AUDIO FEATURES & MACHINE LEARNING

E.M. Bakker

API2023

FEATURES FOR SPEECH RECOGNITION AND AUDIO INDEXING

- Parametric Representations
 - Short Time Energy
 - Zero Crossing Rates
 - Level Crossing Rates
 - Short Time Spectral Envelope
- Spectral Analysis
 - Filter Design
 - Filter Bank Spectral Analysis Model
 - Linear Predictive Coding (LPC)
 - MFCCs

FEATURES FOR SPEECH RECOGNITION AND AUDIO INDEXING

- Parametric Representations
 - Short Time Energy
 - Zero Crossing Rates
 - Level Crossing Rates

Example: Speech of length 0.01 sec.

FEATURES FOR SPEECH RECOGNITION AND AUDIO INDEXING

Spectral Analysis

- Fourier Transform
- Filter Design
- Filter Bank Spectral Analysis Model
- Linear Predictive Coding (LPC)
 Speech signal at time n = s(n) ≈ a₁ s(n-1) + a₂ s(n-2) + ... a₂ s(n-p)
 Estimate a₁ a₂ by autocorrelation, or solving LPC analysis equations from a covariance matrix form.
- MFCCs

- Spectral Analysis using Discrete Short Time Fourier Transform
 - Frame of samples => frequency bins
 - Each bin corresponds to one frequency
 - => Spectral leakage

SHORT TIME FOURIER TRANSFORM SHORT HAMMING WINDOW: 50 SAMPLES (=5MSEC)

Figure 3.12 Short-time Fourier transform using a short (50 points or 5 msec) Hamming window on a section of voiced speech.

From: Rabiner et al.

Short Window

- Poor frequency resolution
- No resolved harmonics
- Good estimate of the overall spectral shape

SHORT TIME FOURIER TRANSFORM LONG HAMMING WINDOW: 500 SAMPLES (=50MSEC)

Hamming window on a section of voiced speech.

From: Rabiner et al.

Long Window

- Good frequency resolution
- Resolved harmonics
- Rough estimate of the overall spectral shape

Lower frequencies

SHORT TIME FOURIER TRANSFORM SHORT HAMMING WINDOW: 50 SAMPLES (=5MSEC)

ming window on a section of unvoiced speech.

From: Rabiner et al.

Short Window

- Poor frequency resolution
- No resolved harmonics
- Good estimate of the overall spectral shape

SHORT TIME FOURIER TRANSFORM LONG HAMMING WINDOW: 500 SAMPLES (=50MSEC)

Hamming window on a section of unvoiced speech.

From: Rabiner et al.

Long Window

- Good frequency resolution
- Resolved harmonics
- Rough estimate of the overall spectral shape

Higher frequencies

BAND PASS FILTER

Note that the band pass filter can be defined as:

- a convolution with a filter response function h(t) in the time domain
- a multiplication with a filter response
 H(f) function in the frequency domain

$$s * h (t) = \int_{-\infty}^{\infty} s(\tau)h(t-\tau)d\tau \leftrightarrow S(f) \cdot H(f)$$

$$s * h (t) = \sum_{\tau} s(\tau)h(t-\tau) \leftrightarrow S(t) \cdot H(t)$$
 (discrete)

Bark Scale Mel Scale Center Center Freq. BWBWFreq. Index (Hz) (Hz) (Hz) (Hz)

BANK OF FILTERS ANALYSIS MODEL

MEL-CEPSTRUM [4]

Auditory characteristics

Mel-scaled filter banks

De-correlating properties

- by applying a discrete cosine transform (which is close to a Karhunen-Loeve transform) a de-correlation of the mel-scale filter log-energies results
- => probabilistic modeling on these de-correlated coefficients will be more effective.

One of the most successful features for speech recognition, speaker recognition, and other speech related recognition tasks.

[1, pp 712-717]

Automatic Speech Recognition Architectures Incorporating Multiple Knowledge Sources

- The signal is converted to a sequence of feature vectors (spectral and temporal).
- Acoustic models represent sub-word units, such as phonemes: finite-state machine models spectral structure and temporal structure.
- The language model predicts the next set of words, and controls which models are hypothesized. (N-grams)
- Search to find the most probable word sequence.

