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FEATURES FOR SPEECH RECOGNITION
AND AUDIO INDEXING

» Spectral Analysis
» Fourier Transform
Filter Design i e
Filter Bank Spectral AnonS|s Iv\odel
Linear Predictive Coding (LPC)
 Speech signal at time n =s(n) = a, s(n-1) + a, s(n-2) + ... a, s(n-p)

- Esfimate a, a, by ou’rocorrelo’non or solving LPC onoly5|s
equations friomPa Covariance matrix form.

MFCCs
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« Spectral Analysis using Discrete Short Time Fourier Transform
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By L. de Jonckheere

+ Rectangular window => high resolution, low dynamic range (not good
at distinguishing components of different amplitudes)

* Hann or Hamming window => moderate




FEATURES FOR SPEECH RECOGNITION

AND AUDIO INDEXING
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» Spectral Analysis using Discrete Short Time Fourier Transform
« Frame of samples => frequency bins

« Each bin corresponds to one frequency
=> Spectral leakage




FEATURES FOR SPEECH RECOGNITION
AUDIO INDEXING
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SHORT TIME FOURIER TRANSFORM
SHORT HAMMING WINDOW:
50 SAMPLES (=5MSEC)
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Figure 3.12  Short-time Fourier transform using a short (50 points or 5 msec) Ham-
ming window on a section of voiced speech.

From: Rabiner et al.

Short Window
Poor frequency resolution
No resolved harmonics
Good estimate of the overall
spectral shape




SHORT TIME FOURIER TRANSFORM
LONG HAMMING WINDOW:
500 SAMPLES (=50MSEC)
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Figure 3.11 Short-time Fourier transform using a long (500 points or 50 msec)
Hamming window on a section of voiced speech.

From: Rabiner et al.

Long Window
Good frequency resolution
Resolved harmonics
Rough estimate of the overall
spectral shape

Lower frequencies




SHORT TIME FOURIER TRANSFORM
SHORT HAMMING WINDOW:
50 SAMPLES (=5MSEC)
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21.2
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Figure 3.14 Short-time Fourier transform using a short (50 points or 5 msec) Ham-
ming window on a section of unvoiced speech.

From: Rabiner et al.

Short Window

» Poor frequency resolution
No resolved harmonics
Good estimate of the overall
spectral shape
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SHORT TIME FOURIER TRANSFORM
LONG HAMMING WINDOW:
500 SAMPLES (=50MSEC)

Long Window

e Good frequency resolution
SAMPLE Resolved harmonics

Rough estimate of the overall
spectral shape
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Figure 3.13 Short-time Fourier transform using a long (500 points or 50 msec)
Hamming window on a section of unvoiced speech.

Higher

From: Rabiner et al. frequencies
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Audio Signal BAND PASS F”_TER

s(t)

Note that the band pass filter can be
defined as:

Bandpass Filter

h() « a convolution with a filter response
function h(t) in the time domain

« a multiplication with a filter response

Result Audio Signal H(f) function in the frequency domain

s % h ()

sxh (1) =" _s@h(t —t)dr & S(f) - H(f)

sxh (t) =X, s(o)h(t — 1) & S(f) - H(f) (discrete)
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Figure 3.2 Bank-of-filters analysis model.
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—
MEL-CEPSTRUM [4]

Auditory characteristics
« Mel-scaled filter banks
De-correlating properties

* by applying a discrete cosine tfransform (which is close to a
Karhunen-Loeve transform) a de-correlation of the mel-scale
filter log-energies results

=> probabilistic modeling on these de-correlated coefficients
will be more effective.

One of the most successful features for speech recognition,
spekaker recognition, and other speech related recognition
tasks.

[1, pp 712-717]
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MFCCS

Fast Fourier
Transform

v

Mel-Scale
Filter Bank

Preemphasis Windowing

MFCC’s
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Automatie™SPeech Recognition Architectures,

Incorporating Multiple Knowledge Sources

The signal is converted to a sequence of
feature vectors (spectral and temporal).

\ 4

Acoustic Acoustic models represent sub-word
Front-end units, such as honemes: finite-state

’ machine models spectral structure and
temporal structure.

Acoustic Models
P(A/W)
’ The language model predicts the next
set of words, and controls which models
Search are hypothesized. (N-grams)

Language Model
P(W) >

’ Search to find the most probable

Recognized word sequence.
Utterance




coustic Modeling N

Feature Extraction .

Fourier

/- Incorporate knowledge of the\
Transform

Input Speech nature of speech sounds in
' measurement of the features.

« Utilize rudimentary models of

(Typically: 512 samples \ Cepstral \_ human perception. Y.

