CpG islands ctd.

8 states A* vs A
unigue observation each state

A C G T
0.180 0.274 0.426 0.120 (l_p)/4
0.171 0.368 0.274 0.188
0.161 0.339 0.375 0.125
0.079 0.355 0.384 0.182

©
400>+
©
=
[es]
>rs
@)

1-p 1-g

- A C G T

A 0.300 0.205 0.285 0.210

c 0.322 0.298 0.078 0.302

G 0.248 0.246 0.298 0.208

T 0.177 0.239 0.292 0.292 Q C—=T)

‘+" denotes CpG island q 8x8 =64 transitions!

‘-’ denotes non-CpG island 39
hidden Markov model

what we see

model M = (£,Q,T)
* states Q
« transition probabilities tpg, P,q € @

observation X = x1xo...2, € X7
observe states indirectly  ‘hidden’
* emission probabilities

€px, P € Qn A 6[)(‘[)
probability

observation given the model
? there may be many state seq’s

underlying process 40




HMM main questions

observation XeX*

O/\F\f\o

Given HMM M:
« probability of observation X?
* most probable state sequence?
» how to find the parameters of
the model M? training

41

Three Important Questions
(See also L.R. Rabiner (1989))

« How likely is a given sequence?
— The Forward algorithm (probability over all paths)
* What is the most probable “path” for
generating a given sequence?
— The Viterbi algorithm
« How can we learn the HMM parameters given
a set of sequences?
— The Forward-Backward (Baum-Welch) algorithm

42




probability ... !

Given sequence X: most probable state vs. most probable path

start

probability of state

* most probable state (over all state sequences)
posterior decoding
using forward & backward probabilities

* most probable path (= single state sequence)
Viterbi 43

The Forward Algorithm:

probability of observation X

dynamic programming: fy(i) probability ending in state ¢ emitting symbol x;

fq(i) = Y fp(i=1) tpq eq(;)

PeEQ




The Forward Algorithm:
probability of observation X
probability observing x,, ..., x; and ending in state q:

fq(i) = P(x1... 2, m = q)

fq(i) — Z fp(i_]-) Ipq eq(?ﬂi)
pEQR
‘forward’ probability

P(X) = Z fp(n) tpx * = end-state

PER
45
S I Probability of observation:
S weather
. 8
0.6 0.2 ( 6& D {:} )
ReS (R.C,S)
(0.1,0.2,0.7) G
(0.3,0.4,0.3) Transitions:

* Remainin H
« Coming from M
« Coming from L

(0.6,0.3,0.1)

Pu=0.2 04 P(RCCSS)=P(RC...)

N S

H 0 4.-1= 4 (4-6 +6-4 +24-1)-2 = 144 (x10%

M 0 2:-3= 6 (4-3 +6-2 +24-5)-4 = 576 (x10%)

L 0 4.6 =24 (4-1 +6-4 +24-4)-3 = 372 (x10%)
Start: 0 1 46




HMM: posterior decoding

Given X the prob. that the i-th state equals q: P('ﬂ'i =q | X)
[

O— O—0—0 —0O

fq(i) = P(xy...x5,m =q)  bg(i) = P(2j41...2xn | m = q)
forward > < backward

P(X, 7 = q) = fo(i)bg(i) => P(m=q|x>=%

Posterior Decoding Problem

Posterior Decoding is another decoding method:
Input:

Given a Hidden Markov Model M = (%, Q, ®) and a
sequence X for which the generating path P is
unknown.

Question:

For each 1 <i <L (the length of the path P) and state
g in Q compute the probability: P(x; = q | X).

48




Posterior Decoding Problem

P(m; = q | X) gives two additional decoding possibilities:

1. Alternative ‘path’ P* that follows the max probability states:
argmaxstateq { P(ni =q | X) }

Define a function g(qg) on the states q in Q, then
G(i|X) =2 {P(m=a[X).g(a)}

2.

We can use 2) to calculate the posterior probability of each

nucleotide of X to be in a CpG-island, using a function g(q)
defined on all states q in Q:

g(q) = J 1 for all q that are CpG-island states,
0 otherwise.

