Rough approximation, with amino acid monomers occupying the discrete points in 
space determined by a lattice (usually cubic). Nowadays are mostly used for testing 
new ideas on folding algorithms rather than for real structure predictions. 

- Off-lattice models 

      Low resolution models: 

                  e.g. united residue model (UNRES), with side chain centroids. 

      High resolution models: 

                         all-atom structures.



Cubic lattice models

Mostly the HP-lattice model: 

- Two monomer types: H (hydrophobic) and P (polar). 

-  Energy is proportional to the number of H-H contacts (h) between closely 
located monomers that are not sequence neighbors: E = -ε × h.  

- The energy minimum is usually searched by a Monte Carlo algorithm. 

Below two alternative conformations for the same HP-sequence are shown:

Proc- Nati Acad Sci USA 92 (1995) 327

Sequence 2

Sequence 8

Sequence 10

FIG. 2. For sequences 2, 8, and 10, the respective PNS (Left) conformations and selected native conformations (Right) are shown.

global energy minimum (native state degeneracies gN). There
are at least approximately 103 to 106 global minima for each of
these HP sequences.

DISCUSSION
What do we learn from these results? First, the number of
global minima for these 10 48-mer HP sequences in three
dimensions is larger than 103. Random pairwise structural
comparisons indicate that two ground-state conformations of
the same sequence have only 35-55% of H-H contacts in
common, on average (Table 3). This implies that these 10
sequences do not fold uniquely as biological sequences do. But
biological uniqueness seems likely to require some design, and
appropriate designs may not be encoded within these 10
sequences. What does "unique" mean? At higher resolution,
the "unique" native states of real proteins are themselves
ensembles involving small fluctuations around native-like en-
ergies and structures (22, 23). We believe that in coarse-
grained lattice models, these fluctuations should be captured
largely within a single lattice conformation. Hence, the con-
clusion that these 10 sequences do not fold uniquely refers to
large-scale structural diversity of the ground states, not to

small perturbations around a single "fold." We point out that
other theorists are more agnostic about the nature of fluctu-
ations in native proteins (24). Honeycutt and Thirumalai (25)
have argued in agreement with Frauenfelder et at (26) that the
tier-zero substates or so-called taxonomic substates of folded
proteins may well correspond to slightly different overall folds.
How should we regard this high degeneracy of native

structures of these 10 sequences? Is ground-state conforma-
tional diversity characteristic of real random-sequence
polypeptides? We do not know. Designed polypeptides often
do not fold to unique structures (27). For both real polypep-
tides and lattice model sequences, there are good designs, with
little native conformational diversity, and bad designs (8). We
have found some HP sequences of 60-80 monomers that have
fewer than five native conformations (12), although we have
not yet found any that have only a single native conformation.
These particular HP sequences mimic real protein sequences
in having very limited native conformational diversity. Re-
placing two-letter codes (H and P, for example) by multiletter
codes undoubtedly helps reduce degeneracy, and this may be
more protein-like.

Second, the Harvard sequence design procedure does not
work for HP lattice model chains. The Harvard and UCSF

Chemistry: Yue et al.

(Yue et al., 1995)



Monte Carlo simulations of low free energy conformations

Monte Carlo simulations are based on generation of (quasi)random 
conformations. During the simulation, random changes are introduced. Lower 
free energies serve as a criterion to select structures for subsequent iterations.

(Unger & Moult, 1993)

The conformational transitions are 
usually rotations around some points 
(chosen randomly). In this example, 
the rotation makes the HP-structure 
more compact, changing the energy 
from - 4 to - 9:

An example of simulation: 

1. Start from a random coil conformation. 

2. At every iteration: make a single change (rotation) from a conformation S1 
with energy E1 to a conformation S2 with energy E2. 

