EXAM THEORY OF CONCURRENCY

Wednesday 22 August 2007, 14.00-17.00
This exam consists of 7 questions. The number of points to be earned (approximately) for each question is indicated between [en]. The total number of points is 100 .

Answers may be given in Dutch or in English.
Question 1. [20 pts]
Consider the following net $N=(P, T, F)$ (note that we have not specified an initial configuration):

(a) Does there exist a configuration C of N and two different transitions $s, t \in T$ such that there is a conflict between s and t in C.

If so, then give an example; if not, then explain why, using only structural arguments (i.e., arguments that refer to the structure of the net).
(b) Does there exist a configuration C of N and two different transitions $s, t \in T$ such that $\{s, t\}$ con C.
If so, then give an example; if not, then explain why, using only structural arguments (i.e., arguments that refer to the structure of the net).
(c) What do we know about a configuration C of N for which t_{1} con C ?

An EN system M with our example net N as underlying net is determined by its initial configuration $C_{\text {in }}$.
(d) Show that if $\left\{p_{2}, p_{3}, p_{5}, p_{6}\right\} \in \mathbb{C}_{M}$, then $\left\{p_{2}, p_{3}, p_{5}, p_{6}\right\}$ must be equal to $C_{\text {in }}$.
(e) Give an initial configuration $C_{\text {in }}$, such that the corresponding EN system M is reduced (i.e., that all transitions are useful). Also give the corresponding SCG(M).

Hint: use parts (c) and (d) of this question.

Question 2. [12 pts]
(a) Give two example EN systems M_{1} and M_{2}, such that M_{1} and M_{2} are configuration equivalent, but not isomorphic. M_{1} and M_{2} must be strongly reduced.

Also give $\operatorname{SCG}\left(M_{1}\right)$ and $\operatorname{SCG}\left(M_{2}\right)$, and indicate the isomorphism between them (note: M_{1} and M_{2} are not isomorphic themselves, but their sequential configuration graphs are).
(b) Give two example EN systems M_{3} and M_{4}, such that M_{3} and M_{4} are firing sequence equivalent, but not configuration equivalent.
Also give $\operatorname{SCG}\left(M_{3}\right), \operatorname{SCG}\left(M_{4}\right), \operatorname{FS}\left(M_{3}\right)$ and $\operatorname{FS}\left(M_{4}\right)$, and indicate the bijection between $\operatorname{FS}\left(M_{3}\right)$ and $\operatorname{FS}\left(M_{4}\right)$.

Question 3. [13 pts]
Consider the following process net $N=\left(P, T, F,{ }^{\circ} N\right)$:

(a) Give $\operatorname{SCG}(N)$.
(b) Give all firing sequences in N leading from ${ }^{\circ} N$ to N°.
(c) Give all slices of N containing place p_{1}. Explain how you come to your answer.
(d) Give all subsets of places $S \subseteq P$ containing place p_{11}, such that S determines a sequential component in N. Explain how you come to your answer.

Question 4-7. on reverse side.

Question 4. [18 pts]
Consider the following labelled process net $N^{\prime}=\left(P, T, F, \phi_{1}, \phi_{2}\right)$ (where the q_{i} 's and the t_{i} 's are the labels):

(a) Give two different EN systems M such that N^{\prime} is a process of M.
(b) Give $\boldsymbol{\operatorname { c t r }}\left(N^{\prime}\right)$ and $\mathbf{p r u}\left(\boldsymbol{\operatorname { c t r }}\left(N^{\prime}\right)\right)$.
(c) Give $\operatorname{words}\left(\mathbf{p r u}\left(\boldsymbol{\operatorname { c t r }}\left(N^{\prime}\right)\right)\right)$.
(d) Let $N=\left(P, T, F, \phi_{1}, \phi_{2}\right)$ be an arbitrary process of an arbitrary contactfree EN system M. It is known that each firing sequence in N from ${ }^{\circ} N$ to N° corresponds to a firing sequence in M from $\phi_{1}\left({ }^{\circ} N\right)$ to $\phi_{1}\left(N^{\circ}\right)$.

Is the converse also true? In other words: is the following statement correct:
Each firing sequence in M from $\phi_{1}\left({ }^{\circ} N\right)$ to $\phi_{1}\left(N^{\circ}\right)$ corresponds to a firing sequence in N from ${ }^{\circ} N$ to N°.
Or to be more precise: for each firing sequence $t_{1} \ldots t_{n}$ in M from $\phi_{1}\left({ }^{\circ} N\right)$ to $\phi_{1}\left(N^{\circ}\right)$, there exists a firing sequence $s_{1} \ldots s_{n}$ from ${ }^{\circ} N$ to N°, such that for $i=1, \ldots, n, t_{i}=\phi_{2}\left(s_{i}\right)$.

If yes, then provide a proof. If not, then give a counter example, and explain why it is indeed a counter example.

Question 5. [7 pts]
Consider the following P / T system $M=\left(P, T, F, W, C_{\mathrm{in}}\right)$:

Is \mathbb{C}_{M} finite? Explain your answer.

Question 6. [13 pts]
Consider the following free-choice system $M=\left(P, T, F, W, C_{\text {in }}\right)$:

(a) Determine the traps and the siphons of M.
(b) Use your answer to (a) to decide whether or not M is live.

Question 7. [17 pts]
If you do not know the definition of 'contact free', then you can 'buy' it from the teacher at the cost of 4 pts.
(a) Let M be a contact free EN system. Prove the following statement:

If there is a conflict between two transitions s and t in a reachable configuration C of M, then there must be an input conflict between s and t in C.
(b) Prove that there cannot be confusions in a contact-free EN system that is a free-choice system.
(c) Give an example of a contact free EN system M that is not a free-choice system and does not have confusions. Demonstrate that M indeed does not have confusions.

