
Fundamentele Informatica 3

voorjaar 2016

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777

rvvliet(at)liacs(dot)nl

college 9, 4+5 april 2016

9. Undecidable Problems

9.1. A Language That Can’t Be Accepted,

and a Problem That Can’t Be Decided

9.2. Reductions and the Halting Problem

1

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

A slide from lecture 8:

From Fundamentele Informatica 1:

Definition 8.24.

Countably Infinite and Countable Sets

A set A is countably infinite (the same size as N) if there is a

bijection f : N → A, or a list a0, a1, . . . of elements of A such that

every element of A appears exactly once in the list.

A is countable if A is either finite or countably infinite.

2

A slide from lecture 8:

Example 8.31. The Set 2N Is Uncountable

Hence, because N and {0,1}∗ are the same size,

there are uncountably many languages over {0,1}

3

A slide from lecture 8:

Example 8.31. The Set 2N Is Uncountable (continued)

No list of subsets of N is complete,

i.e., every list A0, A1, A2, . . . of subsets of N leaves out at least

one.

Take

A = {i ∈ N | i /∈ Ai}

4

A slide from lecture 8:

Example 8.31. The Set 2N Is Uncountable (continued)

A = {i ∈ N | i /∈ Ai}

A0 = {0,2,5,9, . . .}

A1 = {1,2,3,8,12, . . .}

A2 = {0,3,6}

A3 = ∅

A4 = {4}

A5 = {2,3,5,7,11, . . .}

A6 = {8,16,24, . . .}

A7 = N

A8 = {1,3,5,7,9, . . .}

A9 = {n ∈ N | n > 12}

. . .

5

A slide from lecture 8:

0 1 2 3 4 5 6 7 8 9 . . .
A0 = {0,2,5,9, . . .} 1 0 1 0 0 1 0 0 0 1 . . .
A1 = {1,2,3,8,12, . . .} 0 1 1 1 0 0 0 0 1 0 . . .
A2 = {0,3,6} 1 0 0 1 0 0 1 0 0 0 . . .
A3 = ∅ 0 0 0 0 0 0 0 0 0 0 . . .
A4 = {4} 0 0 0 0 1 0 0 0 0 0 . . .
A5 = {2,3,5,7,11, . . .} 0 0 1 1 0 1 0 1 0 0 . . .
A6 = {8,16,24, . . .} 0 0 0 0 0 0 0 0 1 0 . . .
A7 = N 1 1 1 1 1 1 1 1 1 1 . . .
A8 = {1,3,5,7,9, . . .} 0 1 0 1 0 1 0 1 0 1 . . .
A9 = {n ∈ N | n > 12} 0 0 0 0 0 0 0 0 0 0 . . .

.

6

A slide from lecture 8:

0 1 2 3 4 5 6 7 8 9 . . .
A0 = {0,2,5,9, . . .} 1 0 1 0 0 1 0 0 0 1 . . .
A1 = {1,2,3,8,12, . . .} 0 1 1 1 0 0 0 0 1 0 . . .
A2 = {0,3,6} 1 0 0 1 0 0 1 0 0 0 . . .
A3 = ∅ 0 0 0 0 0 0 0 0 0 0 . . .
A4 = {4} 0 0 0 0 1 0 0 0 0 0 . . .
A5 = {2,3,5,7,11, . . .} 0 0 1 1 0 1 0 1 0 0 . . .
A6 = {8,16,24, . . .} 0 0 0 0 0 0 0 0 1 0 . . .
A7 = N 1 1 1 1 1 1 1 1 1 1 . . .
A8 = {1,3,5,7,9, . . .} 0 1 0 1 0 1 0 1 0 1 . . .
A9 = {n ∈ N | n > 12} 0 0 0 0 0 0 0 0 0 0 . . .

.
A = {2,3,6,8,9, . . .} 0 0 1 1 0 0 1 0 1 1 . . .

Hence, there are uncountably many subsets of N.

7

Set-up of Example 8.31:

1. Start with list of all subsets of N: A0, A1, A2, . . .,

each one associated with specific element of N (namely i)

2. Define another subset A by:

i ∈ A ⇐⇒ i /∈ Ai

3. Conclusion: for all i, A 6= Ai

Hence, contradiction

Hence, there are uncountably many subsets of N

8

Exercise 8.45.

The two parts of this exercise show that for every set S (not

necessarily countable), 2S is larger than S.

a. For every S, describe a simple bijection from S to a subset of

2S.

b. Show that for every S, there is no bijection from S to 2S.

(You can copy the proof in Example 8.31, as long as you avoid

trying to list the elements of S or making any reference to the

countability of S.)

9

9. Undecidable Problems

9.1. A Language
That Can’t Be Accepted,
and a Problem That Can’t Be Decided

10

A slide from lecture 5:

Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language

L ⊆ Σ∗,

if L(T) = L.

T decides L,

if T computes the characteristic function χL : Σ∗ → {0,1}

A language L is recursively enumerable,

if there is a TM that accepts L,

and L is recursive,

if there is a TM that decides L.