3. If E2  ⩽ E1  , accept the change to conformation S2.  
    If  E2  > E1  : accept with a probability criterion.  
                        E.g.        p = exp ( E1 - E2 / c ), 
     where c can be gradually decreased to “cool down” the simulation.                                                                



An off-lattice model: virtual bond united-residue approximation 
(UNRES)

- Cα - “virtual bonds” of 3.8 Å, with  Cα - Cα - Cα angles of 90°. 
- Amino acids: approximated by “side-chain centroids” (SC). 
- For each residue type, specific SC parameters (angles and centroid sizes). 
- The only variables in this model are torsional angles 𝝲 of rotation around virtual bonds.

(A. Liwo et al., 1993) 

1718 A .  Liwo et ai. 

S C n - 2  

to a real side chain plus the  corresponding C". These at- 
oms  are collected together  in  the united-residue represen- 
tation, when interaction energies are evaluated.  Hence, 
for glycine the  position  of the SC coincides with that of 
its C". Each  p site represents the corresponding C'O-NH 
group.  The distance between successive C" atoms is as- 
signed a  value of 3.8 A, characteristic of a  planar trans 
peptide group  (a virtual-bond  length  [Nishikawa et al., 
19741). We also  assume that the C"-C"-C" virtual-bond 
angles (0) have a fixed value of 90°, which is an approxi- 
mate value  corresponding  to  the  global  maximum in the 
frequency  distribution  of  virtual-bond angles in  protein 
crystal  structures  (Rackovsky, 1990). Accordingly,  the 
united side chains  also have fixed geometry with respect 
to the C" frame,  the  geometric  parameters being taken 
from  protein  crystal  data (Levitt, 1976). They  are  sum- 
marized  in  Table 1. 

To  define  the  geometry  of  the simplified virtual-bond 
chain, we must distinguish between two cases, because the 
terminal a-carbons may or may  not have side chains. If 
none  of  the terminal a-carbons  has a side chain, i.e., if 
both residues are glycines or methyl groups,  the only vari- 
ables describing the  geometry  of the simplified chain  are 

Fig. 2. A: United-residue representation of a polypeptide chain.  The 
interaction sites are side-chain centroids (SC) and peptide-bond centers 
(p) indicated by dashed circles, while the a-carbon atoms (small empty 
circles) are introduced only to assist in defining the geometry. Each side 
chain is attached to the corresponding a-carbon with a fixed "bond 
length", bsc; fixed "bond angle", Osc,  formed by SC,, CY, and Cy-,; 
and fixed "dihedral angle" (Levitt, 1976), formed by SC,,  Cy,  and 
Cp+,. The virtual-bond C"-C"-C" valence angles are assigned a value 
of 90". The only variables are  thus  the virtual-bond torsional angles, y. 
B: The geometry of an acarbon united-residue chain consisting of n C" 
atoms.  The variables defining the geometry of all sites are  the virtual- 
bond torsional angles y ~ ,  yz, . . ., yn-,. ci' (c:) is the position of  ei- 
ther a real terminal C", if no side chain is attached to it, or a dummy 
atom, if  the terminal C" of the real chain has a side chain.  Conse- 
quently,  peptide-group centers 0, and P n - ,  represent either real or 
dummy peptide groups. The position of SC, (SC,)  (if these sites are 
present, i.e., if the first [last] residue is glycine or a methyl group) co- 
incides with that of cy (st). 

of the  amide  groups, if they  initiate or terminate  the pep- 
tide  backbone (Fig. 2B). Such blocking groups  are iden- 
tified as a  glycine  residue,  because no side  chain is 
attached to  the terminal carbon  atom. 

