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A slide from lecture 14:

Definition 10.17.
The Godel Number of a Sequence of Natural Numbers

For every n > 1 and every finite sequence xg,x1,...,x,_1 Of
n natural numbers, the Godel number of the sequence is the
number

gn(w()a L1,.-- 7wn—1) = 2%ogTigr2 (PI'NO(TL — 1))3371—1
where PrNo(i) is the ith prime (Example 10.13).



Configuration of Turing machine determined by

e State

e poOsition on tape

e tape contents



A slide from lecture 4:
Assumptions:
1. Names of the states are irrelevant.

2. Tape alphabet ' of every Turing machine 7' is subset
of infinite set S = {a1,a2,a3,...}, where a1 = A.



A slide from lecture 4:
Definition 7.33. An Encoding Function

Assign numbers to each state:
n(he) = 1, n(hy) = 2, n(qp) = 3, n(q) > 4 for other q € Q.

Assign numbers to each tape symbol:

n(a;) = 1.

Assign numbers to each tape head direction:
n(R) =1, n(L) =2, n(S) = 3.



Now different numbering

Let T'= (Q, >, I, qp,6) be Turing machine

. ha | hr qd0 . . .
States: 01115 57 with sp = ...
Tape symbols: A —— with tsr =

P \ : 0 tST T = ...




Now different numbering

Let T = (Q,2>,I,qp,6) be Turing machine

States: 0112 . s with s = |Q| 4+ 1
Tape symbols: Ale] with tsp = ||
P Y ' O |... tST T =
tapenumber(AlaAblA) = 20315270113131170

2q3P5tapenumber

confignumber



10.4. AIll Computable Functions
are u-Recursive



A slide from lecture 13
Definition 10.15. u-Recursive Functions

The set M of u-recursive, or simply recursive, partial functions
is defined as follows.

1. Every initial function is an element of M.

2. Every function obtained from elements of M by composition
or primitive recursion is an element of M.

3. For every n > 0 and every total function f: N*"t1 5 N in M,
the function M, : N — N defined by

M¢(X) = pylf(X,y) = 0]
is an element of M.



X = (21,22, ., @n)

|_

qg..| AITIATIT2A .- A1 A - -

|_

haol A1SOA ..

f(X)
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X = (x17x27°°°7xn)

00l ATFIAL2A ... ALTA ... confignumber mo
|_
. ATTLATRA .  ALTnA - confignumber Com
|_
|_
confignumber
haol A1FOA .. . omy

F(X)
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X = (x17x27°°°7xn)

wa)nﬁg(”)
confignumber

g0 A1TIAIZ2A ... A1TnA ... mo
|_
. ATTLATRA .  ALTnA - confignumber Com
- JT
|_
confignumber
haol A1FOA .. . omy
Resultp

F(X)
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We must show that f : N" — N defined by

f(X) = Resulty( fr(InitConfig{™ (X)))

IS u-recursive.
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Step 1

The function InitConfig(”) : N"” — N
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Exercise 10.34.

Show using mathematical induction that if tn(™) (zq,...,2n) is
the tape number containing the string

ATTIATI2A .. A1

then tn(") : N — N is primitive recursive.

Use nr(A) =0 and nr(l1) = 1.
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A slide from lecture 12

Definition 10.2. The Operations of Composition and Primitive
Recursion (continued)

2. Suppose n > 0 and g and h are functions of n and n 4 2
variables, respectively. (By *“a function of O variables,” we
mean simply a constant.)

The function obtained from ¢g and h by the operation of
primitive recursion is the function f : N*t+1 s N defined by
the formulas

f(X,0) = g(X)
f(X,kE+1) = h(X,k, f(X,k))
for every X € N and every k > 0.

16



Exercise 10.34.

Show using mathematical induction that if tn(™ (zq,...,z,) is
the tape number containing the string

ATTIAITA ... A1
then tn(™ : N? 5 N is primitive recursive.
Suggestion: In the induction step, show that

ITm41
tn(m+1)(X7 Topt1) = tn(m)(X) * H PrNo(m + > 1 x; + 7)
j=1

Use nr(A) =0 and nr(1) = 1.
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X = (x17x27°°°7xn)

wa)nﬁg(”)
confignumber

g0 A1TIAIZ2A ... A1TnA ... mo
|_
. ATTLATRA .  ALTnA - confignumber Com
- JT
|_
confignumber
haol A1FOA .. . omy
Resultp

F(X)

18



A slide from lecture 13
Definition 10.9. Bounded Quantifications
Let P be an (n 4+ 1)-place predicate. The bounded existential

quantification of P is the (n + 1)-place predicate Ep defined by

Ep(X,k) = (there exists y with 0 <y < k such that P(X,y) is true)

The bounded universal quantification of P is the (n + 1)-place
predicate Ap defined by

Ap(X, k) = (for every y satifying 0 <y <k, P(X,y) is true)

19



A slide from lecture 13
Theorem 10.10.

If P is a primitive recursive (n 4+ 1)-place predicate,
both the predicates Ep and Ap are also primitive recursive.

Proof. ..
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A slide from lecture 14
Definition 10.11. Bounded Minimalization

For an (n—+ 1)-place predicate P, the bounded minimalization of
P is the function mp : N*T1 — N defined by

(X. k) = min{y | 0 <y <k and P(X,y)} if this set is not empty
MPAR) = k41 otherwise

The symbol u is often used for the minimalization operator, and
we sometimes write

mp(X, k) = b y[P(X,y)]

An important special case is that in which P(X,y) is (f(X,y) = 0),
for some f : N*T1 5 N. In this case mp is written m and referred
to as the bounded minimalization of f.
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A slide from lecture 14
Theorem 10.12.

