EXAM THEORY OF CONCURRENCY

Friday 1 June, 10.00-13.00
Answers may be given in Dutch or in English. This exam consists of 7 questions.

Question 1. Consider the following EN system $M=\left(P, T, F, C_{\text {in }}\right)$:

(a) Give $\operatorname{SCG}(M)$.
(b) Give $\operatorname{CG}(M)$.
(c) When do we call an EN system T-simpel? Is our example EN system M T-simpel?
(d) Let $C, D \in \mathbb{C}_{M}$ and let $U \subseteq T$, such that $C[U\rangle D$.

Is it always (i.e., for all $C, D \in \mathbb{C}_{M}$) possible to determine U, once C and D are known? Explain your answer.
(e) Let $C \in \mathbb{C}_{M}$ and let $t_{1}, t_{2} \in T$. When do we call the triple $\left(C, t_{1}, t_{2}\right)$ a confusion?
Give all confusions of M. Explain how you come to your answer.
(f) Which confusion(s) of M is/are conflict-increasing and which is/are conflictdecreasing? Explain your answer.

Question 2. Consider the following EN system $M=\left(P, T, F, C_{\text {in }}\right)$:

(a) How does one (in general) verify whether a subset S of P determines a subsystem of M ?
(b) Which subsets S of P determine a subsystem of our example EN system M?
(c) Describe a procedure that, given an arbitrary EN system M, yields a situation equivalent EN system M^{\prime} that is covered by sequential components.
(d) Is our example EN system M covered by sequential components?

If so, then give a covering of M by sequential components. If not, then use the procedure from part (c) to construct a situation equivalent EN system M^{\prime} that is covered by sequential components.

Question 3. Let $N=(P, T, F)$ be a process net, and let $U \subseteq T$. Prove that if U is a co-clique, then so is ${ }^{\bullet} U$.
Question 4. Give an example of an EN system M and a process N of M such that $\mathbf{p r u}(\boldsymbol{\operatorname { c t r }}(N)) \neq \boldsymbol{\operatorname { c t r }}(N)$.

Question 5. Consider the EN system $M=\left(P, T, F, C_{\text {in }}\right)$ from question 1.
(a) When do we call an EN system contact-free? Show that M is contact-free.
(b) Give $\operatorname{Ind}(M)$. Explain how you come to your answer.
(c) Use $\operatorname{Ind}(M)$ to show that $t_{1} t_{4} t_{3} t_{1} t_{5} t_{4} \approx_{\operatorname{Ind}(M)} t_{3} t_{1} t_{4} t_{1} t_{4} t_{5}$.
(d) Give $\operatorname{dep}_{M}(x)$ for $x=t_{1} t_{4} t_{3} t_{1} t_{5} t_{4}$.
(e) Give $\mathbf{p r u}\left(\operatorname{dep}_{M}(x)\right)$ for $x=t_{1} t_{4} t_{3} t_{1} t_{5} t_{4}$.
(f) Give six elements of $\operatorname{words}\left(\mathbf{p r u}\left(\operatorname{dep}_{M}(x)\right)\right)$ for $x=t_{1} t_{4} t_{3} t_{1} t_{5} t_{4}$.

How many elements has words $\left(\mathbf{p r u}\left(\operatorname{dep}_{M}(x)\right)\right)$ for $x=t_{1} t_{4} t_{3} t_{1} t_{5} t_{4}$? Explain your answer.

Question 6 and 7. on reverse side.

Question 6.

(a) Prove the following result:

Let M be a P / T system and let i be a positive p-invariant of M. For all $p \in P_{M}$, if $i(p)>0$, then p is bounded.
(b) Demonstrate that the result from part (a) cannot be reversed, i.e., give an example of a P / T system and a place p that is bounded but for which there does not exist a positive p-invariant i with $i(p)>0$.

Question 7. Consider the following P / T system $M=\left(P, T, F, W, C_{\text {in }}\right)$:

(a) Determine the p-invariants of M.
(b) Is M bounded? Explain your answer.
(c) When do we call a P / T system free-choice? Is M free-choice?
(d) Is M live? Explain your answer.