Only  the  sites SC and p are considered as  interaction 
sites in the energy evaluation (see the next section), while 
the positions of the C"'S are used only to define  the ge- 
ometry.  Each SC site  represents  all the  atoms belonging 

Table 1. Standard geometry and van der Waals radii 
of the side-chain centroids used in the calculations" 

Residue bsc (A) Osc (deg) ~ S C  (deg) ro  (A) 
-~ .~ ~. " " " . .~ 

~~ 

CYS 1.38 120.7 -148.5 5.0 
Met 2.34 120.5 - 154.3 6.2 
Phe 2.97 125.6 -154.2  6.8 
Ile 1.83 125.2 -138.8  6.2 
Leu 2.08  125.4  -152.1 6.3 
Val 1.49 127.7 -135.9  5.8 
TrP 3.58 125.8 - 154.2 7.2 
Tyr 3.56 117.8 -163.4  6.9 
Ala 0.77 125.3 -111.9  4.6 
G ~ Y  0.00 3.8 
Thr 1.43 122.5 -129.8  5.6 
Ser 1.28 122.7 -124.1  4.8 
Gln 2.58 125.3 -152.4  6.1 
Asn 1.98 124.7 -150.6  5.7 
Glu 2.63  124.9  -143.5  6.1 
ASP 1.99 127.7 -141.7 5.6 
His 2.76 124.3 -136.8  6.2 
Arg 3.72 128.6 -150.7 6.8 
LYS 2.94 128.9 -146.0  6.3 

~. . ~- 

- - 

Pro 1.42  86.3  -123.3  5.6 
- .~ 
~~~~ . ___ 

a For a  frame defined by  Cy-, , Cp,  and  Ca+l, bsc is the distance 
from SC, to Cy, Osc is the planar angle defined by atoms SCi-q-Cp, ,  
and 6 s ~  is the  dihedral angle defined by atoms SCi-Cp-Cp-,-Cy+,; 
hence, the position of SCi is defined by the a-carbons of the closest  res- 
idues, i - 1 ,  i, i + 1 (see also Fig. 2). The YO'S are defined by Equation 
2. Because the  virtual-bond angles, 0, have a value of 90°, which  is dif- 
ferent from  the standard value of 106.3" (Levitt, 1976), the values of 

and 6sc listed here were calculated from the values given by Levitt 
(1976), subject to the  condition that the location of a side chain with 
respect to the plane bisecting the angle Cp_,-Cp-Cp+, does not change 
on changing 6'-, from 106.3" to 90". 



Ab intio structure prediction using virtual bond united-residue 
approximation (UNRES)

Low energy conformations are usually searched 
by Monte Carlo (MC) algorithms in stepwise way, 
moving from the low resolution in UNRES to high-
resolution all-atom structures. Energy potentials 
include various interactions (hydrophobic, 
hydrophilic, electrostatic) between atoms and/or 
molecular groups considered at a particular step.

(A. Liwo et al., 1993) 
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- .~ 
~~~~ . ___ 

a For a  frame defined by  Cy-, , Cp,  and  Ca+l, bsc is the distance 
from SC, to Cy, Osc is the planar angle defined by atoms SCi-q-Cp, ,  
and 6 s ~  is the  dihedral angle defined by atoms SCi-Cp-Cp-,-Cy+,; 
hence, the position of SCi is defined by the a-carbons of the closest  res- 
idues, i - 1 ,  i, i + 1 (see also Fig. 2). The YO'S are defined by Equation 
2. Because the  virtual-bond angles, 0, have a value of 90°, which  is dif- 
ferent from  the standard value of 106.3" (Levitt, 1976), the values of 

and 6sc listed here were calculated from the values given by Levitt 
(1976), subject to the  condition that the location of a side chain with 
respect to the plane bisecting the angle Cp_,-Cp-Cp+, does not change 
on changing 6'-, from 106.3" to 90". 

For instance: 
 - Begin with UNRES approximation with interactions between SC and peptide groups 
only: low energy structures can be found by MC simulation. 

 - The backbone atoms are introduced in these structures, and the folds are further 
optimized by MC. 
 (An approximation with all-atom backbone and SC centroids is frequently called low-resolution refinement). 
  
- All atoms are introduced to the structures of the previous step, and MC simulation is 
performed on the all-atom model (high-resolution refinement).