(16kHz sampling rate) => Analysis

Use a ~30 msec window for
frequency domain analysis. ’

Include absolute energy and| |Perceptual * Time * Time
12 spectral measurements. | |Weighting Derivative Derivative

 Time derivatives to model
\spectral change. /
Energy Delta Energy Delta-Delta Energy

+ + +
Mel-Spaced Cepstrum Delta Cepstrum Delta-Delta Cepstrum




coustic Modeling
Hidden Markov Models

THREE TWO FIVE EIGHT

Acoustic models: temporal 'Y L L TN
evolution of the features | o
(spectrum).

Gaussian mixture distributions
for variations in speaker, accent,
and pronunciation.

Phonetic model topologies are
simple left-to-right structures.

Skip states (time-warping) and
multiple paths (alternate
pronunciations).

Sharing model parameters to
reduce complexity.




Initialization

Single
CETSSENR!
Estimation

2-Way Split

Mixture
Distribution
Reestimation

4-Way Split

Reestimation

Acoustic Modeling
Parameter Estimation

Word level transcription

Supervises a closed-loop data-driven
modeling

Initial parameter estimation

The expectation/maximization (EM)
algorithm is used to improve our
parameter estimates.

Computationally efficient training
algorithms (Forward-Backward) are
crucial.

Batch mode parameter updates are
typically preferred.

Decision trees and the use of
additional linguistic knowledge are
used to optimize parameter-sharing,
and system complexity,.
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MACHINE LEARNING
METHODS

k Nearest Neighbors
Decision Trees
Random Forests (weighted neighborhoods scheme)

Gradient Boosting Machines (e.g. boosting of prediction model
ensembles)

Vector Quantization
+ Finite code book of spectral shapes
+ The code book codes for ‘typical’ spectral shape
+ Method for all spectral representations (e.g. Filter Banks, LPC, ZCR, etc. ...)

Support Vector Machines
Markov Models

Hidden Markov Models
Neural Networks Etc.




VECTOR QUANTIZATION

» Data represented as feature vectors.

« Vector Quantization (VQ) Training set =>
determine a set of code words that constitute
a code book.

« Code words are centroids using a similarity or
distance measure d.

« Code words together with measure d divide
the space into Voronoi regions.

* A gquery vector falls into a Voronoi region and
will kée represented by the respective code
word.

[2, pp. 466 — 467]




VECTOR QUANTIZATION

Distance measures d(x,y):

» Euclidean distance
« Taxi cab distance
« Homming distance
- etc.

22



e
VECTOR QUANTIZATION

Let a training set of L vectors be given for a certain class of objects.
Assume a codebook of M code words is wanted for this class.

Initialize:
+ choose M arbitrary vectors of the L vectors of the training set.
+ This is the initial code book.

Nearest Neighbor Search:

« for each fraining vector v, find the code word w in the current code book that is
closest and assign v to the corresponding cell of w.
Centroid Update:

+ For each cell with code word w determine the centroid ¢ of the training vectors
that are assigned to the cell of w.

+ Update the code word w with the new vector c.
Iteration:

+ repeat the steps Nearest Neighbor Search and Centroid Update untfil the average
distance between the new and previous code words falls below a preset threshold.




VQ FOR CLASSIFICATION

A code book CB, = {y% | 1 <i<M}, can be used
to define a class C,.

Example Audio Classification:

- Classes ‘crowd’, ‘car’, ‘sience’, 'scream’,
explosion’, etc.

« Determine by using VQ code books CB, for
each of the respective classes C,.

* VQ is very often used as a baseline method for
classification problems.




* A generalization of linear
decision boundaries for classification.
* Necessary when classes overlap
when using linear decision boundaries
(non separable classes).

Find hyper plane P: x'B + B, = 0, such that

yi(xl-T,B+ ,80) >1—¢ Vi

3] is minimized over
g =0, Yeg <constant

=> Margin C = ”‘%” IS maximized.

Where (X,,Y,), ... (Xy,Yy) @re our training pairs, with x; € R and y;e{-1,1} ,

e=(g,8&, ..., g ) are the slack variables, i.e.,
1

g; = the amount that x; is on the wrong side of the margin C = T

from the hyper plane P.

i.e. C is maximized.
=> Problem is quadratic with linear inequalities constraint. [2, pp 377-389]
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SUPPORT VECTOR MACHINE (SVM)

In this method so called support vectors define
decision boundaries for classification and
regression.

An example where
a straight line
separates the two
Classes: a linear
classifier

Images from: www.statsoft.com.
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SUPAPORT VECTOR MACHINE (SVM)

In general classification is not that simple.
SVM is a method that can handle the more complex

cases where the decision boundary requires a curve.