11

Set-up of Example 8.31:

1. Start with list of all subsets of N: A0, A1, A2, . . .,

each one associated with specific element of N (namely i)

2. Define another subset A by:

i ∈ A ⇐⇒ i /∈ Ai

3. Conclusion: for all i, A 6= Ai

Hence, contradiction

Hence, there are uncountably many subsets of N

12

Set-up of constructing language that is not RE:

1. Start with list of all RE languages over {0,1}

(which are subsets of {0,1}∗): L(T0), L(T1), L(T2), . . .

each one associated with specific element of {0,1}∗

2. Define another language L by:

x ∈ L ⇐⇒ x /∈ (language that x is associated with)

3. Conclusion: for all i, L 6= L(Ti)

Hence, L is not RE

13

e(T0) e(T1) e(T2) e(T3) e(T4) e(T5) e(T6) e(T7) e(T8) e(T9) .
L(T0) 1 0 1 0 0 1 0 0 0 1 .
L(T1) 0 1 1 1 0 0 0 0 1 0 .
L(T2) 1 0 0 1 0 0 1 0 0 0 .
L(T3) 0 0 0 0 0 0 0 0 0 0 .
L(T4) 0 0 0 0 1 0 0 0 0 0 .
L(T5) 0 0 1 1 0 1 0 1 0 0 .
L(T6) 0 0 0 0 0 0 0 0 1 0 .
L(T7) 1 1 1 1 1 1 1 1 1 1 .
L(T8) 0 1 0 1 0 1 0 1 0 1 .
L(T9) 0 0 0 0 0 0 0 0 0 0 .
.

14

e(T0) e(T1) e(T2) e(T3) e(T4) e(T5) e(T6) e(T7) e(T8) e(T9) .
L(T0) 1 0 1 0 0 1 0 0 0 1 .
L(T1) 0 1 1 1 0 0 0 0 1 0 .
L(T2) 1 0 0 1 0 0 1 0 0 0 .
L(T3) 0 0 0 0 0 0 0 0 0 0 .
L(T4) 0 0 0 0 1 0 0 0 0 0 .
L(T5) 0 0 1 1 0 1 0 1 0 0 .
L(T6) 0 0 0 0 0 0 0 0 1 0 .
L(T7) 1 1 1 1 1 1 1 1 1 1 .
L(T8) 0 1 0 1 0 1 0 1 0 1 .
L(T9) 0 0 0 0 0 0 0 0 0 0 .
.

NSA 0 0 1 1 0 0 1 0 1 1 .

Hence, NSA is not recursively enumerable.

15

A slide from lecture 4:

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with

a given input alphabet Σ, or at most one string z.

3. If w = e(T) or w = e(z), there should be an algorithm for

decoding w.

16

Set-up of constructing language NSA that is not RE:

1. Start with list of all RE languages over {0,1}

(which are subsets of {0,1}∗): L(T0), L(T1), L(T2), . . .

each one associated with specific element of {0,1}∗

(namely e(Ti))

2. Define another language NSA by:

e(Ti) ∈ NSA ⇐⇒ e(Ti) /∈ L(Ti)

3. Conclusion: for all i, NSA 6= L(Ti)

Hence, NSA is not RE

17

Set-up of constructing language NSA that is not RE:

1. Start with collection of all RE languages over {0,1}

(which are subsets of {0,1}∗): {L(T) | TM T}

each one associated with specific element of {0,1}∗

(namely e(T))

2. Define another language NSA by:

e(T) ∈ NSA ⇐⇒ e(T) /∈ L(T)

3. Conclusion: for all TM T , NSA 6= L(T)

Hence, NSA is not RE

18

Set-up of constructing language L that is not RE:

1. Start with list of all RE languages over {0,1}

(which are subsets of {0,1}∗): L(T0), L(T1), L(T2), . . .

each one associated with specific element of {0,1}∗

(namely xi)

2. Define another language L by:

xi ∈ L ⇐⇒ xi /∈ L(Ti)

3. Conclusion: for all i, L 6= L(Ti)

Hence, L is not RE

Every infinite list x0, x1, x2, . . . of different elements of {0,1}∗

yields language L that is not RE

19

Definition 9.1. The Languages NSA and SA

Let

NSA = {e(T) | T is a TM, and e(T) /∈ L(T)}

SA = {e(T) | T is a TM, and e(T) ∈ L(T)}

(NSA and SA are for “non-self-accepting” and “self-accepting.”)

20

A slide from lecture 4:

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with

a given input alphabet Σ, or at most one string z.

3. If w = e(T) or w = e(z), there should be an algorithm for

decoding w.

21

Theorem 9.2. The language NSA is not recursively enumerable.

The language SA is recursively enumerable but not recursive.

Proof. . .

22

Exercise 9.2.

Describe how a universal Turing machine could be used in the

proof that SA is recursively enumerable.

23

Decision problem: problem for which the answer is ‘yes’ or ‘no’:

Given . . . , is it true that . . . ?

yes-instances of a decision problem:

instances for which the answer is ‘yes’

no-instances of a decision problem:

instances for which the answer is ‘no’

24

Decision problems

Given an undirected graph G = (V,E),

does G contain a Hamiltonian path?