Acoustic Modeling Hidden Markov Models

18

- Acoustic models: temporal evolution of the features (spectrum).
- Gaussian mixture distributions for variations in speaker, accent, and pronunciation.
- Phonetic model topologies are simple left-to-right structures.
- Skip states (time-warping) and multiple paths (alternate pronunciations).
- Sharing model parameters to reduce complexity.

Acoustic Modeling Parameter Estimation

19

- Word level transcription
- Supervises a closed-loop data-driven modeling
- Initial parameter estimation
- The expectation/maximization (EM) algorithm is used to improve our parameter estimates.
- Computationally efficient training algorithms (Forward-Backward) are crucial.
- Batch mode parameter updates are typically preferred.
- Decision trees and the use of additional linguistic knowledge are used to optimize parameter-sharing, and system complexity,.

MACHINE LEARNING METHODS

- k Nearest Neighbors
- Decision Trees
- Random Forests (weighted neighborhoods scheme)
- Gradient Boosting Machines (e.g. boosting of prediction model ensembles)
- Vector Quantization
 - Finite code book of spectral shapes
 - The code book codes for 'typical' spectral shape
 - Method for all spectral representations (e.g. Filter Banks, LPC, ZCR, etc. ...)
- Support Vector Machines
- Markov Models
- Hidden Markov Models
- Neural Networks Etc.

VECTOR QUANTIZATION

- Data represented as feature vectors.
- Vector Quantization (VQ) Training set => determine a set of code words that constitute a code book.
- Code words are centroids using a similarity or distance measure d.
- Code words together with measure d divide the space into Voronoi regions.
- A query vector falls into a Voronoi region and will be represented by the respective code word.

[2, pp. 466 – 467]

VECTOR QUANTIZATION

Distance measures d(x,y):

- Euclidean distance
- Taxi cab distance
- Hamming distance
- etc.

VECTOR QUANTIZATION

Let a training set of L vectors be given for a certain class of objects.

Assume a codebook of M code words is wanted for this class.

Initialize:

- choose M arbitrary vectors of the L vectors of the training set.
- This is the initial code book.

Nearest Neighbor Search:

• for each training vector v, find the code word w in the current code book that is closest and assign v to the corresponding cell of w.

Centroid Update:

- For each cell with code word w determine the centroid c of the training vectors that are assigned to the cell of w.
- Update the code word w with the new vector c.

Iteration:

 repeat the steps Nearest Neighbor Search and Centroid Update until the average distance between the new and previous code words falls below a preset threshold.

VQ FOR CLASSIFICATION

A code book $\overline{CB_k} = \{y_i^k \mid 1 \le i \le M\}$, can be used to define a class C_k .

Example Audio Classification:

- Classes 'crowd', 'car', 'silence', 'scream', 'explosion', etc.
- Determine by using VQ code books CB_k for each of the respective classes C_k .
- VQ is very often used as a baseline method for classification problems.

- A generalization of linear decision boundaries for classification.
- Necessary when classes overlap when using linear decision boundaries (non separable classes).

Find hyper plane P: $x^T\beta + \beta_0 = 0$, such that $\|\beta\|$ is minimized over $\begin{cases} y_i(x_i^T\beta + \beta_0) \geq 1 - \varepsilon_i \ \forall i \\ \varepsilon_i \geq 0, \ \sum \varepsilon_i \leq constant \end{cases}$ => Margin C = $\frac{1}{\|\beta\|}$ is maximized.

From: [2]

Where $(x_1,y_1), \ldots (x_N,y_N)$ are our training pairs, with $x_i \in \mathbb{R}^p$ and $y_i \in \{-1,1\}$,

 $\varepsilon = (\varepsilon_1 , \varepsilon_2 , ..., \varepsilon_N)$ are the slack variables, i.e.,

 ε_i = the amount that x_i is on the wrong side of the margin $C = \frac{1}{\|\beta\|}$ from the hyper plane P.

i.e. C is maximized.

=> Problem is quadratic with linear inequalities constraint.

[2, pp 377-389]

In this method so called support vectors define decision boundaries for classification and regression.

An example where a straight line separates the two Classes: a linear classifier

Images from: www.statsoft.com.

In general classification is not that simple.

SVM is a method that can handle the more complex cases where the decision boundary requires a curve.

SVM uses a set of mapping functions (kernels) to map the feature space into a transformed space so that hyperplanes can be used for the classification.

SVM uses a set of mapping functions (kernels) to map the feature space into a transformed space so that hyperplanes can be used for the classification.