SVM uses a set of mapping
functions (kernels) to map
the feature space into

a transformed space so
that hyperplanes can be
used for the classification.

27



SUP-PORT VECTOR MACHINE (SVM)

SVM uses a set of mapping functions (kernels)
to map the feature space into a transformed
space so that hyperplanes can be used for
the classification.

Input space Feature space

28



Training of an SVM is an iterative process:
« optimize the mapping function while minimizing an
error function

* The error function should capture the penalties for
misclassified, i.e., non separable data points.

Input space Feature space

29



“SUPPORT VECTOR MACHINE (SVM)

SVM uses kernels that define the mapping
function used in the method. Kernels can be:
e Linear
» Polynomial
 RBF
» Sigmoid
» EfcC.

Input space Feature space

« RBF (radial basis function) is the most popular kernel, again
with different possible base functions.

« NB The final choice depends on characteristics of the
classification task.

30
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AUDIO CLASSIFICATION
USING NEURAL NETWORKS

An example by Rishi Sidhu:

Using data from the by Zohar Jackson:

Using Convolutional Neural Networks on Spectrograms.



https://medium.com/x8-the-ai-community/audio-classification-using-cnn-coding-example-f9cbd272269e
https://medium.com/x8-the-ai-community/audio-classification-using-cnn-coding-example-f9cbd272269e
https://github.com/Jakobovski/free-spoken-digit-dataset
https://github.com/Jakobovski/free-spoken-digit-dataset
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Some Neural Networks

Output Patterns

Output Patterns

oﬁ%«%\\wo

>~
< \\\V\
PN 5

£/

Representation

Internal
Units

K = K
KN AR

Input Patterns

Input Patterns

Recurrent Neural Network

Feed Forward Neural Network
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DNN: AlexNet, VGG16, ResNet, etc.

Input Image
227x227x3

Conv-Pool Conv-Pool

96 maps — 256 maps

1111 filter 5x5 filter
CONV1 CONV2

Conv
384 maps
3x3 filter

CONV3

Conv

— 384 maps
3x%3 filter

CONV4

Maxl 178
pooling

Max
pooling

m m
= =
‘<|_ ‘<-_ )
I e
Conv-Pool 3 3 .‘:
— 256maps — 2 — a _§§
3x3 filter =3 2 3
(=}
» » B
o o
& &
CONV5
FC8
\
=8 208 Joas \dense
13 \
dense dense
1000
128 Max
pooling 24 2048

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624-64,896-64,896-43,264—
4096-4096-1000.

Krizhevsky, Alex; Sutskever, llya; Hinton, Geoffrey E. "ImageNet classification with deep

convolutional neural networks" Communications of the ACM. 60 (6): 84-90.
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* AlexNet (~2011; 2015 58.9 %)
* VGG-16 (2015, 74.4%)

* ResNet-152 (2015, 78.57%)

* EfficientNetV2B0 (2021, 83.9%)

https://paperswithcode.com/sota/image-classification-on-imagenet

38


https://paperswithcode.com/sota/image-classification-on-imagenet

Deep Visualization Toolbox

yosinski.com/deepvis

#deepvis

3 B :
i ‘ 7/ A: Z;

Jason Yosinski Jeff Clune Anh Nguyen Thomas Fuchs Hod Lipson

UNIVERSITY
3 ot WYOMING

Jet Propulsion Laboratory
California Institute of Technology

[} Cornell University
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Cats and Dogs

Kaggle Dataset ( https://www.kaggle.com/c/dogs-vs-cats/data )

* 2000 images of cats
* 2000 images of dogs

* Given an image: is it a cat or a dog?

Divide into:

* Training set (2000 images)
* Validationset (1000 images)
* Test set (1000 images)

40


https://www.kaggle.com/c/dogs-vs-cats/data

Cats and Dogs

50 75 100 125 100 125

Convolutional Neural Network

* Without any regularization: ~71% accuracy
* With data augmentation: ~82% accuracy
* Feature extraction using a pre-trained NN: ~90% accuracy
* Fine tuning a pre-trained NN: ~95% accuracy

These are examples of Deep Learning with Small Datasets.

41



Prediction Prediction Prediction

4 4 e 4
Trained ai New classifier
classifier s1Ts (randomly initialized)
Cats and Dogs x x x
Trained Trained Trained
convolutional convolutional convolutional
base base base
. (frozen)
VGG16 (pre packed with Keras)
4+ 4 4
Input Input Input
Convolutional Neural Network
e Without any regularization: ~71% accuracy
* With data augmentation: ~82% accuracy
 Feature extraction using a pre-trained NN: ~90% accuracy
* Fine tuning a pre-trained NN: ~95% accuracy

These are examples of Deep Learning with Small Datasets.

