EXAM THEORY OF CONCURRENCY

Friday 1 June, 10.00 - 13.00

Answers may be given in Dutch or in English. This exam consists of 7 questions.

Question 1. Consider the following EN system $M = (P, T, F, C_{in})$:

- (a) Give SCG(M).
- (b) Give CG(M).
- (c) When do we call an EN system T-simpel? Is our example EN system M T-simpel?
- (d) Let $C, D \in \mathbb{C}_M$ and let $U \subseteq T$, such that $C[U\rangle D$.

Is it always (i.e., for all $C, D \in \mathbb{C}_M$) possible to determine U, once C and D are known? Explain your answer.

(e) Let $C \in \mathbb{C}_M$ and let $t_1, t_2 \in T$. When do we call the triple (C, t_1, t_2) a confusion?

Give all confusions of M. Explain how you come to your answer.

(f) Which confusion(s) of *M* is/are conflict-increasing and which is/are conflict-decreasing? Explain your answer.

Question 2. Consider the following EN system $M = (P, T, F, C_{in})$:

- (a) How does one (in general) verify whether a subset S of P determines a subsystem of M?
- (b) Which subsets S of P determine a subsystem of our example EN system M?
- (c) Describe a procedure that, given an arbitrary EN system M, yields a situation equivalent EN system M' that is covered by sequential components.
- (d) Is our example EN system M covered by sequential components?

If so, then give a covering of M by sequential components. If not, then use the procedure from part (c) to construct a situation equivalent EN system M' that is covered by sequential components.

Question 3. Let N = (P, T, F) be a process net, and let $U \subseteq T$. Prove that if U is a **co**-clique, then so is ${}^{\bullet}U$.

Question 4. Give an example of an EN system M and a process N of M such that $\mathbf{pru}(\mathbf{ctr}(N)) \neq \mathbf{ctr}(N)$.

Question 5. Consider the EN system $M = (P, T, F, C_{in})$ from question 1.

- (a) When do we call an EN system contact-free? Show that M is contact-free.
- (b) Give Ind(M). Explain how you come to your answer.
- (c) Use $\operatorname{Ind}(M)$ to show that $t_1t_4t_3t_1t_5t_4 \approx_{\operatorname{Ind}(M)} t_3t_1t_4t_1t_4t_5$.
- (d) Give $\operatorname{dep}_M(x)$ for $x = t_1 t_4 t_3 t_1 t_5 t_4$.
- (e) Give $\mathbf{pru}(\mathbf{dep}_M(x))$ for $x = t_1 t_4 t_3 t_1 t_5 t_4$.
- (f) Give six elements of words($\mathbf{pru}(\mathbf{dep}_M(x))$) for $x = t_1t_4t_3t_1t_5t_4$. How many elements has words($\mathbf{pru}(\mathbf{dep}_M(x))$) for $x = t_1t_4t_3t_1t_5t_4$? Explain your answer.

Question 6 and 7. on reverse side.

Question 6.

(a) Prove the following result:

Let M be a P/T system and let i be a positive p-invariant of M. For all $p \in P_M$, if i(p) > 0, then p is bounded.

(b) Demonstrate that the result from part (a) cannot be reversed, i.e., give an example of a P/T system and a place p that is bounded but for which there does not exist a positive p-invariant i with i(p) > 0.

Question 7. Consider the following P/T system $M = (P, T, F, W, C_{in})$:

- (a) Determine the p-invariants of M.
- (b) Is M bounded? Explain your answer.
- (c) When do we call a P/T system free-choice? Is M free-choice?
- (d) Is M live? Explain your answer.