Variations in the algorithms for protein structure prediction

Different approaches can be combined in a single algorithm for structure prediction. 

E.g. various combinations of conformational sampling (template-based or knowledge-
based) with low/high resolution refinement. 

One of the most successful applications is Rosetta methodology (D. Baker & coll.). 
     E.g. according to CASP, Critical Assessment of Protein Structure Prediction, 
             a biannual evaluation of prediction methods, carried out in a blind mode. 

In Rosetta, protein folding is considered as an interplay of local interactions in the 
relatively small oligopeptide fragments and global assembly of these fragments by 
Monte Carlo energy minimization. 

A single fragment is considered to fluctuate between several local structures. Such a 
fluctuation is modeled using the distribution of conformations observed in similar 
fragments of known crystal structures. In the first Rosetta stage, alternative minima of 
free energy can be identified using the coarse-grained low-resolution energy function. 

The second stage starts from each of the low-resolution minima and returns back the 
atomic coordinates. The conformations are further optimized by a multistep Monte 
Carlo energy minimization procedure.



Pairwise contacts predicted from amino acid covariations

Correlations between substitutions can be used for prediction of 
interactions:

(DS Marks et al., 2011)

of these possible causes of co-variation effects and is thus faced
with the complicated inverse problem of using observed
correlations to infer contacts between residues (Figure 1). Given
alternative causes of true evolutionary co-variation, even if
confounding correlations caused by technical reasons can be
identified, there is no guarantee that the remaining correlated
residue pairs will be dominated by residues in three dimensional
proximity.

The initial challenge is thus to solve the inverse sequence-to-
structure problem by reducing the influence of confounding
factors. Only then is it possible to judge whether the evolutionary
process reveals enough residue contacts, which are sufficiently
evenly distributed (spread) throughout the protein sequence and
structure, to predict the protein fold. The ultimate criterion of
performance is the accuracy of 3D structure prediction using the
inferred contacts. Previous work combined a small number of
evolutionarily inferred residue contacts with other, structural,
sources of information to successfully predict the structure of some
smaller proteins, [16,17,18,19]. However, three crucial open
questions remain with respect to using evolutionarily inferred
residue-residue couplings for protein fold prediction. The first is
whether one can develop a sufficiently robust method to identify
causative correlations that reflect evolutionary constraints. The
second is whether the inferred, plausibly evolutionary, correlations
primarily reflect residue-residue proximity. The third is whether
these inferred residue-residue proximities provide sufficient
information to predict a protein fold, without the use of known
three-dimensional structures.

The de novo protein structure prediction problem in the
era of genome sequencing

Solving this inverse problem would enable novel insight into the
evolutionary dynamics of sequence variation, and the role of
evolutionarily constrained interactions in protein folding. Deter-
mination of protein structure, by experiment or theory, provides
one essential window into protein function, evolution and design.
However, our knowledge of protein structure remains incomplete
and is far from saturation. In spite of significant progress in the
field of structural genomics over the last decade [20], only about

half of all well-characterized protein families (PFAM-A, 12,000
families), have a 3D structure for any of their members [1]. At the
same time, the current upper limit on the total number of protein
families (,200,000; PFAM-B) is an order of magnitude larger, and
continues to grow with no clear limit in sight. Therefore, as
massive genomic sequencing projects rapidly increase the number
and size of protein families, in particular those without structural
homologs [21], accurate de novo prediction of 3D structure from
sequence would rapidly expand our overall knowledge of protein
structures in a way difficult to achieve by experiment.

