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9. Undecidable Problems
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A slide from lecture 8:

From Fundamentele Informatica 1:

Definition 8.24.

Countably Infinite and Countable Sets

A set A is countably infinite (the same size as N) if there is a

bijection f : N → A, or a list a0, a1, . . . of elements of A such that

every element of A appears exactly once in the list.

A is countable if A is either finite or countably infinite.
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A slide from lecture 8:

Example 8.31. The Set 2N Is Uncountable

Hence, because N and {0,1}∗ are the same size,

there are uncountably many languages over {0,1}
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A slide from lecture 8:

Example 8.31. The Set 2N Is Uncountable (continued)

No list of subsets of N is complete,

i.e., every list A0, A1, A2, . . . of subsets of N leaves out at least

one.

Take

A = {i ∈ N | i /∈ Ai}
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A slide from lecture 8:

Example 8.31. The Set 2N Is Uncountable (continued)

A = {i ∈ N | i /∈ Ai}

A0 = {0,2,5,9, . . .}

A1 = {1,2,3,8,12, . . .}

A2 = {0,3,6}

A3 = ∅

A4 = {4}

A5 = {2,3,5,7,11, . . .}

A6 = {8,16,24, . . .}

A7 = N

A8 = {1,3,5,7,9, . . .}

A9 = {n ∈ N | n > 12}

. . .
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A slide from lecture 8:

0 1 2 3 4 5 6 7 8 9 . . .
A0 = {0,2,5,9, . . .} 1 0 1 0 0 1 0 0 0 1 . . .
A1 = {1,2,3,8,12, . . .} 0 1 1 1 0 0 0 0 1 0 . . .
A2 = {0,3,6} 1 0 0 1 0 0 1 0 0 0 . . .
A3 = ∅ 0 0 0 0 0 0 0 0 0 0 . . .
A4 = {4} 0 0 0 0 1 0 0 0 0 0 . . .
A5 = {2,3,5,7,11, . . .} 0 0 1 1 0 1 0 1 0 0 . . .
A6 = {8,16,24, . . .} 0 0 0 0 0 0 0 0 1 0 . . .
A7 = N 1 1 1 1 1 1 1 1 1 1 . . .
A8 = {1,3,5,7,9, . . .} 0 1 0 1 0 1 0 1 0 1 . . .
A9 = {n ∈ N | n > 12} 0 0 0 0 0 0 0 0 0 0 . . .

. . . . . .
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A slide from lecture 8:

0 1 2 3 4 5 6 7 8 9 . . .
A0 = {0,2,5,9, . . .} 1 0 1 0 0 1 0 0 0 1 . . .
A1 = {1,2,3,8,12, . . .} 0 1 1 1 0 0 0 0 1 0 . . .
A2 = {0,3,6} 1 0 0 1 0 0 1 0 0 0 . . .
A3 = ∅ 0 0 0 0 0 0 0 0 0 0 . . .
A4 = {4} 0 0 0 0 1 0 0 0 0 0 . . .
A5 = {2,3,5,7,11, . . .} 0 0 1 1 0 1 0 1 0 0 . . .
A6 = {8,16,24, . . .} 0 0 0 0 0 0 0 0 1 0 . . .
A7 = N 1 1 1 1 1 1 1 1 1 1 . . .
A8 = {1,3,5,7,9, . . .} 0 1 0 1 0 1 0 1 0 1 . . .
A9 = {n ∈ N | n > 12} 0 0 0 0 0 0 0 0 0 0 . . .

. . . . . .
A = {2,3,6,8,9, . . .} 0 0 1 1 0 0 1 0 1 1 . . .

Hence, there are uncountably many subsets of N.
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Set-up of Example 8.31:

1. Start with list of all subsets of N: A0, A1, A2, . . .,

each one associated with specific element of N (namely i)

2. Define another subset A by:

i ∈ A ⇐⇒ i /∈ Ai

3. Conclusion: for all i, A 6= Ai

Hence, contradiction

Hence, there are uncountably many subsets of N
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Exercise 8.45.

The two parts of this exercise show that for every set S (not

necessarily countable), 2S is larger than S.

a. For every S, describe a simple bijection from S to a subset of

2S.

b. Show that for every S, there is no bijection from S to 2S.

(You can copy the proof in Example 8.31, as long as you avoid

trying to list the elements of S or making any reference to the

countability of S.)
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9. Undecidable Problems

9.1. A Language
That Can’t Be Accepted,
and a Problem That Can’t Be Decided
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A slide from lecture 5:

Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language

L ⊆ Σ∗,

if L(T ) = L.

