RNA structure:
motif search; RNA 3D predictions
Comparative RNA structure analysis

A powerful approach in RNA structure prediction, in particular, due to RNA-specific patterns of variation, nucleotide covariations.

An example of two covariations in three related RNA's:

\[
\begin{align*}
\text{RNA 1} & : \text{AnnGnnnnnnnCnnU} \\
\text{RNA 2} & : \text{GnnUnnnnnnnnAAnnC} \\
\text{RNA 3} & : \text{CnnAUnnnnnnnUnnG}
\end{align*}
\]

((((((. . .)))))) consensus "bracket view"
Detecting conserved structures in related RNAs

(*prediction of “consensus” structures*)

Different strategies:

![Diagram of different RNA alignment strategies](from Pervouchine (2018))
Detecting conserved structures in related RNAs

(prediction of “consensus” structures)

Consensus structures can be computed from sequence alignments using information from suboptimal structures, base probabilities and covariation patterns

Input: Sequence alignment

Calculation: suboptimal structures/partition functions/base probabilities for individual sequences; detection of common patterns and their scoring

Output: The “consensus” structure, (ideally) conserved in all sequences of the dataset.
Detecting conserved structures in related RNAs
(prediction of “consensus” structures)

Consensus structures can be computed from sequence alignments using information from suboptimal structures, base probabilities and covariation patterns

Input: Sequence alignment

Calculation: suboptimal structures/partition functions/base probabilities for individual sequences; detection of common patterns and their scoring

Output: The “consensus” structure, (ideally) conserved in all sequences of the dataset.

For instance, a fragment of the output of RNAalifold algorithm:

```
NP_gullMD77/1-1565
NP_gsGD96/1-1565
NP_eqMiami63/1-1565
NP_Victoria75/1-1565
NP_swTN77/1-1565
GCAACUGGUAUGACUUGAAAGGGAGGAUACUCUCUGCUGGAUAGAUCCUUUCGU
GCCACUGGAUAGACUUUAGAGAGAAGGGUACUCUCUGGCGGAUGAUAUCUUUCGU
GCCACACUGGAUAGACUUCAGAGAGAAGGGUACUCUCUGGCGGAUGAUAUCUUUCCGUAAGAAACGCAUGACUUGGAAAGGGAAGGAUACUCUCUGCUGGAUAGAUCCUUUCGU
GCCACUGGAUACGACUUGCAGAGAGAAGGGUACUCUCUGGCGGAUAGAUCCUUUCGU
GCCACACUGGAUACGACUUGCAGAGAGAAGGGUACUCUCUGGCGGAUAGAUCCUUUCGU
GCCACACUGGAUACGACUUGCAGAGAGAAGGGUACUCUCUGGCGGAUAGAUCCUUUCGU
............910........920........930........940........950.......
Detecting conserved structures in related RNAs
(*prediction of “consensus” structures*)

Consensus structures can be computed from sequence alignments using information from suboptimal structures, base probabilities and covariation patterns

**Input:** Sequence alignment

**Calculation:** suboptimal structures/partition functions/base probabilities for individual sequences; detection of common patterns and their scoring

**Output:** The “consensus” structure, (ideally) conserved in all sequences of the dataset.

For instance, a fragment of the output of RNAalifold algorithm:

```
NP_gullMD77/1-1565
NP_gsGD96/1-1565
NP_eqMiami63/1-1565
NP_Victoria75/1-1565
NP_swTN77/1-1565

GCAACUGGUAUGACUUUGAAAGGAGCCAGGGAUAUUCUGCUGAUGCAGAACGUAGAUCUUUCCGU
GCCAGUGUAUGACUUUGAAGGAGCCAGGGAUAUUCUGCUGAUGCAGAACGUAGAUCUUUCCGU
GCCAGUGUAUGACUUUGAAGGAGCCAGGGAUAUUCUGCUGAUGCAGAACGUAGAUCUUUCCGU
GCCAGUGUAUGACUUUGAAGGAGCCAGGGAUAUUCUGCUGAUGCAGAACGUAGAUCUUUCCGU
GCCAGUGUAUGACUUUGAAGGAGCCAGGGAUAUUCUGCUGAUGCAGAACGUAGAUCUUUCCGU