Limited ability of current de novo 3D structure prediction
methods

Although the challenge of the computational sequence-to-
structure problem remains unsolved, methods that use fragment
libraries [22,23] or other strategies to search conformational space
[24,25], followed by sophisticated energy optimization or
molecular dynamics refinement, have been successful at predicting
the 3D structures of smaller proteins (,80 residues) [22,24,25,26]
[25,27,28]. In addition, custom-designed supercomputers have
allowed insight not only into molecular dynamics of protein
function, but also into the folding pathways of smaller proteins
such as BPTI and WW domains [29,30]. However, none of these
computational approaches have yet achieved de novo folding from a
disordered or extended polypeptide to the native folded state for
larger proteins and it is generally appreciated that the primary
obstacle to 3D protein structure prediction is conformational
sampling, i.e., successful search of the vast space of protein
conformations for the correct fold [26,31]. Using current methods,
it is computationally infeasible to adequately sample the enormous
set of all 3D configurations a protein might explore in the process
of folding to the native state. In this paper we explore the idea that
information gleaned from statistical analysis of multiple sequence
alignments can be used to solve this problem [2,5,6,32,33]. The
goal is use residue-residue contacts inferred from the evolutionary
record (EICs) to identify the tiny region in the space of all possible
3D configurations of a given protein that contains the correctly
folded or ‘native’ structure.

Figure 1. Correlated mutations carry information about distance relationships in protein structure. The sequence of the protein for
which the 3D structure is to be predicted (each circle is an amino acid residue, typical sequence length is 50–250 residues) is part of an evolutionarily
related family of sequences (amino acid residue types in standard one-letter code) that are presumed to have essentially the same fold (iso-structural
family). Evolutionary variation in the sequences is constrained by a number of requirements, including the maintenance of favorable interactions in
direct residue-residue contacts (red line, right). The inverse problem of protein fold prediction from sequence addressed here exploits pair
correlations in the multiple sequence alignment (left) to deduce which residue pairs are likely to be close to each other in the three-dimensional
structure (right). A subset of the predicted residue contact pairs is subsequently used to fold up any protein in the family into an approximate
predicted 3D shape (‘fold’) which is then refined using standard molecular physics techniques, yielding a predicted all-atom 3D structure of the
protein of interest.
doi:10.1371/journal.pone.0028766.g001

3D Structure Computed from Sequence Alone
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A straightforward application of Mutual Information (MI) values for 
detection of monomer contacts can yield a number of correlations that are 
not determined by interactions (transitive indirect correlations). 

A (partial) solution for this problem can be provided by a model that is built 
for the whole alignment length in order to infer maximally informative 
correlations. 

The growth of the sequence and structure databases may improve such 
approaches in future.



A special case: coiled coil domains

Coiled coils are predicted by special algorithms, based on the estimates of 
probabilities of finding amino acid residues at specific heptad positions. For a given 
sequence, a total score can be calculated. Furthermore, additional side-chain 
interactions in the coiled coils can be taken into account.
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Coiled Coil Domains: Stability, Specificity, and
Biological Implications

Jody M. Mason and Katja M. Arndt*[a]

Introduction

The coiled coil is a common structural motif,
formed by approximately 3 ± 5% of all amino
acids in proteins.[1] Typically, it consists of two to
five !-helices wrapped around each other into a
left-handed helix to form a supercoil. Whereas
regular !-helices go through 3.6 residues for
each complete turn of the helix, the distortion
imposed upon each helix within a left-handed
coiled coil lowers this value to around 3.5. Thus
a heptad repeat occurs every two turns of the
helix.[2, 3] The coiled coil was first described by
Crick in 1953.[4] He noted that !-helices pack
together 20! away from parallel whilst wrap-
ping around each other, with their side chains
packing ™in a knobs-into-holes manner∫. The
same year, Pauling and Corey put forward a
model for !-keratin.[5] It was some 20 years later
that the sequence of rabbit skeletal tropomyo-
sin was published,[6] and another twenty until
the first structure of the leucine zipper motif
was solved by Alber and co-workers.[7] These
last discoveries pushed the coiled-coil field into
the spotlight, as it became apparent that they
are found in important structures that are
involved in crucial interactions such as transcriptional control.
The most commonly observed type of coiled coil is left-handed;
here each helix has a periodicity of seven (a heptad repeat), with
anywhere from two (in designed coiled coils)[8] to 200 of these
repeats in a protein.[9] This repeat is usually denoted (a-b-c-d-e-f-
g)n in one helix, and (a"-b"-c"-d"-e"-f"-g")n in the other (Figure 1). In
this model, a and d are typically nonpolar core residues found at
the interface of the two helices, whereas e and g are solvent-
exposed, polar residues that give specificity between the two
helices through electrostatic interactions. Similarly in right-
handed coiled coils, an eleven-residue repeat is observed
(undecatad repeat).[10, 11] The apparent simplicity of the structure
with its heptad periodicity has led to extensive studies. Here we
aim to outline the importance of individual amino acids in
maintaining !-helical structure (intramolecular interactions)
within individual helices, whilst promoting specific coiled-coil
interactions (intermolecular interactions) of correct oligomeric
state and orientation.