T decides L,

if T computes the characteristic function χL : Σ∗ → {0,1}

A language L is recursively enumerable,

if there is a TM that accepts L,

and L is recursive,

if there is a TM that decides L.
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Set-up of Example 8.31:

1. Start with list of all subsets of N: A0, A1, A2, . . .,

each one associated with specific element of N (namely i)

2. Define another subset A by:

i ∈ A ⇐⇒ i /∈ Ai

3. Conclusion: for all i, A 6= Ai

Hence, contradiction

Hence, there are uncountably many subsets of N
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Set-up of constructing language that is not RE:

1. Start with list of all RE languages over {0,1}

(which are subsets of {0,1}∗): L(T0), L(T1), L(T2), . . .

each one associated with specific element of {0,1}∗

2. Define another language L by:

x ∈ L ⇐⇒ x /∈ (language that x is associated with)

3. Conclusion: for all i, L 6= L(Ti)

Hence, L is not RE
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e(T0) e(T1) e(T2) e(T3) e(T4) e(T5) e(T6) e(T7) e(T8) e(T9) .
L(T0) 1 0 1 0 0 1 0 0 0 1 .
L(T1) 0 1 1 1 0 0 0 0 1 0 .
L(T2) 1 0 0 1 0 0 1 0 0 0 .
L(T3) 0 0 0 0 0 0 0 0 0 0 .
L(T4) 0 0 0 0 1 0 0 0 0 0 .
L(T5) 0 0 1 1 0 1 0 1 0 0 .
L(T6) 0 0 0 0 0 0 0 0 1 0 .
L(T7) 1 1 1 1 1 1 1 1 1 1 .
L(T8) 0 1 0 1 0 1 0 1 0 1 .
L(T9) 0 0 0 0 0 0 0 0 0 0 .
. . . . . .
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e(T0) e(T1) e(T2) e(T3) e(T4) e(T5) e(T6) e(T7) e(T8) e(T9) .
L(T0) 1 0 1 0 0 1 0 0 0 1 .
L(T1) 0 1 1 1 0 0 0 0 1 0 .
L(T2) 1 0 0 1 0 0 1 0 0 0 .
L(T3) 0 0 0 0 0 0 0 0 0 0 .
L(T4) 0 0 0 0 1 0 0 0 0 0 .
L(T5) 0 0 1 1 0 1 0 1 0 0 .
L(T6) 0 0 0 0 0 0 0 0 1 0 .
L(T7) 1 1 1 1 1 1 1 1 1 1 .
L(T8) 0 1 0 1 0 1 0 1 0 1 .
L(T9) 0 0 0 0 0 0 0 0 0 0 .
. . . . . .

NSA 0 0 1 1 0 0 1 0 1 1 .

Hence, NSA is not recursively enumerable.
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A slide from lecture 4:

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with

a given input alphabet Σ, or at most one string z.

3. If w = e(T ) or w = e(z), there should be an algorithm for

decoding w.
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Set-up of constructing language NSA that is not RE:

1. Start with list of all RE languages over {0,1}

(which are subsets of {0,1}∗): L(T0), L(T1), L(T2), . . .

each one associated with specific element of {0,1}∗

(namely e(Ti))

2. Define another language NSA by:

e(Ti) ∈ NSA ⇐⇒ e(Ti) /∈ L(Ti)

3. Conclusion: for all i, NSA 6= L(Ti)

Hence, NSA is not RE
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Set-up of constructing language NSA that is not RE:

1. Start with collection of all RE languages over {0,1}

(which are subsets of {0,1}∗): {L(T ) | TM T}

each one associated with specific element of {0,1}∗

(namely e(T ))

2. Define another language NSA by:

e(T ) ∈ NSA ⇐⇒ e(T ) /∈ L(T )

3. Conclusion: for all TM T , NSA 6= L(T )

Hence, NSA is not RE
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Set-up of constructing language L that is not RE:

1. Start with list of all RE languages over {0,1}

(which are subsets of {0,1}∗): L(T0), L(T1), L(T2), . . .

each one associated with specific element of {0,1}∗

(namely xi)

2. Define another language L by:

xi ∈ L ⇐⇒ xi /∈ L(Ti)

3. Conclusion: for all i, L 6= L(Ti)

Hence, L is not RE

Every infinite list x0, x1, x2, . . . of different elements of {0,1}∗

yields language L that is not RE
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Definition 9.1. The Languages NSA and SA

Let

NSA = {e(T ) | T is a TM, and e(T ) /∈ L(T )}

SA = {e(T ) | T is a TM, and e(T ) ∈ L(T )}

(NSA and SA are for “non-self-accepting” and “self-accepting.”)
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A slide from lecture 4:

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with

a given input alphabet Σ, or at most one string z.

3. If w = e(T ) or w = e(z), there should be an algorithm for

decoding w.
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Theorem 9.2. The language NSA is not recursively enumerable.

The language SA is recursively enumerable but not recursive.

Proof. . .
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Exercise 9.2.

Describe how a universal Turing machine could be used in the

proof that SA is recursively enumerable.
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Decision problem: problem for which the answer is ‘yes’ or ‘no’:

Given . . . , is it true that . . . ?

yes-instances of a decision problem:

instances for which the answer is ‘yes’

no-instances of a decision problem:

instances for which the answer is ‘no’
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Decision problems

Given an undirected graph G = (V,E),

does G contain a Hamiltonian path?