Training of an SVM is an iterative process:

- optimize the mapping function while minimizing an error function
- The error function should capture the penalties for misclassified, i.e., non separable data points.

SVM uses kernels that define the mapping function used in the method. Kernels can be:

- Linear
- Polynomial
- RBF
- Sigmoid
- Etc.

- RBF (radial basis function) is the most popular kernel, again with different possible base functions.
- NB The final choice depends on characteristics of the classification task.

AUDIO CLASSIFICATION USING NEURAL NETWORKS

An example by Rishi Sidhu:

https://medium.com/x8-the-ai-community/audioclassification-using-cnn-coding-example-f9cbd272269e

Using data from the **Spoken Digit Dataset** by Zohar Jackson: https://github.com/Jakobovski/free-spoken-digit-dataset

Using Convolutional Neural Networks on Spectrograms.

API

Some Neural Networks

Feed Forward Neural Network

Recurrent Neural Network

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffrey E. "ImageNet classification with deep convolutional neural networks" Communications of the ACM. 60 (6): 84–90.

ImageNet

• AlexNet (~2011; 2015 58.9 %)

• VGG-16 (2015, 74.4%)

• ResNet-152 (2015, 78.57%)

• EfficientNetV2B0 (2021, 83.9%)

https://paperswithcode.com/sota/image-classification-on-imagenet

Deep Visualization Toolbox

yosinski.com/deepvis

#deepvis

Jason Yosinski

Jeff Clune

Anh Nguyen

Thomas Fuchs

Hod Lipson

Cats and Dogs

Kaggle Dataset (https://www.kaggle.com/c/dogs-vs-cats/data)

- 2000 images of cats
- 2000 images of dogs

• Given an image: is it a cat or a dog?

Divide into:

• Training set (2000 images)

• Validation set (1000 images)

• Test set (1000 images)

Cats and Dogs

Convolutional Neural Network

• Without any regularization: ~71% accuracy

• With data augmentation: ~82% accuracy

• Feature extraction using a pre-trained NN: ~90% accuracy

• Fine tuning a pre-trained NN: ~95% accuracy

These are examples of Deep Learning with Small Datasets.

CNN'S FOR AUDIO CLASSIFICATION

- Both images can be used to recognize the spoken digit.
- The spectrogram yields better accuracy for the tests.
- How would you perform data augmentation?

CNN DEFINED IN TF.KERAS

```
#Define Model
model = Sequential()
model.add(Conv2D(32, kernel size=(3, 3), activation='relu', input shape=input shape))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
#Compile
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.adam(), metrics=['accuracy'])
print(model.summary())
#Train and Test The Model
model.fit(x_train, y_train, batch_size=4, epochs=10, verbose=1, validation_data=(x_test,
y_test))
                                                                                       API
```

TRAINING, TEST AND VALIDATION DATASETS

Training Data

- 1800 Images of Spectrograms: 34x50 pixels
- Each image is labeled with the correct digit

Validation Data

- 200 Images of Spectrograms: 34x50 pixels
- Each image is labeled with the correct digit
- Exclusive speaker(s)

Test Data

- 200 Images of Spectrograms: 34x50 pixels
- Each image is labeled with the correct digit
- Exclusive speaker(s)

Genre Classification: MusicRecNet (Elbir et al., 2020)

 $\label{thm:continuous} \mbox{Visualization of the MusicRecNet} \quad \mbox{architecture. Output genres are either defined by using softmax probability scores or the SVM classifier.}$

Genre Classification Benchmarks GTZAN and FMA

Dataset	GTZAN	FMA8	$FMA_{-}14$	FMA medium
Number of songs per genre	100	1000	100	21-7103
Total number of songs	1000	8000	1400	25000

Model	GTZAN Accuracy			
Zhang et al. [11]	87.4%			
Liu et al. [12]	93.9%			
Elbir, A & Aydin, N. [1]	81.8%			
Elbir, A & Aydin, N. with SVM [1]	97.6%			
Our Baseline Implementation	81.0%			
Our Baseline Implementation + SVM	81.6%			