42



VGG16

Feature Extraction

Prediction Prediction Prediction
Trained ai New classifier
classifier s1its (randomly initialized)
A A A
Trained Trained Trained
convolutional convolutional convolutional
base base base
(frozen)
Input Input Input

0495 4

0.90 1

085 4

0.80 1

0.75 1

0.70 4

0.6 1

05 1

04
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0.2 1

0.1 1

Training and validation accuracy

ini L ] L
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L
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VGG16

Training and validation accuracy

Feature Extraction +
. 0875
Data Augmentation
0.825 1
0.800 1 .
Prediction Prediction Prediction 0.775 1
- - i 0.750
Trained a1 New classifier
classifier S (randomly initialized) 0.725 1 ® Training acc
A 2 a 0.700 A ? [ ' [ ‘— Valu?atlon acc J
Trained Trained Trained 0 5 10 15 20 25 30
convolutional convolutional convolutional
basa base base Training and validation loss
(frozen) 0601 o ® Training loss
0.55 = Validation loss
050
L ]
045
040
x £ x
Input Input Input 035
0.30
025




Conv block 1:
frozen

B

Convolution2ly

Cats and Dogs

Convelution2lD

Convolution2D

Conv block 2:
frozen

MaxPooling 213

VGG16 (pre packed with Keras)

Dense
Dense

Conv block 3¢
frozen

H Conv block 4:
Convolutional Neural Network

e Without any regularization: ~71% accuracy

* With data augmentation: ~82% accuracy
* Feature extraction using a pre-trained NN: ~90% accuracy

* Fine tuning a pre-trained NN: ~95% accuracy

These are examples of Deep Learning with Small Datasets.

We fine-tune
Conv block 5

We fine-tune
our own
fully-connected
classifier
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« Both images can be used to recognize the spoken digit.
» The spectrogram yields better accuracy for the tests.
* How would you perform data augmentation?

API
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S NN ARCHITECTURE &

Input Layer

!

Convolutional layer with kernel size 3x3

v

Convolutional layer with kernel size 3x3

!

Max Pooling layer with pool size 2x2

v

Dropout layer
v

Flattening layer

v

Dense layer 1

v

Dense layer 1




#Define Model

model = Sequential()

e~
CNN DEFINED IN TF.KERAS

model.add(Conv2D(32, kernel_size=(3, 3), activation='relu’, input_shape=input_shape))

model.add(Conv2D (64, kernel_size=(3, 3), activation="relu'))
model.add(MaxPooling2D (pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(128, activation="relu'))
model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='soffmax’))
#Compile

model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.adam(), metrics=['accuracy'])

print(model.summary())

#Train and Test The Model

model.fit(x_train, y_frain, batch_size=4, epochs=10, verbose=1, validation_data=(x_test,

y_test))




TRAINING, TEST AND
VALIDATION DATASETS

ligellgliglelBle](e
« 1800 Images of Spectrograms: 34x50 pixels
« Each image is labeled with the correct digit

Validation Data

« 200 Images of Spectrograms: 34x50 pixels

« Each image is labeled with the correct digit
» Exclusive speaker(s)

Test Data

« 200 Images of Spectrograms: 34x50 pixels

« Each image is labeled with the correct digit
» Exclusive speaker(s)

API




Prediction Prediction Prediction
4 4 = 4
Trained ai New classifier
. . classifier s1T4 (randomly initialized)
Digits = = =
Trained Trained Trained
convolutional convolutional convolutional
base base base
. (frozen)
VGG16 (pre packed with TF Kergs)
4+ 4 4
Input Input Input
Convolutional Neural Network
* Without any regularization: accuracy ?
* With data augmentation: accuracy ?
* Feature extraction using a pre-trained NN: accuracy ?
* Fine tuning a pre-trained NN: accuracy ?

These are examples of Deep Learning with Small Datasets.
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Digits

VGG16 (pre packed with TF Keras)

Convolutional Neural Network

* Without any regularization:

* With data augmentation:
* Feature extraction using a pre-trained NN:

 Fine tuning a pre-trained NN:

Conv block 1:
frozen

Conv block 2:
frozen

Conv block 3¢
frozen

Conv block 4:

Convolution2ly

Convolution2l

Convolution2D

MaxPooling 213

Dense
Dense

accuracy?
accuracy?
accuracy?

accuracy?

These are examples of Deep Learning with Small Datasets.