The PV Hypothesis

The PV (™Peptide Velcro∫) hypothesis[12] outlines three structural
elements vital to the formation of a specific coiled coil. It
contains one of the earliest rational design strategies for the
formation of heterodimeric coiled coils and was originally used
by O'Shea and co-workers.[13] Firstly, it stipulates that the a and d
positions must be hydrophobic (e.g. leucine, valine, or isoleu-
cine), thus stabilizing helix dimerization through hydrophobic
and van der Waals interactions. Secondly, residues e and g must
be charged (e.g. glutamate or lysine) in order to form interhelical
electrostatic interactions. Such interaction patterns should be of
the opposite charge in heterodimers to stabilize their interac-

[a] Dr. J. M. Mason, Dr. K. M. Arndt
Institut f¸r Biologie III, Albert-Ludwigs-Universit‰t Freiburg
Sch‰nzlestra˚e 1, 79104 Freiburg (Germany)
Fax: (!49)761-203-2745
E-mail : katja@biologie.uni-freiburg.de

Figure 1. A parallel dimeric coiled coil in a schematic representation (A and B) and as ribbon plot of the
X-ray structure of the leucine zipper of GCN4[7] (C and D). Selected side chains are shown as balls and
sticks. The helical wheel diagram in (A) and the plot in (C) look down the axis of the !-helices from
N-terminus to C-terminus. Panel (B) and (C) provide a side view. The residues are labeled a ±g in one
helix and a"±g" in the other. The hydrophilic interactions (g and g" in blue and red, respectively ; e and e"
in cyan and orange, respectively) within the heptad repeat are shown. In the schematic representations,
the hydrophobic core (a/a" and d/d") is shown. For clarity, in the X-ray structure, only the middle a
position with the exceptional charged residue is given as a green ball-and-stick model. Parts C and D
were generated with molscript.[77]

(Mason & Arndt, 2004)

Coiled coils are 2-5 α-helices wrapped around each other. They are stabilised by 
heptad repeats (usually denoted with a-b-c-d-e-f-g positions). The heptads can 
form a regular extended stable conformation because seven residues in a helix 
make a rotation close to two turns: 7 × 100° = 720° - 20°. Stability is established 
via hydrophobic (a-d) and polar (e-g) interactions.

 23



A special case: transmembrane proteins

Transmembrane proteins have several transmembrane (TM) α-helices. Predictions of 
TM topology require special algorithms, because the lipid environment differs from 
that of globular proteins. The algorithms usually calculate the most likely attributes for 
all residues, classifying them in the main structural elements such as (1) TM helix; (2) 
inside and (3) outside loops; (4) inside and (5) outside helix ends.  