Genre Classification Benchmarks GTZAN and FMA

Dataset	GTZAN		FMA_{-8}	FMA_14		FMA medium		
Number of songs per genre	100		1000	100		21-7103		
Total number of songs	1000		8000	1400	25000			
Dataset	GTZAN	GT	ZAN 224	FMA_8	FM	[A_8 224	FMA_14	
Method								
Baseline	81.0			68.6			42.0	
Baseline-SVM-Output	81.5			70.7			42.0	
Baseline-SVM-D128	81.6			72.1			42.6	
VGG	73.1			53.4			53.6	
VGG-SVM-Output	73.0			53.9			53.6	
VGG-SVM-D128	76.5			54.4			54.8	
VGG-FT	81.6			60.7			57.3	
VGG-SVM-Output-FT	81.6			61.0			57.3	
VGG-SVM-D128-FT	83.0			61.2			56.9	
EfficientNet	80.0		82.1	59.6		62.0	56.8	
EfficientNet-SVM-Output	80.6		82.5	60.5		63.0	56.5	
EfficientNet-SVM-D128	83.0		87.5	61.4		63.1	60.8	
EfficientNet-FT	90.0		90.5	76.9		73.8	60.4	
${\bf Efficient Net \hbox{-} SVM\hbox{-} Output\hbox{-} FT}$	89.8		90.5	76.8		73.7	60.4	
EfficientNet-SVM-D128-FT	90.3		90.8	77.4		73.9	61.1	

C. Wu et al. Transformer-based Acoustic Modeling for Streaming Speech Synthesis, INTERSPEECH 2021

https://transformer-tts-accousticmodel.github.io/samples/

Tacotron2 uses Bi-directional Long Shortterm Memory (BLSTM) recurrent networks.

- cannot effectively model long-term dependencies
- a poor quality on long speech.

FastSpeech state-of-the-art

- in modeling speech prosody and spectral features, but
- computation is parallel over the full utterance context.

C. Wu et al. Transformer-based Acoustic Modeling for Streaming Speech Synthesis, INTERSPEECH 2021

TTS systems usually consist of two stages:

- acoustic model that predicts the prosody and spectral features
- followed by a neural vocoder that generates the audio
- waveform.

Tranformer models:

- · model long-term dependencies
- · Complexity grows quadratically

This work

- Effcient constant speed implementation: for streaming speech synthesis
- uses a transformer network that predicts the prosody features at phone rate
- an Emformer network to predict the frame-rate spectral features (streaming)
- WaveRNN Vocoder used

https://transformer-tts-accoustic-model.github.io/samples/

C. Wu et al. Transformer-based Acoustic Modeling for Streaming Speech Synthesis, INTERSPEECH 2021

baseline

TTS systems usually consist of two stages:

- acoustic model that predicts the prosody and spectral features
- followed by a neural vocoder that generates the audio Real-Time Factor
- · waveform.

Tranformer models:

- model long-term dependencies
- Complexity grows quadratically

0.3 0.2 0.09 0.08 30s 10s 60s 1s 5s

* transformer

emformer (ours)

Audio Length [seconds]

Mean Opinion Scores (1-5) from 400 participants

System	Prosody	Spectrum	Normal	Long	
Groundtruth	_	_	4.307 ± 0.037	4.360 ± 0.044	
Baseline [11]	BLSTM with self-attention [26]	Multi-rate attention [11]	4.173 ± 0.042	4.019 ± 0.055	
Ours-1	Transformer	Multi-rate attention	4.174 ± 0.042	4.107 ± 0.052	
Ours-2	BLSTM with self-attention	Emformer with multi-rate attention	4.192 ± 0.041	4.034 ± 0.053	
Ours-3 (best)	Transformer	Emformer with multi-rate attention	4.213 ± 0.042	4.201 ± 0.048	

https://transformer-tts-accoustic-model.github.io/samples/

J. Li, Recent Advances in End-to-End Automatic Speech Recognition.

APSIPA TranS. on Sig. & Inf. Processing, 2022.

- Hybrid ASR Systems
 - traditional architecture with DNN's replacing Gaussian modelling.
- End-to-End (E2E) ASR System
 - One single network from input speech to a token sequence
 - uses one single objective function for optimizing the whole model
 - More simple ASR Pipeline
 - More compact models
- E2e Achieve state-of-the-art results on most benchmarks, but:
 - Hybrid models still used in large portion of commercial ASR Systems
 - Practical factors:
 - Streaming
 - Latency
 - Speaker and Language domain adaption (current main research focus)
 - Etc.
 - These challenges are being addressed in current E2E ASR systems research

58

REFERENCES

- 1. T.F. Quatieri, Discrete-Time Speech Signal Processing, Principles and Practice, Prentice-Hall, Inc. 2002.
- 2. T. Hastc, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Data Mining, Inference, and Prediction, Springer, 2001.
- 3. W.H. Press, S.A.Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipies in C++, The Art of Scientific Computing, 2nd Edition, Cambridge University Press, 2002.
- 4. S.B. Davies, P. Mermelstein, Comparison of Parametric Representations for Monosyllabic Word Recognition in Continuously Spoken Sentences, IEEE Trans. Acoustics, Speech, and Signal Processing, vol. ASSP-28, no.4, pp. 357-366, Aug. 1980.