Given a list of integers x1, x2, . . . , xn,

is the list sorted?

25

Self-Accepting: Given a TM T , does T accept the string e(T)?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances

2. NSA: strings representing no-instances

3. . . .

26

Self-Accepting: Given a TM T , does T accept the string e(T)?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances

2. NSA: strings representing no-instances

3. E′: strings not representing instances

27

For general decision problem P ,

an encoding e of instances I as strings e(I) over alphabet Σ

is called reasonable, if

1. there is algorithm to decide if string over Σ is encoding e(I)

2. e is injective

3. string e(I) can be decoded

28

A slide from lecture 4:

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with

a given input alphabet Σ, or at most one string z.

3. If w = e(T) or w = e(z), there should be an algorithm for

decoding w.

29

For general decision problem P and reasonable encoding e,

Y (P) = {e(I) | I is yes-instance of P}

N(P) = {e(I) | I is no-instance of P}

E(P) = Y (P) ∪N(P)

E(P) must be recursive

30

Definition 9.3. Decidable Problems

If P is a decision problem, and e is a reasonable encoding of

instances of P over the alphabet Σ, we say that P is decidable if

Y (P) = {e(I) | I is a yes-instance of P} is a recursive language.

31

Theorem 9.4. The decision problem Self-Accepting is undecid-

able.

Proof. . .

32

For every decision problem, there is complementary problem P ′,

obtained by changing ‘true’ to ‘false’ in statement.

Non-Self-Accepting:

Given a TM T , does T fail to accept e(T) ?

33

Theorem 9.5. For every decision problem P , P is decidable if

and only if the complementary problem P ′ is decidable.

Proof. . .

34

SA vs. NSA

Self-Accepting vs. Non-Self-Accepting

35

9.2. Reductions and the Halting Problem

36

(Informal) Examples of reductions

1. Recursive algorithms

2. Given NFA M and string x, is x ∈ L(M) ?

3. Given FAs M1 and M2, is L(M1) ⊆ L(M2) ?

37

Theorem 2.15.

Suppose M1 = (Q1,Σ, q1, A1, δ1) and M2 = (Q2,Σ, q2, A2, δ2)
are finite automata accepting L1 and L2, respectively.

Let M be the FA (Q,Σ, q0, A, δ), where

Q = Q1 ×Q2

q0 = (q1, q2)
and the transition function δ is defined by the formula

δ((p, q), σ) = (δ1(p, σ), δ2(q, σ))
for every p ∈ Q1, every q ∈ Q2, and every σ ∈ Σ.

Then

1. If A = {(p, q)| p ∈ A1 or q ∈ A2},
M accepts the language L1 ∪ L2.

2. If A = {(p, q)| p ∈ A1 and q ∈ A2},
M accepts the language L1 ∩ L2.

3. If A = {(p, q)| p ∈ A1 and q /∈ A2},
M accepts the language L1 − L2.

38

Definition 9.6. Reducing One Decision Problem to Another,

and Reducing One Language to Another

Suppose P1 and P2 are decision problems. We say P1 is reducible

to P2 (P1 ≤ P2)

• if there is an algorithm

• that finds, for an arbitrary instance I of P1, an instance F (I)

of P2,

• such that

for every I the answers for the two instances are the same,

or I is a yes-instance of P1

if and only if F (I) is a yes-instance of P2.

39

Definition 9.6. Reducing One Decision Problem to Another,

and Reducing One Language to Another (continued)

If L1 and L2 are languages over alphabets Σ1 and Σ2, respec-

tively, we say L1 is reducible to L2 (L1 ≤ L2)

• if there is a Turing-computable function

• f : Σ∗
1 → Σ∗

2

• such that for every x ∈ Σ∗
1,

x ∈ L1 if and only if f(x) ∈ L2

Less / more formal definitions.

40

Theorem 9.7.

Suppose L1 ⊆ Σ∗
1, L2 ⊆ Σ∗

2, and L1 ≤ L2. If L2 is recursive, then

L1 is recursive.

Suppose P1 and P2 are decision problems, and P1 ≤ P2. If P2 is

decidable, then P1 is decidable.

Proof. . .

41

In context of decidability: decision problem P ≈ language Y (P)

Question

“is instance I of P a yes-instance ?”

is essentially the same as

“does string x represent yes-instance of P ?”,

i.e.,

“is string x ∈ Y (P) ?”

Therefore, P1 ≤ P2, if and only if Y (P1) ≤ Y (P2).

42

Two more decision problems:

Accepts: Given a TM T and a string w, is w ∈ L(T) ?

Halts: Given a TM T and a string w, does T halt on input w ?

43

Theorem 9.8. Both Accepts and Halts are undecidable.

Proof.

1. Prove that Self-Accepting ≤ Accepts . . .

44

Theorem 9.8. Both Accepts and Halts are undecidable.

Proof.

1. Prove that Self-Accepting ≤ Accepts . . .

2. Prove that Accepts ≤ Halts . . .

45

Application:

n = 4;

while (n is the sum of two primes)

n = n+2;

This program loops forever, if and only if Goldbach’s conjecture

is true.

46