Given a list of integers x1, x2, . . . , xn,

is the list sorted?
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Self-Accepting: Given a TM T , does T accept the string e(T )?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances

2. NSA: strings representing no-instances

3. . . .
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Self-Accepting: Given a TM T , does T accept the string e(T )?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances

2. NSA: strings representing no-instances

3. E′: strings not representing instances
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For general decision problem P ,

an encoding e of instances I as strings e(I) over alphabet Σ

is called reasonable, if

1. there is algorithm to decide if string over Σ is encoding e(I)

2. e is injective

3. string e(I) can be decoded
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A slide from lecture 4:

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with

a given input alphabet Σ, or at most one string z.

3. If w = e(T ) or w = e(z), there should be an algorithm for

decoding w.
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For general decision problem P and reasonable encoding e,

Y (P ) = {e(I) | I is yes-instance of P}

N(P ) = {e(I) | I is no-instance of P}

E(P ) = Y (P ) ∪N(P )

E(P ) must be recursive
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Definition 9.3. Decidable Problems

If P is a decision problem, and e is a reasonable encoding of

instances of P over the alphabet Σ, we say that P is decidable if

Y (P ) = {e(I) | I is a yes-instance of P} is a recursive language.
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Theorem 9.4. The decision problem Self-Accepting is undecid-

able.

Proof. . .
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For every decision problem, there is complementary problem P ′,

obtained by changing ‘true’ to ‘false’ in statement.

Non-Self-Accepting:

Given a TM T , does T fail to accept e(T ) ?
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Theorem 9.5. For every decision problem P , P is decidable if

and only if the complementary problem P ′ is decidable.

Proof. . .
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SA vs. NSA

Self-Accepting vs. Non-Self-Accepting
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9.2. Reductions and the Halting Problem
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(Informal) Examples of reductions

1. Recursive algorithms

2. Given NFA M and string x, is x ∈ L(M) ?

3. Given FAs M1 and M2, is L(M1) ⊆ L(M2) ?
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Theorem 2.15.

Suppose M1 = (Q1,Σ, q1, A1, δ1) and M2 = (Q2,Σ, q2, A2, δ2)
are finite automata accepting L1 and L2, respectively.

Let M be the FA (Q,Σ, q0, A, δ), where

Q = Q1 ×Q2

q0 = (q1, q2)
and the transition function δ is defined by the formula

δ((p, q), σ) = (δ1(p, σ), δ2(q, σ))
for every p ∈ Q1, every q ∈ Q2, and every σ ∈ Σ.

Then

1. If A = {(p, q)| p ∈ A1 or q ∈ A2},
M accepts the language L1 ∪ L2.

2. If A = {(p, q)| p ∈ A1 and q ∈ A2},
M accepts the language L1 ∩ L2.

3. If A = {(p, q)| p ∈ A1 and q /∈ A2},
M accepts the language L1 − L2.
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Definition 9.6. Reducing One Decision Problem to Another,

and Reducing One Language to Another

Suppose P1 and P2 are decision problems. We say P1 is reducible

to P2 (P1 ≤ P2)

• if there is an algorithm

• that finds, for an arbitrary instance I of P1, an instance F (I)

of P2,

• such that

for every I the answers for the two instances are the same,

or I is a yes-instance of P1

if and only if F (I) is a yes-instance of P2.
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Definition 9.6. Reducing One Decision Problem to Another,

and Reducing One Language to Another (continued)

If L1 and L2 are languages over alphabets Σ1 and Σ2, respec-

tively, we say L1 is reducible to L2 (L1 ≤ L2)

• if there is a Turing-computable function

• f : Σ∗
1 → Σ∗

2

• such that for every x ∈ Σ∗
1,

x ∈ L1 if and only if f(x) ∈ L2

Less / more formal definitions.

40



Theorem 9.7.

Suppose L1 ⊆ Σ∗
1, L2 ⊆ Σ∗

2, and L1 ≤ L2. If L2 is recursive, then

L1 is recursive.

Suppose P1 and P2 are decision problems, and P1 ≤ P2. If P2 is

decidable, then P1 is decidable.

Proof. . .
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In context of decidability: decision problem P ≈ language Y (P )

Question

“is instance I of P a yes-instance ?”

is essentially the same as

“does string x represent yes-instance of P ?”,

i.e.,

“is string x ∈ Y (P ) ?”

Therefore, P1 ≤ P2, if and only if Y (P1) ≤ Y (P2).
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Two more decision problems:

Accepts: Given a TM T and a string w, is w ∈ L(T ) ?

Halts: Given a TM T and a string w, does T halt on input w ?
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Theorem 9.8. Both Accepts and Halts are undecidable.

Proof.

1. Prove that Self-Accepting ≤ Accepts . . .
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Theorem 9.8. Both Accepts and Halts are undecidable.

Proof.

1. Prove that Self-Accepting ≤ Accepts . . .

2. Prove that Accepts ≤ Halts . . .
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Application:

n = 4;

while (n is the sum of two primes)

n = n+2;

This program loops forever, if and only if Goldbach’s conjecture

is true.
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