AGGGAACUCAUCCUUUAUGACAAAGAAGAAAUAAGGAGAGUUUGGCGCCAAGCCAACAAU
AGAGAGCUGAUUCUGUAUGACAAAGAGGAGAUCAGGAGAAUUUGGCGUCAAGCGAACAAU
AGGGAACUCAUCCUUUAUGACAAAGAAGAAAUAAGGAGAGUUUGGCGCCAAGCCAACAAU
AGAGAGCUGAUUCUGUAUGACAAAGAGGAGAUCAGGAGAAUUUGGCGUCAAGCGAACAAU
AGGGAACUCAUCCUUUAUGACAAAGAAGAAAUAAGGAGAGUUUGGCGCCAAGCCAACAAU

...........910...........920...........930...........940...........950...........
```

Such structure-annotated alignments allow one to identify coviations.
Mutual information and alignment position entropies

Mutual information $M(x,y)$:

$$M(x, y) = \sum_{b_x,b_y \in \{A,G,C,U\}} f(b_x b_y) \cdot \log_4 \frac{f(b_x b_y)}{f(b_x) f(b_y)}.$$

Using entropy values at the alignment positions:

$$M(x, y) = H(x) + H(y) - H(x, y),$$

where

$$H = -\sum f(b) \cdot \log_4 f(b)$$

(an entropy term, a measure of variability).

The ratios of $M(x,y)$ and entropies can reveal correlations at (biased) positions:

$$R_1(x, y) = \frac{M(x, y)}{H(x)}, \quad R_2(x, y) = \frac{M(x, y)}{H(y)}.$$

High values (close to 1) indicate significant correlations.

[Gutell et al., 1992]
Mutual information and numbers of covariation events

Similar values of MI may reflect different evolutionary scenarios. The scenario on the right is a stronger case for coevolution hypothesis (multiple covariation events).

\[ f_{12}(AU) = f_{12}(GC) = \frac{1}{2} \quad f_1(A) = f_1(U) = f_2(G) = f_2(C) = \frac{1}{2} \]

\[ MI = \sum_X \sum_Y f_{12}(XY) \log_4 \left( \frac{f_{12}(XY)}{f_1(X) \cdot f_2(Y)} \right) = 0.5 \]

from Dutheil (2012)
Covariance models, RNA families and RNA descriptors

One of the core computational problems in RNomics is a so-called “sequence/structure” alignment.

For instance, a problem to align a motif

```
<<<<.<<<<......>>>>>>>>
```

to a sequence:

```
CCCCACGCGAAAAACGCGGGGG
```

Obviously, a deletion in the sequence yields the best alignment (score):