(Kihira et al., 2004)

A schematic representation of transmembrane (TM) protein with 6 TM segments:

pore at the matrix side. These results suggest that the
conformation of the carrier drastically changes while it
transports substrates. A drastic conformational change in
LM1 was also observed in yAAC2 (12). Each of the even-
numbered transmembrane regions of both bovine and yeast
carriers has an arginine residue that is functionally important
(1, 13, 14). Furthermore, chemical modification studies using
the lysine reagent pyridoxal 5-phosphate and fluorescence
measurement studies also indicated that the conformation of
AAC changes between the two distinct AAC states (15-
17). Therefore, the conformational change in the whole AAC
molecule is tightly associated with its substrate transport
function. The crystal structure of bAAC1 fixed in the c-state
by CATR was recently reported (18). Its crystal structure
provided us much information to help us understand better
the transport mechanism of AAC and of other mitochondrial
solute carriers. However, further detailed studies on the
structures associated with transport function seem to be
required for a better understanding its transport mechanism.
Recently, mutagenesis and chemical modification studies

on mitochondrial carriers of citrate and oxoglutarate were
actively carried out (19-21). In this study, we investigated
the structural change in yeast AAC between its two carrier
states by using cysteine scanning mutagenesis and chemical
modification. On the basis of our results, we also discussed
the transport mechanism of AAC.

EXPERIMENTAL PROCEDURES

Materials. The haploid strain of Saccharomyces cereVisiae
W303-1B (MATR ade2-1 leu2-3,112 his3-22,15 trp1-1
ura3-1 can1-100) (22) was obtained from Dr. Shimizu
(Osaka University, Osaka, Japan). The AAC-disrupted strain
of WB-12 (MATR ade2-1 leu2-3,112 his3-22,15 trp1-1
ura3-1 can1-100 aac1::LEU2 aac2::HIS3) and the yeast

shuttle vector pRS314-YA2P were prepared as described
previously (23). [14C]ADP was obtained from DuPont-New
England Nuclear (Wilmington, DE), CATR from Sigma (St.
Louis, MO), and EMA fromMolecular probes (Eugene, OR).
Other materials and reagents were of the highest grade
commercially available.
Mutagenesis of AAC and Culture Condition of Yeast Cells.

Mutant transporters were generated by site-directed mu-
tagenesis of the Cys-less yAAC2, in which all four cysteines
had been replaced with alanine (12). All mutations were
confirmed by DNA sequencing. The DNA fragments that
were made were subcloned into pRS314-YA2P for trans-
formation of the AAC-disrupted yeast strain, as described
previously (23). Yeast cells were grown at 30 °C in YP
medium consisting of 1% yeast extract and 2% bactopeptone
supplemented with either 2% glucose (YPD), 2% galactose
(YPGal), or 3% glycerol (YPGly) as a carbon source. For
selection of transformants, the cells were grown at 30 °C in
SD medium consisting of 0.67% yeast nitrogen base without
amino acids and 2% glucose supplemented with standard
concentrations of nutritional requirements when necessary
(24). Solid media contained 2% Bacto-Agar (Difco Labo-
ratories) (23).
Detection of AAC. Yeast mitochondria were isolated as

described previously (23). For detection of AAC in mito-
chondria, mitochondrial protein was subjected to SDS-
PAGE and Western blot analysis using antiserum against
synthetic peptides of the yAAC2-specific sequence (Ser2-
Ser21) (23).
EMA Labeling. For EMA labeling, yeast mitochondria (8

mg of protein/mL) were first pretreated with 100 µM BKA
or CATR or ATR for 30 min at pH 7.4 and 25 °C, and then
the samples diluted with ST [250 mM sucrose and 10 mM
Tris-HCl (pH 7.4)] to 4 mg of protein/mL were incubated

FIGURE 1: Topology of yAAC2. This model of six transmembrane R-helical spans was developed from the results of a previous study (18).
The sequence of yAAC2 is shown using the one-letter amino acid code. The rectangular boxes represent R-helices. The black circles
highlight the residues of the carrier subjected to cysteine scanning mutagenesis. In the model, the first and second loops facing the cytosol
are denoted LC1 and LC2, respectively, and the first, second, and third loops facing the matrix are denoted LM1-3, respectively.
Transmembrane R-helices are denoted TM.
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