
1

39

CpG islands ctd.

+ A C G T
A 0.180 0.274 0.426 0.120
C 0.171 0.368 0.274 0.188
G 0.161 0.339 0.375 0.125
T 0.079 0.355 0.384 0.182

- A C G T
A 0.300 0.205 0.285 0.210
C 0.322 0.298 0.078 0.302
G 0.248 0.246 0.298 0.208
T 0.177 0.239 0.292 0.292

8 states A+ vs A-

unique observation each state
p

1-p 1-q

q

A C

G T

8x8 =64 transitions!

A C

G T

(1-p)/4

0.180p

‘+’ denotes CpG island

‘-’ denotes non-CpG island

40

hidden Markov model

model M = (,Q,T)

• states  Q

• transition probabilities 

observation

observe states indirectly ‘hidden’

• emission probabilities

probability

observation given the model

? there may be many state seq’s  

A

C

B

tAC

tAA

x y

eAx

eAy

underlying process

what we see
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HMM main questions

tpq Given HMM M:

• probability of observation X?

• most probable state sequence?

• how to find the parameters of    

the model M? training

observation   X*

42

Three Important Questions
(See also L.R. Rabiner (1989))

• How likely is a given sequence?

– The Forward algorithm (probability over all paths)

• What is the most probable “path” for 

generating a given sequence?

– The Viterbi algorithm

• How can we learn the HMM parameters given 

a set of sequences?

– The Forward-Backward (Baum-Welch) algorithm
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probability …  !

Given sequence X: most probable state vs. most probable path

* most probable state (over all state sequences)

posterior decoding

using forward & backward probabilities

* most probable path (= single state sequence)

Viterbi

1

0.4

0.6

0.7

0.3

1

0.4

0.6

0.5

0.5

1
1

1

probability of state

start end

s1 s1

s2
s2

44

The Forward Algorithm:

probability of observation X

xi

dynamic programming: fq(i) probability ending in state q emitting symbol xi

%

%

%

A

B

C

x1 xi-1xi-2

state
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The Forward Algorithm:

probability of observation X 
probability observing x1, …, xi and ending in state q:

‘forward’ probability

* = end-state

46

Probability of observation:

weather

(    ,     ,     )
0.3

0.4

0.6 0.2

0.1

0.1

0.5

0.4

0.4

H M

L

pH = 0.4
pM= 0.2
pL = 0.4

(0.1, 0.2, 0.7)

(0.3, 0.4, 0.3)

(0.6, 0.3, 0.1)

( R, C, S )

1:R              2:C   
H  0  4·1 =  4  (4·6 +6·4 +24·1)·2 = 144 (x10-4)

M  0  2·3 =  6  (4·3 +6·2 +24·5)·4 = 576 (x10-4)

L  0  4·6 = 24  (4·1 +6·4 +24·4)·3 = 372 (x10-4)

0 1

Initial state:

• Remain in H

• Coming from M

• Coming from L

P( RCCSS ) = P( RC… )

Transitions:

Start:

P(R...)

R  C  S
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HMM: posterior decoding

%A

B

i

forward backward

Given X the prob. that the i-th state equals q:

=>
P(X)

48

Posterior Decoding Problem

Posterior Decoding is another decoding method:

Input:

Given a Hidden Markov Model M = (Σ, Q, Θ) and a 

sequence X for which the generating path P is 

unknown.

Question:

For each 1 ≤ i ≤ L (the length of the path P) and state 

q in Q compute the probability: P(πi = q | X).
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Posterior Decoding Problem

P(πi = q | X) gives two additional decoding possibilities:

1. Alternative ‘path’ P* that follows the max probability states: 
argmaxstate q { P(πi = q | X) }.

2. Define a function g(q) on the states q in Q, then 

G( i | X) = ∑q { P(πi = q | X) . g(q) }

We can use 2) to calculate the posterior probability of each 
nucleotide of X to be in a CpG-island, using a function g(q) 
defined on all states q in Q: 

g(q) = 1 for all q that are CpG-island states, 

0 otherwise.

50

HMM main questions

tpq

• probability of this observation?

• most probable state sequence?