```
<<<<.<<<<......>>>>>>>>
```

```
CCCCACGCG-AAAACGCGGGGG
```

Various algorithms are possible for the search of the optimal sequence/structure alignments (dynamic programming, BLAST-like etc.). They can be used e.g. for the alignment of a structural motif to a sequence (database of sequences), alignment of a sequence to a motif (database of motifs).

Similar ideas can be used in fold/align algorithms (simultaneously folding and aligning RNA sequences).

Multiple sequence/structure alignments lead to definitions of RNA families and descriptors.
In Rfam, the related RNAs (families) are stored as sequence/structure alignments (multiple sequence alignments + structure motifs in the Stockholm format)

Influenza_A_virus_AN.1      UUCCAGGACAUACUAAUGAGGAUGUCAAAAAUGCAAUUGGGAUUCUCA
Influenza_A_virus_Ac.8      UGCCAGGACAUUCCUGCGAGGAUGUCAAAAAUGCAAUUGGGAUCCUCA
Influenza_A_virus_AL.1      UUCCAGGACAUACUGCUGAGGAUGUCAAAAAUGCAGUUGGAGUCCUCA
Influenza_A_virus_Ap.1      UGCCAGGACAUUCCUGCGAGGAUGUCAAAAAUGCAAUUGGGAUCCUCA
...
#=GC SS_cons                .<<<<<...........AAAAAA.............>>>>>aaaaaa.

(In Stockholm format, the pseudoknots are shown with AAA...aaa; BBB...bbb etc symbols.)

Every family in Rfam is initially defined by “seed” alignments: representative sequences plus structural motif. These seed alignments define a descriptor (covariance model). The covariance model is further used to search for other family members in a sequence database.
Structured RNA molecules without protein-coding function:
- tRNA
- ribosomal RNA (rRNA)
- small nucle(ol)ar RNA (snRNA, snoRNA)
- microRNA (miRNA)
- long non-coding RNA (lncRNA)
- etc.

Non-coding RNAs (ncRNAs) are usually characterized by a conserved structure.

One of the domains in human 28S rRNA (Gorski et al., 1987).
Length = 5035 nt

Fragments of conserved structures predicted in human long ncRNA (Smith et al., 2013)
Length ~ 7000 nt
Structured RNA molecules without protein-coding function:
- tRNA
- ribosomal RNA (rRNA)
- small nucle(o)lar RNA (snRNA, snoRNA)
- microRNA (miRNA)
- long non-coding RNA (lncRNA)
- etc.

Non-coding RNAs (ncRNAs) are usually characterized by conserved structure.

Identification of (non-coding) RNA transcripts and/or structured RNA regions in genomes: RNomics.
Multiple databases of ncRNAs

RNAcentral database (The RNAcentral Consortium, rnacentral.org) integrates data from ncRNA resources

RNAcentral Expert Databases

5SrRNAdb  LncBase  PDBe  SILVA
CRW Site  LNCipedia  piRBase  snOPY
dictyBase  IncRNAdb  PLncDB  snoRNA Database
ENA  LncRNAWiki  PomBase  sRNAmap
Ensembl  MGI  RDP  SRPDB
FlyBase  miRBase  RefSeq  TAIR
GENCODE  miRTarBase  Rfam  TarBase
Greengenes  Modomics  RGD  tmBase
tRNAdb  NONCODE  RNApathwaysDB  tmRNA Website
HGNC  NPIter  SGD  tRNAdb

Different search tasks are possible:

Text search
Search by gene, species, publication, author or any other keyword
Browse sequences

Sequence search
Search for similar sequences or look up your sequence in RNAcentral
Search by sequence

Genome browser
Explore RNAcentral sequences in your favorite genome locations
Browse genomes

(rnacentral.org)
microRNAs (miRNAs)

MicroRNAs are 21-22 nt RNA’s are derived from precursor primary miRNAs (pri-miRNAs).

Pri-miRNAs are extended stem-loops. They are enzymatically processed to yield miRNAs (below shown in colour) that can be produced from both sides of the stem-loop.

The hsa-mir-122 precursor:

```
5' cuuagcag agcuguaaguguguuug guu
 ||||||||| ||||||| ||||||| |||||||||
3' ggaucguc ucgaauacacacu uuaccgcaaac caa
```

hsa-mir-122-5p

```
c - gg c --u c
```

hsa-mir-122-3p

```
c a aa a uau a
```
microRNAs (miRNAs)

MicroRNAs are 21-22 nt RNA's are derived from precursor primary miRNAs (pri-miRNAs).

Pri-miRNAs are extended stem-loops. They are enzymatically processed to yield miRNAs (below shown in colour) that can be produced from both sides of the stem-loop.

The hsa-mir-122 precursor:

```
hsa-mir-122-5p
 c - gg c --u c
 5' cuuagcag agcugu aguguga aauggguuuug gu u
 | | | | | | | | | | | | | | | |
 3' ggaucguc ucgaua ucacacu uuaccgcaaa ca a
 c a a u a
```

hsa-mir-122-3p

```
 (www.mirbase.org/)
```

- In animals, the main function of miRNA's is translational repression mediated by miRNA binding to mRNA 3'UTR's.
- This binding is mostly determined by so-called "seed" complementary match of 7-8 base pairs between the miRNA 5'end and target. For instance:

```
5' ...UGCCCUGGGAGCCCUACACUCCA... target mRNA
 | | | | | | | |
3' GUUUGUGGUAACAGUGUGAGGU miRNA
```
microRNAs (miRNAs)
MiRNAs target genes by pairing to mRNAs. Different regulation mechanisms can be used.

(a) Endonucleolytic cleavage

(b) Plants (frequent)
miR-171
SCL6 mRNA
Animals (rare)
miR-196a
HoxB8 3’ UTR

(c) Translational repression

(d) mRNA turnover

(e) Plants (rare?)
miR-172a/c
SCL6 mRNA
Animals (canonical seed match site; most frequent)
lin-4
lin-14 3’ UTR
Animals (G-bulge site; less frequent?)
miR-124
Mink1 3’ UTR
Animals (3’ supplementary site; less frequent?)
miR-2
grim 3’ UTR
Animals (3’ compensatory site; rare)
let-7
lin-41 3’ UTR

Change in repressive mechanism over time?

(Ameres & Zamore, 2013)
Prediction of miRNAs and their targets

Predictions of pri-miRNAs are mostly based on finding conserved stem-loop structures encoded in related genomic sequences.

Some sequence preferences can be used in the search.

Due to weak sequence patterns, such an approach may lead to many false-positive results.
RNAsnp server: predicting SNP effects on RNA folding

(http://rth.dk/resources/rnasnp/; Sabarinathan et al., 2013)

RNAsnp Web Server: Predicting SNP effects on local RNA secondary structure

Please fill out the submission form and click the Submit button given below. Input fields marked with a * are required.

(Load Example Data)

**Input sequence**

Enter your input sequence here in either fasta format or linear sequence (without gaps).

(or) Upload sequence file: Choose File no file selected

(or) Select sequence from genome database

Mammal  Human  hg19  genome  region chr19:49468565-49469565

**SNP details**

Enter your SNP details in the required format

- \( XposY \), \( X \) is the wild-type nt., \( Y \) is the mutant and \( pos \) is the position of nt. (pos=1 for first nucleotide in a sequence)
- In case of multiple SNPs, separate each SNP with hyphen "-"
- More than one SNP to test in a single run, provide them in separate lines

**Mode**

Select the mode of operation

- Mode 1 - based on global folding (RNAfold)
- Mode 2 - based on local folding (RNAplfold)
- Mode 3 - to screen putative structure-disruptive SNP

**Folding window**
Non-canonical base pairs in RNA

In addition to canonical Watson-Crick base pairs (GC and AU), non-canonical edge-to-edge interactions with other base pairs are formed in multiple structured RNAs. These interactions are mediated by hydrogen bonds (H-bonds) and are classified according to geometries of interacting edges.

Twelve main families of isosteric base pairs:

<table>
<thead>
<tr>
<th>No.</th>
<th>Glycosidic Bond Orientation</th>
<th>Interacting Edges</th>
<th>Symbol</th>
<th>Default Local Strand Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cis</td>
<td>Watson-Crick / Watson-Crick</td>
<td>●</td>
<td>Anti-parallel</td>
</tr>
<tr>
<td>2</td>
<td>Trans</td>
<td>Watson-Crick / Watson-Crick</td>
<td>○</td>
<td>Parallel</td>
</tr>
<tr>
<td>3</td>
<td>Cis</td>
<td>Watson-Crick / Hoogsteen</td>
<td>●●</td>
<td>Parallel</td>
</tr>
<tr>
<td>4</td>
<td>Trans</td>
<td>Watson-Crick / Hoogsteen</td>
<td>○○</td>
<td>Anti-parallel</td>
</tr>
<tr>
<td>5</td>
<td>Cis</td>
<td>Watson-Crick / Sugar Edge</td>
<td>●●●</td>
<td>Anti-parallel</td>
</tr>
<tr>
<td>6</td>
<td>Trans</td>
<td>Watson-Crick / Sugar Edge</td>
<td>○●○</td>
<td>Parallel</td>
</tr>
<tr>
<td>7</td>
<td>Cis</td>
<td>Hoogsteen / Hoogsteen</td>
<td>■</td>
<td>Anti-parallel</td>
</tr>
<tr>
<td>8</td>
<td>Trans</td>
<td>Hoogsteen / Hoogsteen</td>
<td>○○○</td>
<td>Parallel</td>
</tr>
<tr>
<td>9</td>
<td>Cis</td>
<td>Hoogsteen / Sugar Edge</td>
<td>●●●</td>
<td>Anti-parallel</td>
</tr>
<tr>
<td>10</td>
<td>Trans</td>
<td>Hoogsteen / Sugar Edge</td>
<td>□●□</td>
<td>Parallel</td>
</tr>
<tr>
<td>11</td>
<td>Cis</td>
<td>Sugar Edge / Sugar Edge</td>
<td>□</td>
<td>Anti-parallel</td>
</tr>
<tr>
<td>12</td>
<td>Trans</td>
<td>Sugar Edge / Sugar Edge</td>
<td>○○○</td>
<td>Parallel</td>
</tr>
</tbody>
</table>

(Leontis et al., 2002)

Isosteric base pairs can substitute each other in RNA structure. Frequently a conserved non-canonical pairing can be derived from covariations in alignment.

Alignment example:

```
...G..................U... seq1
...G..................U... seq2
...A..................G... seq3
...G..................U... seq4
...A..................G... seq5
```
Non-canonical base pairs in RNA

Non-canonical base pairs can determine RNA 3D structure.

The kink-turn or K-turn:

Superimposition of K-turns from three different RNA molecules

From Miao & Westhof (2017)

Nomenclature of non-canonical pairs:

(Leontis et al., 2002)

<table>
<thead>
<tr>
<th>No.</th>
<th>Glycosidic Bond Orientation</th>
<th>Interacting Edges</th>
<th>Symbol</th>
<th>Default Local Strand Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cis</td>
<td>Watson-Crick / Watson-Crick</td>
<td>[symbol]</td>
<td>Anti-parallel</td>
</tr>
<tr>
<td>2</td>
<td>Trans</td>
<td>Watson-Crick / Watson-Crick</td>
<td>[symbol]</td>
<td>Parallel</td>
</tr>
<tr>
<td>3</td>
<td>Cis</td>
<td>Watson-Crick / Hoogsteen</td>
<td>[symbol]</td>
<td>Parallel</td>
</tr>
<tr>
<td>4</td>
<td>Trans</td>
<td>Watson-Crick / Hoogsteen</td>
<td>[symbol]</td>
<td>Anti-parallel</td>
</tr>
<tr>
<td>5</td>
<td>Cis</td>
<td>Watson-Crick / Sugar Edge</td>
<td>[symbol]</td>
<td>Anti-parallel</td>
</tr>
<tr>
<td>6</td>
<td>Trans</td>
<td>Watson-Crick / Sugar Edge</td>
<td>[symbol]</td>
<td>Parallel</td>
</tr>
<tr>
<td>7</td>
<td>Cis</td>
<td>Hoogsteen / Hoogsteen</td>
<td>[symbol]</td>
<td>Anti-parallel</td>
</tr>
<tr>
<td>8</td>
<td>Trans</td>
<td>Hoogsteen / Hoogsteen</td>
<td>[symbol]</td>
<td>Parallel</td>
</tr>
<tr>
<td>9</td>
<td>Cis</td>
<td>Hoogsteen / Sugar Edge</td>
<td>[symbol]</td>
<td>Anti-parallel</td>
</tr>
<tr>
<td>10</td>
<td>Trans</td>
<td>Hoogsteen / Sugar Edge</td>
<td>[symbol]</td>
<td>Anti-parallel</td>
</tr>
<tr>
<td>11</td>
<td>Cis</td>
<td>Sugar Edge / Sugar Edge</td>
<td>[symbol]</td>
<td>Anti-parallel</td>
</tr>
<tr>
<td>12</td>
<td>Trans</td>
<td>Sugar Edge / Sugar Edge</td>
<td>[symbol]</td>
<td>Parallel</td>
</tr>
</tbody>
</table>
RNA 3D modeling using tertiary structure constraints

Comparative analysis (in particular, covariations) can identify important tertiary contacts that constrain the 3D folding. This info can be efficiently used in modeling. For instance, the first models of ribozymes were produced using constraints derived from covariations identified in alignments guided by secondary structures. Later, these models were confirmed by crystallographic data.

(Michel & Westhof, 1990)
RNA 3D modeling: Molecular Dynamics

RNA 3D folding can be simulated by Molecular Dynamics (MD) approaches.

The MD simulations implement the functions (potentials) for interactions (“force fields”) acting on atoms and molecular groups, that force them to move.

Known or predicted 2D structure is frequently used as a constraint.

A number of algorithms use simplified coarse-grained models with “pseudoatoms”. For instance, RNA can be considered as a string with beads, with each nucleotide consisting of e.g. three (phosphate, sugar, base) or five (phosphate, sugar, three beads for a base) beads.
RNA 3D modeling

RNA backbone can be approximated by a coarse-grained representation with virtual bonds, reducing computational complexity.

All-atom (minus H atoms) structure:

Coarse-grained backbone representation:

(Dawson et al, 2016)
RNA 3D modeling

Molecular Dynamics simulations show that helical stems behave like (quasi-)rigid domains.

(Musiani et al, 2014)

A coarse-grained representation of stems and loops can be used for simulations with energy function defined for their interactions.

(Kerpedjiev et al, 2015)