49

HMM main questions

observation XeX* = most probable state sequence

x O—Q——0—0)

again:
We cannot try all possibilities
Viterbi

* probability of this observation?
* most probable state sequence?
* how to find the model? training




Viterbi algorithm

most probable state sequence for observation X
(1) dynamic programming: v,(i) probability ending in state g and emitting x;

vg(i) = g‘eag vp(i—1) tpg eq(x;)

Decoding Problem: The Viterbi algorithm

(1) dynamic programming: max probability ending in state
(2) traceback: most probable state sequence

given
sequence

B > states

vg(i) = ';{‘Eag vp(i—1) tpq eq(x;) -




HMM Decoding: two explanations

posterior X
best state every position
But: path may not be allowed by model

viterbi max

optimal global path
But: many paths with similar probability

53

dishonest casino dealer

(: 1 16 1: 110 :)
2 16| 005

2:110
3 16 W 3110
4 16 N __~14110
5 1/6 01 |5:110
6 16 6 112

Fair Loaded

54




dishonest casino dealer

Rolls 315116246446644245321131631164152133625144543631656626566666
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLL
Rolls 651166453132651245636664631636663162326455235266666625151631
Die LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
Viterbi LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF
Rolls 222555441666566563564324364131513465146353411126414626253356
Die FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL
Rolls 366163666466232534413661661163252562462255265252266435353336
Die LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE
Viterbi LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEF
Rolls 233121625364414432335163243623665562466662632666612355245242
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

55

dishonest casino dealer

Observation

366163666466232534413661661163252562462255265252266435353336

Viterbi

LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Compare to:

Forward

FFLLLLLLLLLLLLFFFFFFFFLFLLLFLLFFFFFFFFFFFFFFFFFFFFLFFFFFFFFF

Posterior (total)
LLLLLLLLLLLLFFFFFFFFFLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

56




Learning if correct path is known

 Learning is simple if we know the correct path for each
sequence in our training set

(f I

=

« estimate parameters by counting the number of times each
parameter is used across the training set

57

Sketch: Parameter estimation

training sequences X® .
optimize score []7; P(x@ | ©) for model O.

If state sequences are known

= count transitions pq Apq
= count emissions b in p Ep(b)

divide by
= total transitions in p
= emissions in q

Laplace correction for dealing with ‘zero’ probabilities.
Adding 1 to each count. 58

10



Learning With Hidden State

» If we don’t know the correct path for each sequence
in our training set, consider all possible paths for the

sequence
—
N

begin end

—
[

e —

» Estimate parameters through a procedure that counts
the expected number of times each parameter is used

across the training set.
59

Learning Parameters: The Baum-Welch Algorithm

» Here we use the Forward-Backward algorithm
» An Expectation Maximization (EM) algorithm

— EM is a family of algorithms for learning probabilistic
models in problems that involve hidden states

« In this context, the hidden state is the path that best
explains each training sequence.

» Note, finding the parameters of the HMM that optimally
explains the given sequences is NP-Complete!

60
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HMM: state sequences unknown: Baum-Welch

Baum-Welch training

+ Based on given HMM ®
« Given a training set of sequences X

« Determine:
— expected number of transitions and
— expected number of emissions

Apply ML and build a new (better) model:
— ML tries to find a model that gives the
training data the highest likelihood
Iterate until convergence.

Note:
+ can get stuck in local maxima
» does not understand the semantics of the states

Baum-Welch Re-estimation

For the re-estimation we need the expected counts
For the transitions and the emissions in the HMM:

» Apply the backward-forward algorithm.
Probability of state g when emitting X;:

P(m; = q| X) = {2

Probability of transition (p,q) after emitting X;:
P(ﬂ—i =D, Ti4+1 =4(¢ | X':e) =

fp(i)'tpq‘eq($i+1)'bq(i+ 1)
P(X)

12



Baum-Welch

Apg Estimation of Transition Probability
sum over all training sequences X
sum over all positions i

Ep(b) Estimation of Emission Probability
sum over all training sequences X
sum over all positions i with x=b

Estimate parameters by ratio of expected counts.

63

Baum-Welch training

concerns:
* guaranteed to converge
target score, not ©
* unstable solutions !
* local maximum

practical
small values -> renormalize

tips:

* repeat for several initial HMM ©
« start with meaningful HMM ©

64
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Viterbi training

Viterbi training (sketch):

» determine optimal paths

» use these paths to re-compute
parameters as in the case
where paths are known

» score may decrease!

65

Computational Complexity of HMM Algorithms

« Given an HMM with S states and a sequence of
length L, the complexity of the Forward, Backward
and Viterbi algorithms is

O(S?L)
— This assumes that the states are densely interconnected

» Given M training sequences of length L, the
complexity of Baum Welch on each iteration is

O(MS2L)

66
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Important Papers on HMM

L.R. Rabiner, A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition,

Proceeding of the IEEE, Vol. 77, No. 22, February 1989.

