Goal: Automatically extract the string of words spoken from the speech signal
Speech Recognition

Goal: Automatically extract the string of words spoken from the speech signal

Speech Signal → Speech Recognition → Words “How are you?”

How is SPEECH perceived? => Important Features

What LANGUAGE is spoken? => Language Model

Speech Recognition

Goal: Automatically extract the string of words spoken from the speech signal

Speech Signal → Speech Recognition → Words “How are you?”

What is in the BOX?

Important Components of General SR Architecture

- Speech Signals
- Signal Processing Functions
- Parameterization
- Acoustic Modeling (Learning Phase)
- Language Modeling (Learning Phase)
- Search Algorithms and Data Structures
- Evaluation
Recognition Architectures

A Communication Theoretic Approach

Observable: Message
Source Message

Linguistic Channel
Words Sounds Features

Articulatory Channel
Acoustic Channel

Message
Source

Speech Recognition Problem: \(P(W|A) \), where \(A \) is acoustic signal, \(W \) words spoken

Objective: minimize the word error rate during training

Approach: maximize \(P(W|A) \) during training

Bayesian formulation for speech recognition:

\[
P(W|A) = \frac{P(A|W)P(W)}{P(A)}
\]

\(A \) is acoustic signal, \(W \) words spoken

Components:

- \(P(A|W) \): acoustic model (hidden Markov models, mixtures)
- \(P(W) \): language model (statistical, finite state networks, etc.)

The language model typically predicts a small set of next words based on knowledge of a finite number of previous words (N-grams).

Recognition Architectures

ASR Architecture

Common BaseClasses
Configuration and Specification

Speech Database, I/O

Feature Extraction

Recognition: Searching Strategies

Evaluators

Signal Processing Functionality

- Acoustic Transducers
- Sampling and Resampling
- Temporal Analysis
- Frequency Domain Analysis
- Cepstral Analysis
- Linear Prediction and LP-Based Representations
- Spectral Normalization
Acoustic Modeling: Feature Extraction

- Incorporate knowledge of the nature of speech sounds in measurement of the features.
- Utilize rudimentary models of human perception.
- Measure features 100 times per sec.
- Use a 25 msec window for frequency domain analysis.
- Include absolute energy and 12 spectral measurements.
- Time derivatives to model spectral change.

Acoustic Modeling

- Dynamic Programming
- Markov Models
- Parameter Estimation
- HMM Training
- Continuous Mixtures
- Decision Trees
- Limitations and Practical Issues of HMM

Acoustic Modeling: Feature Extraction

Input Speech → Fourier Transform → Cepstral Analysis → Perceptual Weighting

- Mel-Spaced Cepstrum
- Delta Energy
- Delta Cepstrum
- Delta-Delta Energy
- Delta-Delta Cepstrum

Acoustic Modeling: Parameter Estimation

- Initialization
- Single Gaussian Estimation
- 2-Way Split
- Mixture Distribution
- Reestimation
- 4-Way Split
- Reestimation

Acoustic Modeling: Hidden Markov Models

- Acoustic models encode the temporal evolution of the features (spectrum).
- Gaussian mixture distributions are used to account for variations in speaker, accent, and pronunciation.
- Phonetic model topologies are simple left-to-right structures.
- Skip states (time-warping) and multiple paths (alternate pronunciations) are also common features of models.
- Sharing model parameters is a common strategy to reduce complexity.
Language Modeling

- Formal Language Theory
- Context-Free Grammars
- N-Gram Models and Complexity
- Smoothing

Language Modeling: N-Grams

Unigrams (SWB):
- Most Common: "I", "and", "the", "you", "a"
- Rank-100: "she", "an", "going"

Bigrams (SWB):
- Most Common: "you know", "yeah SENT!", "SENT um-hum", "I think"
- Rank-100: "do it", "that we", "don't think"
- Least Common: "raw fish", "moisture content", "Reagan Bush"

Trigrams (SWB):
- Most Common: "ISEN'T um-hum SENT!", "a lot of", "I don't know"
- Rank-100: "it was a", "you know that"
- Least Common: "you have parents", "you seen Brooklyn"

LM: Integration of Natural Language

- Natural language constraints can be easily incorporated.
- Lack of punctuation and search space size pose problems.
- Speech recognition typically produces a word-level time-aligned annotation.
- Time alignments for other levels of information also available.
Search Algorithms and Data Structures

- Basic Search Algorithms
- Time Synchronous Search
- Stack Decoding
- Lexical Trees
- Efficient Trees

Dynamic Programming-Based Search

- Dynamic programming is used to find the most probable path through the network.
- Beam search is used to control resources.

- Search is time synchronous and left-to-right.
- Arbitrary amounts of silence must be permitted between each word.
- Words are hypothesized many times with different start/stop times, which significantly increases search complexity.

Recognition Architectures

- The signal is converted to a sequence of feature vectors based on spectral and temporal measurements.
- Acoustic models represent sub-word units, such as phonemes, as a finite-state machine in which:
 - states model spectral structure and transitions model temporal structure.
- The language model predicts the next set of words, and controls which models are hypothesized.
- Search is crucial to the system, since many combinations of words must be investigated to find the most probable word sequence.