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What is guitar tablature?
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Why Automatic Guitar Transcripti

- Problems with human-made tabs
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Why this is challenging
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Dataset

Recording
Audio pre-processing

Label pre-processing



The network
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Evaluation

- Multi pitch Metrics
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Results

5}" slem Ppitch Tpitch fp-itch

TabCNN 0.900 + | 0.764 + | L.826 +
0.016 0.043 0.025

Deep 0.778 + | (.562 + | (.646 +

Salience 0.092 0.099 0.078

Table 1. Multpitch estiimation metrics for our system,
TabCNN, compared against a baseline, the Deep Salience
[D-estmation algorithm introduced in [4], from exper-
ments carmed out in [24]. For all metrics, we report the
mean and standard deviation over the entire dataset.



Results

System Fhab I'tab Jian T'DR
TabCNN | 0.809 £+ | 0,696 = | 0.748 £ | 0.89Y =
0.029 0.061 0.047 0.033

Table 2. Tablature estimation results lor the proposed
system, TabCNN, using the metrics we introduce to mea-
sure performance in fingering prediction. For all metrics,

we report the mean and standard deviation over the entire
dataset.



Discussion

Common errors

False Alarms
Missed Detection
Miss Frettings

Temporal Smoothing



Conclusion

Future work
end-to-end transcription program
temporal smoothing