Krogh, I. Saira Mian, D. Haussler, A Hidden Markov Model
that finds genes in E. coli DNA, Nucleid Acids Research,
\Vol. 22 (1994), pp 4768-4778

Furthermore:

R. Hassan, A combination of hidden Markov model and fuzzy
model for stock market forecasting, Neurocomputing
archive, Vol. 72, Issue 16-18, pp 3439-3446, October
20009. 67

Hidden Markov Models
; Applications

LA AR SN

68
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model topology

many states & fully connected
training seldom works => local maxima

use knowledge about the problem

For example:
Use a linear model for profile alignment:

begin

—>M2—> — —| end

69

silent states

skipping nodes

[square emitting states]

Wnd silent states (no emission)]

quadratic vs. linear size
but less modeling possibilities

P -— o
- ~

2~ high/low transition probabilities

16



silent states: algorithm

Previously: forward algorithm fq(z) — Z fp(i—l) tpqg eq(mi)
peEQ
From state p to state q transition / emission

g For emitting states q
=> calculated as before

|
But for silent states q
q
©>Q Ja(@) = > fp(3) tpq
peER

- no silent loops (1):

- update in ‘topological order’
71

profile alignment (no gaps)

begin — | My — e
_ No gaps
Assum_e a g|Yen transition probabilities: 1
profile set: trivial alignment HMM to sequence

profile HMM 7 ‘dedicated topology’
X = r1Lo...TJ,

Let ej(b) be equal to the probability of
observing symbol b at pos i, then:

L
P(X|P) = [] ei(z:)
i=1
=> Emission probability distribution function at state 4

72
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profile alignment with gaps

Given profile
sequences:

VGA--HAGEY
VNA--NVDEV
VEA--DVAGH
VKG--NYDED
VYS--TYETS
FNA--NIPKH
TAGADNGAGV
123__45678

insert state

M

| M, match states

Emission probability distribution based on:
- background probabilities: e,(b) = p(b)
- or based on alignment (match)

affine model
tarr s trm 'th_l
gli Mg+ T

open gap extension

profile alignment with gaps and deletes

Given profile
Sequences:
VGA--HAGEY
V----NVDEV
VEA--DVAGH
VKG------ D
VYS--TYETS
FNA--NIPKH
TAGADNGAGV
123__45678

insert state

M, Misq match states

delete state
(silent)

M.,

adapt Viterbi => 74

18



HMM for profiles / multlple alignment

Deletion (D)

Insertion (1) Q‘

Viterbi

Match (M) begin

v, " (i) =¢e, (x) max vJ l(| 1).tYHM

Y=M,I,D

V; (I) = p(xi)' r:na‘IXDVJ' (I _1)'th—1'1

V(i) = max vy, (i), o

i

same level

same posi%ion

profile alignment

Given a multiple alignment
with Insertion / Deletion states

Example counting for state 1:

transitions

M;—>M, 6+1 7/,

M;— 1, 0+1 1/4

M;—D; 1+1 2/,

Emissions (for 20 Amino Acids)

F 1+1 2/,,

| 1+1 2/,,

\ 5+1 6/,,
123 45678 other 17x  0+1 1/,,

Laplace correction, i.e., adding 1 for each frequency to avoid dividing by 0’

19



Multiple Sequence Alignment using a Profile HMM

Multiple Sequence Alignment Problem:
Given a set of sequences St,..., S™
How can the set of sequences be optimally aligned?

Assume a profile HMM P is known, then:
- Align each sequence S' to the profile separately

- Accumulate the obtained alignments to a multiple
alignment

7

Multiple Sequence Alignment: using a Profile HMM

Multiple Sequence Alignment Problem:
Given sequence S%,..., S", how can they be optimally aligned?

Assume a profile HMM P is not known, then obtain an HMM
profile P from S1,..., S" as follows:

- Choose a length L for the profile HMM and initialize the
transition and emission probabilities.

- Train the HMM using Baum- Welch on all sequences S*,..., S™

Now obtain the multiple alignment using this HMM P as in the
previous case:

- Align each sequence S' to the profile separately
- Accumulate the obtained alignments to a multiple alignment

78
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multiple alignment with profile

TAGADNGAGV )
1231145678

VGAHAGEY
12345678

FNAPNI-KH
123145678

~—

J
D

VGA--HAGEY |
FNAP-NI-KH
TAGADNGAGV

123 #5678

align each sequence separately

accumulate alignments M and D positions

, align inserts (I) leftmost i positions

79

Gene Finding

Intron

start

Startcodon  codons  pongr site

ATGCCCTTCTCCAACAG

Transcription /

/

Promoter

S = Exon

Acceptor site

Poly-A site
Stop codon /
P (GGCAGAAACAATAAA!TS'Y. o
[GATCCCCATGCCTGAGGGCCCCTC] /

3'UTR

80
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