• how to find the model? training

observation X*

again:

We cannot try all possibilities

Viterbi

 most probable state sequence

X:
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Viterbi algorithm

xi

most probable state sequence for observation X

(1) dynamic programming: vq(i) probability ending in state q and emitting xi

%

%

%

A

B

C

vq(i)

State:

52

Decoding Problem: The Viterbi algorithm

xi xL

(1) dynamic programming: max probability ending in state

(2) traceback: most probable state sequence

A

B

C

states

given 

sequence

q (=B)
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HMM Decoding: two explanations

posterior    Σ
best state every position

But: path may not be allowed by model

viterbi        max
optimal global path

But: many paths with similar probability

54

dishonest casino dealer
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dishonest casino dealer

56

dishonest casino dealer

Observation
366163666466232534413661661163252562462255265252266435353336

Viterbi 
LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Compare to:

Forward 
FFLLLLLLLLLLLLFFFFFFFFLFLLLFLLFFFFFFFFFFFFFFFFFFFFLFFFFFFFFF

Posterior (total) 
LLLLLLLLLLLLFFFFFFFFFLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
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Learning if correct path is known

• Learning is simple if we know the correct path for each 

sequence in our training set

• estimate parameters by counting the number of times each 

parameter is used across the training set

58

Sketch: Parameter estimation

training sequences X(i)

optimize score                                   for model Θ.

If state sequences are known

 count transitions  pq

 count emissions  b in  p

divide by 

 total transitions in p

 emissions in q

Laplace correction for dealing with ‘zero’ probabilities.

Adding 1 to each count.
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Learning With Hidden State

• If we don’t know the correct path for each sequence 

in our training set, consider all possible paths for the 

sequence

• Estimate parameters through a procedure that counts 

the expected number of times each parameter is used 

across the training set.

60

Learning Parameters: The Baum-Welch Algorithm

• Here we use the Forward-Backward algorithm

• An Expectation Maximization (EM) algorithm

– EM is a family of algorithms for learning probabilistic

models in problems that involve hidden states

• In this context, the hidden state is the path that best

explains each training sequence.

• Note, finding the parameters of the HMM that optimally 

explains the given sequences is NP-Complete!
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HMM: state sequences unknown: Baum-Welch

Baum-Welch training

• Based on given HMM Θ

• Given a training set of sequences X

• Determine:
– expected number of transitions and 

– expected number of emissions

• Apply ML and build a new (better) model:

– ML tries to find a model that gives the 

training data the highest likelihood

• Iterate until convergence.

Note: 

• can get stuck in local maxima

• does not understand the semantics of the states

Baum-Welch Re-estimation

62

Probability of state q when emitting Xi:

Probability of transition (p,q) after emitting Xi: 

For the re-estimation we need the expected counts

For the transitions and the emissions in the HMM:

• Apply the backward-forward algorithm.
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Baum-Welch

63

Estimation of Transition Probability

sum over all training sequences X

sum over all positions i

Estimation of Emission Probability

sum over all training sequences X

sum over all positions i with xi=b

Estimate parameters by ratio of expected counts.

64

Baum-Welch training

concerns:

• guaranteed to converge

target score, not Θ

• unstable solutions !

• local maximum

practical

•small values -> renormalize

tips:

• repeat for several initial HMM Θ

• start with meaningful HMM Θ
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Viterbi training

Viterbi training (sketch):

• determine optimal paths

• use these paths to re-compute 

parameters as in the case 

where paths are known

• score may decrease!

66

Computational Complexity of HMM Algorithms

• Given an HMM with S states and a sequence of 

length L, the complexity of the Forward, Backward 

and Viterbi algorithms is

– This assumes that the states are densely interconnected

• Given M training sequences of length L, the 

complexity of Baum Welch on each iteration is

)( 2LSO

)( 2LMSO
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Important Papers on HMM

L.R. Rabiner, A Tutorial on Hidden Markov Models and 

Selected Applications in Speech Recognition,

Proceeding of the IEEE, Vol. 77, No. 22, February 1989.

Krogh, I. Saira Mian, D. Haussler, A Hidden Markov Model 

that finds genes in E. coli DNA, Nucleid Acids Research, 

Vol. 22 (1994), pp 4768-4778

Furthermore:

R. Hassan, A combination of hidden Markov model and fuzzy 

model for stock market    forecasting, Neurocomputing 

archive, Vol. 72 ,  Issue 16-18, pp 3439-3446, October 

2009.