REFERENCES

5. P. Kenny, "Joint Factor Analysis of Speaker and Session Variability: Theory and Algorithms, Tech. Report CRIM-06/08-13," 2005.

Available: http://www.crim.ca/perso/patrick.kenny

- 6. N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, "Frontend factor analysis for speaker verification," IEEE Trans. Audio, Speech, Lang. Process., vol. 19, no. 4, pp. 788–798, May 2011.
- 7. François Chollet, Deep Learning with Python, Manning Publications, November 2017.

Name	Family	Session	Title
Amber	Zitman	1	F. Lieb et al. Audio inpainting - Evaluation of time-frequency representations and structured sparsity approaches. Signal Processing, 2018.
Inca	Matei	1	H. Rump et al. AUTOREGRESSIVE MFCC MODELS FOR GENRE CLASSIFICATION IMPROVED BY HARMONIC-PERCUSSION SEPARATION. ISMIR 2010.
Indrei	Mestani	1	S. Rau et al. VISUALIZATION FOR AI-ASSISTED COMPOSING, ISMIR 2022.
nna	Perry	1	F. Nadeem, LEARNING FROM MUSICAL FEEDBACK WITH SONIC THE HEDGEHOG. SMIR2021.
nthonie	Schaap	1	F. Foscarin et al. CONCEPT-BASED TECHNIQUES FOR "MUSICOLOGIST-FRIENDLY" EXPLANATIONS IN A DEEP MUSIC CLASSIFIER. ISMIR 2022
ingxin	Wang	1	M. Won et al. SEMI-SUPERVISED MUSIC TAGGING TRANSFORMER. ISMIR 2021.
arla	Staicu	1	C. Hawthorne et al. SEQUENCE-TO-SEQUENCE PIANO TRANSCRIPTION WITH TRANSFORMERS. ISMIR 2021.
henyu	Shi	1	CS. Ahn et al. Recurrent multi-head attention fusion network for combining audio and text for speech emotion recognition. Interspeech 2022.
avid	Lin	2	C. Hawthorne et al. SEQUENCE-TO-SEQUENCE PIANO TRANSCRIPTION WITH TRANSFORMERS. ISMIR 2021.
)on	SHI	2	G. Liu et al. Speech emotion recognition based on emotion perception. EURASIP 2023.
eorge	Doukeris	2	A. Akman et al. Evaluating the COVID-19 Identification ResNet on the INTERSPEECH COVID-19 From Audio Challenges. Frontiers in Digital Health 20
Guilem Ca	Ruesga	2	A. Jansson et al. Singing voice separation with deep U-Net Convolutional Betworks. ISMIR 2017.
	Jiang	2	Y. Ozer et al. SOURCE SEPARATION OF PIANO CONCERTOS WITH TEST-TIME ADAPTATION. ISMIR 2022.
ieuwe	Rooijakkers	2	T. de Reuse et al. A TRANSFORMER-BASED "SPELLCHECKER" FOR DETECTING ERRORS IN OMR OUTPUT. ISMIR 2022.
illy	Kientz	2	D. Steele et al. A perceptual study of sound annoyance. Audio Mostly 2007.
uc	Schreurs	2	S. Garg et al. Mouth2Audio: intelligible audio synthesis from videos with distinctive vowel articulation. Int. Journal of Speech Technology, 2023.
ucas	Allison	3	J. Miller et al. POLAR MANHATTAN DISPLACEMENT: MEASURING TONAL DISTANCES BETWEEN CHORDS BASED ON INTERVALLIC CONTENT, ISMIR 2023.
atthiis	Zeeuw de	3	M. Giver et al. Score-Informed Source Separation of Choral Music. ISMIR 2020.
	Morales Rojas	3	O. Lesota et al. TRACES OF GLOBALIZATION IN ONLINE MUSIC CONSUMPTION PATTERNS AND RESULTS OF RECOMMENDATION ALGORITHMS. ISMIR 2022.