We fine-tune
Conv block 5

We fine-tune
our own
fully-connected
classifier
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Genre Classification: MusicRecNet (eir et al., 2020)

Input
Spectrogram
‘ Block 1 H Block 2 H Block 3 }—- Flatten H Dense }—»‘ Dropout H Dense |—» Softmax ‘

~ ¥y
‘ SYM Output ‘
Genre
Block 1 Block 2 Block 3
MaxPooling2D MaxPooling2D MaxPooling2D
Visualization of the MusicRecNet architecture. Qutput genres are either defined by using

softmax probability scores or the SVM classifier.




Genre Classification Benchmarks
GTZAN and FMA

Dataset | GTZAN | FMA 8 | FMA_14 | FMA medium

Number of songs per genre | 100 1000 100 21-7103
Total number of songs 1000 8000 1400 25000
Model GTZAN Accuracy
Zhang et al. [11] 87.4%
Liu et al. [12] 93.9%
Elbir, A & Aydin, N. [I] 81.8%
Elbir, A & Aydin, N. with SVM [!] | 97.6%
Our Baseline Implementation 81.0%
Our Baseline Implementation + SVM 81.6%

53



Genre Classification Benchmarks GTZAN and FMA

Dataset | GTZAN | FMA 8 | FMA_14 | FMA medium
Number of songs per genre | 100 1000 100 21-7103
Total number of songs 1000 3000 1400 25000

Dataset | GTZAN | GTZAN 224 | FMA_8 | FMA_ S8 224 | FMA_14

Method
Baseline 81.0 68.6 42.0
Baseline-SVM-Output 81.5 70.7 42.0
Baseline-SVM-D128 81.6 72.1 42.6
VGG 73.1 53.4 53.6
VGG-SVM-Output 73.0 53.9 53.6
VGG-SVM-D128 76.5 b4.4 54.8
VGG-FT 81.6 60.7 57.3
VGG-SVM-Output-FT 81.6 61.0 57.3
VGG-SVM-D128-FT 83.0 61.2 56.9
EfficientNet 80.0 82.1 59.6 62.0 56.8
EfficientNet-SVM-Output 80.6 82.5 60.5 63.0 56.5
Efficient Net-SVM-D128 83.0 87.5 61.4 63.1 60.8
EfficientNet-FT 90.0 90.5 76.9 73.8 60.4
Efficient Net-SVM-Output-FT 89.8 90.5 76.8 73.7 60.4
Efficient Net-SVM-D128-FT 90.3 90.8 7.4 73.9 61.1
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C. Wu et al. Transformer-based Acoustic Modeling for
Streaming Speech Synthesis, INTERSPEECH 2021

https://transformer-tts-accoustic- P Waveform
. . I m
model.github.io/samples/ S Samples

[ 5Conv Layer N WaveNet

|

|__Post-Net : Mol
Tacotron2 uses Bi-directional Long Short- 1 B e .

term Memory (BLSTM) recurrent

networks. ¥
. [ 2 Layer 2LST™ Emjecton
 cannot effectively model long-term Pre-Net Layers G
b Stop Token
dependencies Projection i
. i Location
a poor quality on long speech. i
Attention
‘ Character 3 Conv Bidirectional
FastSpeech state-of-the-art input Text | oreracter H P oot ]—.[ kecto ]
* in modeling speech prosody and
spectral features, but
’ Tacotron?2

* computation is parallel over the full
utterance context.
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https://transformer-tts-accoustic-model.github.io/samples/
https://transformer-tts-accoustic-model.github.io/samples/

C. Wu et al. Transformer-based Acoustic Modeling
for Streaming Speech Synthesis, INTERSPEECH

2021

TTS systems usually consist of two stages:

¢ acoustic model that predicts the prosody and spectral
features

» followed by a neural vocoder that generates the audio  prosody Model

e waveform.

Tranformer models:
* model long-term dependencies
e Complexity grows quadratically

This work

* Effcient constant speed implementation: for streaming
speech synthesis

* uses a transformer network that predicts the prosody
features at phone rate

¢ an Emformer network to predict the frame-rate spectral
features (streaming)

* WaveRNN Vocoder used
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* Complexity grows quadratically

Mean Opinion Scores (1-5) from 400 participants

1s 5s

W emformer (ours)

10s 30s 60s

Audio Length [seconds]

| System | Prosody | Spectrum |  Normal | Long |

\ Groundtruth H - \ - H 4.307 £ 0.037 \ 4.360 £ 0.044 \
Baseline [11] || BLSTM with self-attention [26] | Multi-rate attention [11] 4173 +£0.042 | 4.019 = 0.055
Ours-1 Transformer Multi-rate attention 4.174 £0.042 | 4.107 £ 0.052
Ours-2 BLSTM with self-attention Emformer with multi-rate attention || 4.192 + 0.041 | 4.034 4 0.053
Ours-3 (best) Transformer Emformer with multi-rate attention || 4.213 £+ 0.042 | 4.201 = 0.048
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\/' v J. Li, Recent Advances in End-to-End Automatic Speech
Recognition.