68

Applications

Hidden Markov Models
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69

model topology

A C

G T

many states & fully connected

training seldom works => local maxima

use knowledge about the problem

For example: 

Use a linear model for profile alignment:

begin M2
end

70

silent states

quadratic vs. linear size

but less modeling possibilities

[round silent states (no emission)]

1 2 3 4 5

high/low transition probabilities

skipping nodes

[square emitting states]
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silent states: algorithm

transition / emission

For emitting states q

=> calculated as before

But for silent states q

- no silent loops (!): 

- update in ‘topological order’

Previously: forward algorithm

From state p to state q

q

q

72

profile alignment (no gaps)

profile HMM  P ‘dedicated topology’

Let ei(b) be equal to the probability of 

observing symbol b at pos i, then:

Assume a given

profile set:

12345678
VGAHAGEY
VTGNVDEV
VEADVAGH
VKSNDVAD
VYSTVETS
FNANIPKH
IAGNGAGV

No gaps

transition probabilities: 1

trivial alignment HMM to sequence

begin M4
end

=> Emission probability distribution function at state 4
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affine model

open gap        extension

profile alignment with gaps

Mj Mj+1

Ij insert state

match states

Given profile 

sequences:

VGA--HAGEY
VNA--NVDEV
VEA--DVAGH
VKG--NYDED
VYS--TYETS
FNA--NIPKH
IAGADNGAGV
123__45678

Emission probability distribution based on: 

- background probabilities: ei(b) = p(b)

- or based on alignment (match)

74

profile alignment with gaps and deletes

insert state

match states

Given profile

Sequences:

VGA--HAGEY
V----NVDEV
VEA--DVAGH
VKG------D
VYS--TYETS
FNA--NIPKH
IAGADNGAGV
123__45678

Dj-1 Dj

Mj-1 Mj Mj+1

delete state

(silent)

adapt Viterbi =>

Mj Mj+1

Ij
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HMM for profiles / multiple alignment

D

begin Mj
end

I

Deletion (D)

Insertion (I)

same level

same position

Match (M)

Viterbi

jjj MY

Y

j
DIMY

iM

M

j tivxeiv
1

).1(max).()( 1
,, 

 


jj IY

Y

j
DIMY

i

I

j tivxpiv
1

).1(max).()(
,, 




jj DY

Y

j
DIMY

D

j tiviv
1

).(max)( 1
,, 




76

profile alignment

Given a multiple alignment

with Insertion / Deletion states

VGA--HAGEY
V----NVDEV
VEA--DVAGH
VKG------D
VYS--TYETS
FNA--NIPKH
IAGADNGAGV
123  45678

Example counting for state 1:

transitions

M1M2 6+1  7/10

M1I1 0+1  1/10

M1D1 1+1  2/10

Emissions (for 20 Amino Acids)

F 1+1  2/27

I 1+1  2/27

V 5+1  6/27

other 17x 0+1  1/27

Laplace correction, i.e., adding 1 for each frequency to avoid dividing by 0
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Multiple Sequence Alignment using a Profile HMM

Multiple Sequence Alignment Problem:

Given a set of sequences S1,…, Sn.

How can the set of sequences be optimally aligned?

Assume a profile HMM P is known, then:

- Align each sequence Si to the profile separately

- Accumulate the obtained alignments to a multiple 

alignment

78

Multiple Sequence Alignment: using a Profile HMM

Multiple Sequence Alignment Problem:

Given sequence S1,…, Sn, how can they be optimally aligned?

Assume a profile HMM P is not known, then obtain an HMM 
profile P from S1,…, Sn as follows:

- Choose a length L for the profile HMM and initialize the 
transition and emission probabilities.

- Train the HMM using Baum- Welch on all sequences S1,…, Sn.

Now obtain the multiple alignment using this HMM P as in the 
previous case:

- Align each sequence Si to the profile separately

- Accumulate the obtained alignments to a multiple alignment
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multiple alignment with profile

align each sequence separately

accumulate alignments M and D positions

align inserts (I) leftmost i positions

IAGADNGAGV
123II45678

VGAHAGEY
12345678

FNAPNI-KH
123I45678

D

VGA--HAGEY
FNAP-NI-KH
IAGADNGAGV
123  45678

80

Gene Finding


