

Posterior Decoding Problem

Posterior Decoding is another decoding method:

Input:

Given a Hidden Markov Model $M = (\Sigma, Q, \Theta)$ and a sequence X for which the generating path P is unknown.

Question:

For each $1 \le i \le L$ (the length of the path P) and state q in Q compute the probability: $P(\pi_i = q \mid X)$.

dishonest casino dealer

Rolls	315116246446644245321131631164152133625144543631656626566666
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	651166453132651245636664631636663162326455235266666625151631
Die	LLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	LLLLLFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLL
Rolls	222555441666566563564324364131513465146353411126414626253356
Die	FFFFFFFFLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	366163666466232534413661661163252562462255265252266435353336
Die	LLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	LLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	233121625364414432335163243633665562466662632666612355245242
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Baum-Welch Re-estimation

For the re-estimation we need the expected counts For the transitions and the emissions in the HMM:

• Apply the backward-forward algorithm.

Probability of state q when emitting X_i:

$$P(\pi_i = q \mid X) = \frac{f_q(i)b_q(i)}{P(x)}$$

Probability of transition (p,q) after emitting X_i:

$$P(\pi_i = p, \pi_{i+1} = q \mid X, \Theta) =$$

Important Papers on HMM

L.R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition,

Proceeding of the IEEE, Vol. 77, No. 22, February 1989.

Krogh, I. Saira Mian, D. Haussler, A Hidden Markov Model that finds genes in E. coli DNA, Nucleid Acids Research, Vol. 22 (1994), pp 4768-4778

Furthermore:

R. Hassan, A combination of hidden Markov model and fuzzy model for stock market forecasting, Neurocomputing archive, Vol. 72, Issue 16-18, pp 3439-3446, October 2009.