APSIPA TranS. on Sig. & Inf. Processing, 2022.

* Hybrid ASR Systems
* traditional architecture with DNN’s replacing Gaussian modelling.

* End-to-End (E2E) ASR System
* One single network from input speech to a token sequence
* uses one single objective function for optimizing the whole model
* More simple ASR Pipeline
* More compact models

* E2e Achieve state-of-the-art results on most benchmarks, but:
* Hybrid models still used in large portion of commercial ASR Systems

* Practical factors:
* Streaming
* Latency
* Speaker and Language domain adaption (current main research focus)
* Etc.

* These challenges are being addressed in current E2E ASR systems research
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J \/ End-to-End ASR Architectures

g

* Connectionist Temporal Classification
* Attention Based Encoder-Decoder (TRANSFORMERS)

e Recurrent Neural Network Transducer (RNN-T)
» Streaming, High accuracy, low latency
* Good candidate for industrial applications

"

N

59



e~

REFERENCES

T.F. Quatieri, Discrete-Time Speech Signal Processing,
Principles and Practice, Prentice-Hall, Inc. 2002.

T. Hastc, R. Tibshirani, J. Friedman, The Elements of Statistical
Learning, Data Mining, Inference, and Prediction, Springer,
2001.

W.H. Press, S.A.Teukolsky, W.T. Vetterling, B.P. Flannery,
Numerical Recipies in C++, The Art of Scientific Computing,
2nd Edition, Cambridge University Press, 2002.

S.B. Davies, P. Mermelstein, Comparison of Parametric
Representations for Monosyllabic Word Recognition in
Continuously Spoken Sentences, IEEE Trans. Acoustics,
Speech, and Signal Processing, vol. ASSP-28, no.4, pp. 357-
366, Aug. 1980.




e~

REFERENCES

5. P.Kenny, “Joint Factor Analysis of Speaker and
Session Variability: Theory and Algorithms, Tech.
Report CRIM-06/08-13," 2005.

Available:

6. N.Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P.
Ouellet, “Frontend factor analysis for speaker
verification,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 19, no. 4, pp. 788-798, May 2011.

Francois Chollet, Deep Learning with Python, Manning
Publications, November 2017.



http://www.crim.ca/perso/patrick.kenny

-

MName Family Session  Title

Amber Zitman 1 F.Lieb et al. Audio inpainting - Evaluation of time-frequency representations and structured sparsity approaches. Signal Processing, 2018.

Anca Matei 1 H. Rump et al. AUTOREGRESSIVE MFCC MODELS FOR GENRE CLASSIFICATION IMPROVED BY HARMOMNIC-PERCUSSION SEPARATION. ISMIR 2010.

Andrei Mestani 1 5. Rau et al. VISUALIZATION FOR AI-FASSISTED COMPOSING, ISMIR 2022,

Anna Perry 1 F. Nadeem, LEARNING FROM MUSICAL FEEDBACK WITH SONIC THE HEDGEHOG. SMIR2021.

Anthonie Schaap 1 F. Fascarin et al. CONCEPT-BASED TECHNIQUES FOR “MUSICOLOGIST-FRIENDLY" EXPLANATIONS IN A DEEP MUSIC CLASSIFIER. ISMIR 2022

Bingxin Wang 1 M. Won et al. SEMI-SUPERVISED MUSIC TAGGING TRANSFORMER. ISMIR 2021.

Carla Staicu 1 C. Hawthorne et al. SEQUENCE-TO-SEQUENCE PIANO TRANSCRIFTION WITH TRANSFORMERS. ISMIR 2021.

Chernyu Shi 1 C-5 Ahn et al. Recurrent multi-head attention fusion netwark for combining audia and text for speech emation recagnition. Interspeech 2022,
David Lin 2 C. Hawthorne et al. SEQUENCE-TO-SEQUENCE PIANO TRANSCRIFTION WITH TRANSFORMERS. ISMIR 2021.

Dan 5HI 2 G. Liu et al. Speech emation recognition based on emotion perception. EURASIP 2023.