If P is a primitive recursive (n 4+ 1)-place predicate,
its bounded minimalization mp is a primitive recursive function.

Proof. ..
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Step 2

The predicate IsConfigr defined by

IsConfigr(m) = (m is configuration number for T)
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Now different numbering

Let T = (Q,2>,I,qp,6) be Turing machine

. ha hfr qo | - - - . i o
States: 012 [sr with sp = |Q| + 1
Tape symbols: Al with tsp = ||
P Y . O ... tST T —
tapenumber(AlaAblA) = 2931527091131311790 .
confignumber = ~q3Pgtapenumber
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Step 2 (continued)

The function IsAcceptingr defined by

O if m represents accepting config. of T

IsAcceptingp(m) = { 1 otherwise
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Step 2 (continued)

The function IsAcceptingr defined by

0 if IsConfigr(m) N Exponent(0,m) = 0

IsAcceptingp(m) = { 1 otherwise
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Step 3

The function Resultp. ..
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Step 3

The function Resultp

HighestPrime( Exponent(2,m)) if IsConfigr(m)

Resultp(m) = { 0 otherwise
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An exercise from exercise class 14

EXxercise 10.22.

Show that the function HighestPrime introduced in Section 10.4
IS primitive recursive.

O if k<1

HighestPrime(k) = { max{i | Exponent(i,k) >0} if k> 2

29



X = (x17x27°°°7xn)

wa)nﬁg(”)
confignumber

g0 A1TIAIZ2A ... A1TnA ... mo
|_
. ATTLATRA .  ALTnA - confignumber Com
- JT
|_
confignumber
haol A1FOA .. . omy
Resultp
f(X)

30



Step 4

State(m) = Exponent(0,m)
Posn(m) = Exponent(1l,m)
TapeNumber(m) = Exponent(2,m)

Symbol(m)

Exponent(Posn(m), TapeNumber(m))
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Step 4

NewState(m)
NewSymbol(m)
NewPosn(m)

New TapeNumber(m)
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Exercise 10.35.

Show that the function New  TapeNumber discussed in Section 10.4
IS primitive recursive.

Suggestion: Determine the prime factor of TapeNumber(m) that
may change by a move of the Turing machine, when the tape
head is at position Posn(m).
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Step 5

The function Mover : N — N defined by

gn(NewState(m), NewPosn(m), NewTapeNumber(m))
Mover(m) = if IsConfigp(m)
O otherwise
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Step 6

The function Movesy : N2 — N defined by

,

) m if IsConfigr(m)
O otherwise

\

<’ Mover(Movesp(m,k)) if IsConfigp(m)
O otherwise

Movest(m,0) =

Movest(m,k + 1)

\

35



A slide from lecture 12

Definition 10.2. The Operations of Composition and Primitive
Recursion (continued)

2. Suppose n > 0 and g and h are functions of n and n 4 2
variables, respectively. (By *“a function of O variables,” we
mean simply a constant.)

The function obtained from ¢g and h by the operation of
primitive recursion is the function f : N*t+1 s N defined by
the formulas

f(X,0) = g(X)
f(X,kE+1) = h(X,k, f(X,k))
for every X € N and every k > 0.
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Step 7

The function NumberOfMovesToAcceptr : N — N defined by

NumberOfMoves ToAcceptr(m) =
nyl[IsAcceptingr(Movesr(m,y)) = O]
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Step 7

The function NumberOfMovesToAcceptr : N — N defined by

NumberOfMovesToAcceptp(m) =
nyl[IsAcceptingr(Movesr(m,y)) = O]

The function fpr: N — N defined by

fr(m) = Movest(m, NumberOfMoves ToAcceptr(m))
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X = (x17x27°°°7xn)

wa)nﬁg(”)
confignumber

g0 A1TIAIZ2A ... A1TnA ... mo
|_
. ATTLATRA .  ALTnA - confignumber Com
- JT
|_
confignumber
haol A1FOA .. . omy
Resultp
f(X)

39



We must show that f : N" — N defined by

f(X) = Resulty( fr(InitConfig{™ (X)))

IS u-recursive.
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Theorem 10.20.

Every Turing computable partial function from N” to N is u-recursive.

The Rest of the Proof...
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A slide from lecture 13
Definition 10.15. p-Recursive Functions

The set M of u-recursive, or simply recursive, partial functions
is defined as follows.

1. Every initial function is an element of M.

2. Every function obtained from elements of M by composition
or primitive recursion is an element of M.

3. For every n > 0 and every total function f: N*"t1 5 N in M,
the function My : N — N defined by

M (X) = pylf(X,y) = 0]
is an element of M.
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10.5. Other Approaches
to Computability

Computer programs vs. Turing machines

Computer programs vs. p-recursive functions
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Let
e G =(V,>,S,P) be unrestricted grammar
e f be partial function from X* to **

Then G is said to compute f, if there are A,B,C,D €V,
such that for every x and y in X*

f(z) =y if and only if AzB =* CyD

This definition (and simple examples of it) must be known for
the exam
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EXxercise.

Describe an unrestricted grammar that computes the function
f N — N defined by f(n) = 2".

Both the input n and the answer 2™ are unary numbers.
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En verder...

Tentamen: vrijdag 3 juni 2016, 14:00—-17:00

Vragenuur...?

46