scar	Nebreda Bernal	3	M. Acosta et al. AN EXPLORATION OF GENERATING SHEET MUSIC IMAGES. ISMIR 2022.
	Ramakrishnan	3	Y. Zhang et al. INTERPRETING SONG LYRICS WITH AN AUDIO-INFORMED PRE-TRAINED LANGUAGE MODEL. ISMIR 2022.
eli	Evrenoglou	3	C.K.A. Reddy et al. MusicNet: Compact Convolutional Neural Network for Real-time Background Music Detection. Interspeech 2022.
im	Bax	3	C. Donahue et al. MELODY TRANSCRIPTION VIA GENERATIVE PRE-TRAINING. ISMIR 2022.
riva	Prabhakar	3	Y. Zhang et al. Interpreting song lyrics with an audio-informed pre-trained language model. Ismir 2022.
ajiv	Jethoe	4	C. Hawthorne et al. SEQUENCE-TO-SEQUENCE PIANO TRANSCRIPTION WITH TRANSFORMERS. ISMIR 2021.
ob	Mourits	4	D. Regnier et al. IDENTIFICATION OF RHYTHM GUITAR SECTIONS IN SYMBOLIC TABLATURES. ISMIR 2021.
omme	Knol	4	S. Grimm et al. Wind noise reduction for a closely spaced microphone array in a car environment. EURASIP 2018.
005	Wensveen	4	H. Schweiger et al. DOES TRACK SEQUENCE IN USER-GENERATED PLAYLISTS MATTER? ISMIR 2021.
OUQION		4	C. Hawthorne et al. SEQUENCE-TO-SEQUENCE PIANO TRANSCRIPTION WITH TRANSFORMERS. ISMIR 2021.
oodioiw arah	Howes	4	M. Rwnanen et al. QUERY BY HUMMING OF MIDI AND AUDIO USING LOCALITY SENSITIVE HASHING, XXXX
etki	Fejsko	4	R. Castellon et al. CODIFIED AUDIO LANGUAGE MODELING LEARNS USEFUL REPRESENTATIONS FOR MUSIC INFORMATION RETRIEVAL. ISMIR 2021.
	Fan	4	
huang hupei	ran Lin	5	CC. Chiu et al. Self-Supervised Learning with Random-Projection Quantizer for Speech Recognition. PMLR 2022. J. Kim et al. Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech. PMLR 2021.
nupei iwen	Tu	5	L. Pretet et al. IS THERE A "LANGUAGE OF MUSIC-VIDEO CLIPS" ? A QUALITATIVE AND QUANTITATIVE STUDY. ISMIR 2021.
jors	Holtrop	5	X. Liu et al. Speaker-Aware Anti-Spoofing. Interspeech 2023.
_{lors} wati	Soni	5	CH. Chen at al. LANGUAGE TRANSFER OF AUDIO WORD2VEC: LEARNING AUDIO SEGMENT REPRESENTATIONS WITHOUT TARGET LANGUAGE DATA. Xxxx
wati ian	Xia	5	
	xia Li	5	J. Shriram et al. Sonus Texere! Automated Dense Soundtrack Construction for Books using Movie Adaptations. Ismir 2022.
/enhu			R.M. Bittner et al. A LIGHTWEIGHT INSTRUMENT-AGNOSTIC MODEL FOR POLYPHONIC NOTE TRANSCRIPTION AND MULTIPITCH ESTIMATION. ICASSP 2022.
/outer	Ebing	5	Y. Getman et al. wav2vec2-based Speech Rating System for Children with Speech Sound Disorder. Interspeech 2022.
iang	He	5	A. C. Mendes da Silva et al. HETEROGENEOUS GRAPH NEURAL NETWORK FOR MUSIC EMOTION RECOGNITION. ISMIR 2022.
iaolin	Gu	5	G. Shibata et al. MUSIC STRUCTURE ANALYSIS BASED ON AN LSTM-HSMM HYBRID MODEL. ISMIR 2020.
hris	Tsirogiannis	5	A. Raford et al. Robust Speech Recognition via Large-Scale Weak Supervision. Xxxx
bed	Alrahman Hettini	5	A. Badi et al. SKYE: More than a conversational Al. Interspeech 2022.