Gearge Doukeris 2 A Akman et al. Evaluating the COVID-19 Identification ResNet on the INTERSPEECH COVID-1% From Audio Challenges. Frontiers in Digital Health 2022,
Guilem Ca Ruesga 2 A lansson et al. Singing voice separation with deep U-Net Convolutional Betworks. ISMIR 2017.

Kaiteng  liang 2 Y. Ozer et al. SOURCE SEPARATION OF PIANO CONCERTOS WITH TEST-TIME ADAPTATION. ISMIR 2022.

Lieuwe Rooijakkers 2 T.de Reuse et al. A TRANSFORMER-BASED "SPELLCHECKER" FOR DETECTING ERRORS IN OMR OUTPUT. ISMIR 2022,

Lilly Kientz 2 D. Steele et al. A perceptual study of sound annoyance. Audio Mostly 2007.

Luc Schreurs 2 5. Garg et al. Mouth2Audio: intelligible audio synthesis from videos with distinctive vowel articulation. Int. Journal of Speech Technology, 2023.
Lucas Allison 3 1. Miller et al. POLAR MANHATTAN DISPLACEMENT: MEASURING TONAL DISTANCES BETWEEN CHORDS BASED ON INTERVALLIC CONTENT. ISMIR 2023.
Matthijs Zeeuw de 3 M. Giver et al. Score-Informed Source Separation of Choral Music. ISMIR 2020.

Mathalia Marales Rojas 3 0. Lesota et al. TRACES OF GLOBALIZATION IN ONLINE MUSIC CONSUMPTION PATTERNS AND RESULTS OF RECOMMENDATION ALGORITHMS. ISMIR 2022.
Oscar Nebreda Bernal 3 M. Acosta et al. AN EXPLORATION OF GEMERATING SHEET MUSIC IMAGES. ISMIR 2022.

Parthipan Ramakrishnan 3 Y.Zhang et al. INTERPRETING SONG LYRICS WITH AN AUDIO-INFORMED PRE-TRAINED LANGUAGE MODEL. ISMIR 2022.

Peli Evrencglou 3 CK.A Reddy et al. Musichet: Compact Conveluticnal Neural Network for Real-time Background Music Detection. Interspeech 2022,

Pim Bax 3 C. Donahue et al. MELODY TRANSCRIPTION VIA GEMERATIVE PRE-TRAINING. ISMIR 2022.

Priya Prabhakar 3 Y. Zhang et al. INTERPRETING SONG LYRICS WITH AN AUDIO-INFORMED PRE-TRAINED LANGUAGE MODEL. ISMIR 2022

Rajiv lethoe 4 C. Hawthorne et al. SEQUENCE-TO-SEQUENCE PIANO TRANSCRIPTION WITH TRANSFORMERS. ISMIR 2021.

Rob Maourits 4 D. Regnier et al. IDENTIFICATION OF RHYTHM GUITAR SECTIONS IN SYMBOLIC TABLATURES. ISMIR 2021

Romme Knol 4 5. Grimm et al. Wind noise reduction for a closely spaced microphone array in a car envirenment. EURASIP 2018.

Roos Wensveen 4 H. Schweiger et al. DOES TRACK SEQUENCE IN USER-GEMERATED PLAYLISTS MATTER? ISMIR 2021.

ROUQIONC CLI 4 C. Hawthorne et al. SEQUENCE-TO-SEQUENCE PIANO TRANSCRIPTION WITH TRANSFORMERS. ISMIR 2021.

Sarah Howes 4 M. Ryynanen et al. QUERY BY HUMMING OF MIDI AND AUDIO USING LOCALITY SENSITIVE HASHING. Yoot

Setki Fejsko 4 R. Castellon et al. CODIFIED AUDIO LANGUAGE MODELING LEARNS USEFUL REPRESENTATIONS FOR MUSIC INFORMATION RETRIEVAL. ISMIR 2021.
Shuang Fan 4 C.-C. Chiu et al. Self-Supenised Learning with Random-Projection Quantizer for Speech Recognition. PMLR 2022

Shupei Lin 5 1. Kim et al. Conditional Variaticnal Autcencoder with Adversarial Learning for End-to-End Text-to-Speech. PMLR 2021,

Siwen Tu 5 L. Pretet et al. 15 THERE A "LANGUAGE OF MUSIC-VIDEQ CLIPS" ? A QUALITATIVE AND QGUANTITATIVE STUDY. ISMIR 2021.

Sjors Holtrop 5 X. Liu et al. Speaker-Aware Anti-Spoofing. Interspeech 2023,

Swati Soni 5 C-H. Chen at al. LANGUAGE TRANSFER OF AUDIO WORD2VEC: LEARNING AUDIO SEGMENT REPRESENTATIONS WITHOUT TARGET LANGUAGE DATA. Xiom
Tian Xia 5 1. Shriram et al. SONUS TEXERE! AUTOMATED DENSE SOUNDTRACK CONSTRUCTION FOR BOOKS USING MOVIE ADAPTATIONS. ISMIR 2022.

Wenhu Li 5 R.M. Bittner et al. A LIGHTWEIGHT INSTRUMENT-AGNOSTIC MODEL FOR POLYPHONIC NOTE TRANSCRIPTION AND MULTIPITCH ESTIMATION. ICASSP 2022,
Wouter Ebing 5 Y. Getman et al. wav2vec2-based Speech Rating System for Children with Speech Sound Disorder. Interspeech 2022,

Xiang He 5 A C.Mendes da Silva et al. HETEROGENEOQUS GRAPH NEURAL NETWORK FOR MUSIC EMOTION RECOGNITION. ISMIR 2022

Xiaolin  Gu 5 G. Shibata et al. MUSIC STRUCTURE ANALYSIS BASED ON AM LSTM-HSMM HYBRID MODEL. ISMIR 2020.

Chris Tsirogiannis 5 A Raford et al. Robust Speech Recognition via Large-Scale Weak Supervision. ¥ooc

Abed Alrahman Hettini 5 A Badi et al. SKYE: More than a conversational Al. Interspeech 2022,

62



	Slide 1: Audio Features & Machine Learning
	Slide 2: Features for Speech Recognition and Audio Indexing
	Slide 3: Features for Speech Recognition and Audio Indexing
	Slide 4: Features for Speech Recognition and Audio Indexing
	Slide 5
	Slide 6: Features for Speech Recognition and Audio Indexing
	Slide 7: Features for Speech Recognition and Audio Indexing
	Slide 8: Short Time Fourier Transform Short Hamming Window:           50 samples (=5msec)
	Slide 9: Short Time Fourier Transform Long Hamming Window:         500 samples (=50msec)
	Slide 10: Short Time Fourier Transform Short Hamming Window:           50 samples (=5msec)
	Slide 11: Short Time Fourier Transform Long Hamming Window:         500 samples (=50msec)
	Slide 12: Band Pass Filter
	Slide 13: Bank of Filters Analysis Model
	Slide 14: Mel-Cepstrum [4]
	Slide 15: MFCCs 
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Machine Learning Methods
	Slide 21: Vector Quantization
	Slide 22: Vector Quantization
	Slide 23: Vector Quantization 
	Slide 24: VQ for Classification
	Slide 25: Support Vector Machines
	Slide 26: Support Vector Machine (SVM)
	Slide 27: Support Vector Machine (SVM)
	Slide 28: Support Vector Machine (SVM)
	Slide 29: Support Vector Machine (SVM)
	Slide 30: Support Vector Machine (SVM)
	Slide 31: Audio Classification using Neural Networks
	Slide 32: Digits
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Some Neural Networks
	Slide 37: DNN: AlexNet, VGG16, ResNet, etc.
	Slide 38: ImageNet 
	Slide 39: AlexNet Visualization
	Slide 40: Cats and Dogs
	Slide 41: Cats and Dogs
	Slide 42: Cats and Dogs
	Slide 43: VGG16  Feature Extraction
	Slide 44: VGG16  Feature Extraction + Data Augmentation
	Slide 45: Cats and Dogs
	Slide 46: CNN’s for AUDIO Classification
	Slide 47: CNN Architecture
	Slide 48: CNN defined in TF.Keras
	Slide 49: Training, Test and Validation Datasets
	Slide 50: Digits
	Slide 51: Digits
	Slide 52: Genre Classification: MusicRecNet (Elbir et al., 2020)
	Slide 53: Genre Classification Benchmarks GTZAN and FMA 
	Slide 54: Genre Classification Benchmarks GTZAN and FMA 
	Slide 55: C. Wu et al. Transformer-based Acoustic Modeling for Streaming Speech Synthesis, INTERSPEECH 2021
	Slide 56: C. Wu et al. Transformer-based Acoustic Modeling for Streaming Speech Synthesis, INTERSPEECH 2021
	Slide 57: C. Wu et al. Transformer-based Acoustic Modeling for Streaming Speech Synthesis, INTERSPEECH 2021
	Slide 58: J. Li, Recent Advances in End-to-End Automatic Speech Recognition.  APSIPA TranS. on Sig. & Inf. Processing, 2022.
	Slide 59: End-to-End ASR Architectures
	Slide 60: References
	Slide 61: References
	Slide 62

