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A slide from lecture 12:

Theorem 10.4.

Every primitive recursive function is total and computable.

PR: Turing-computable functions:
total and computable not necessarily total



A slide from lecture 13:
Definition 10.9. Bounded Quantifications
Let P be an (n 4+ 1)-place predicate. The bounded existential

quantification of P is the (n + 1)-place predicate Ep defined by

Ep(X,k) = (there exists y with 0 <y < k such that P(X,y) is true)

The bounded universal quantification of P is the (n + 1)-place
predicate Ap defined by

Ap(X, k) = (for every y satifying 0 <y <k, P(X,y) is true)



A slide from lecture 13:
Theorem 10.10.

If P is a primitive recursive (n 4+ 1)-place predicate,
both the predicates Ep and Ap are also primitive recursive.

Proof. ..



Definition 10.11. Bounded Minimalization

For an (n+ 1)-place predicate P, the bounded minimalization of
P is the function m, : N*T1 — N defined by

(X, k) = min{y | 0 <y <k and P(X,y)} if this set is not empty
B R otherwise



Definition 10.11. Bounded Minimalization

For an (n+ 1)-place predicate P, the bounded minimalization of
P is the function mp : N*T1 N defined by

| min{fy| 0<y<kand P(X,y)} if this set is not empty
mp(X, k) = { k+1 otherwise

The symbol u is often used for the minimalization operator, and
we sometimes write

mp(X, k) = b y[P(X,y)]

An important special case is that in which P(X,vy) is (f(X,y) = 0),
for some f : N**1 5 N. In this case mp is written m and referred
to as the bounded minimalization of f.



A slide from lecture 13:

EXercise.

Let f:N?T1 5 N be a primitive recursive function.

Show that the predicate P : N*T1 — {true, false} defined by

P(X,y) = (f(X,y) =0)

IS primitive recursive.



Theorem 10.12.

If P is a primitive recursive (n + 1)-place predicate,
its bounded minimalization mp is a primitive recursive function.

Proof...



X, y,z) =

h(X,y,z) =

<
y+1
Y+ 2

<
y+1
Y+ 2

if z <y
ifz>y+1 AN P(X,y+ 1) is true
ifz>y+1 AN =P(X,y+ 1) is true

if Ep(X,y) is true

if -Ep(X,y) A P(X,y+ 1) is true
if -Ep(X,y) N -P(X,y+ 1) is true
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Example 10.13. The nth Prime Number

PrNo(0) = 2
PrNo(1) = 3
PrNo(2) =5
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Example 10.13. The nth Prime Number

PrNo(0) = 2

PrNo(1) = 3

PrNo(2) = 5
Prime(n)

(n > 2) A =(there exists y such that
y>2ANy<n-—1AMod(n,y) =0)
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Example 10.13. The nth Prime Number

et
P(x,y) = (y >z AN Prime(y))

Then mp(xz, k) ...
and

2
mp(PrNo(k), (PrNo(k))! + 1)

PrNo(0)
PrNo(k + 1)

is primitive recursive, with h(xq,20) = ...
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A slide from lecture 12:

Theorem 10.4.

Every primitive recursive function is total and computable.

PR: Turing-computable functions:
total and computable not necessarily total
14



Unbounded minimalization

Total?
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Unbounded minimalization
Total?

A possible definition:

M(X) = (min{y | P(X,y) is true}) + 1 if this set is not empty
B 0 otherwise

Computable?
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A slide from lecture 13:

(Un)bounded quantification

H(z,y) =

Halts(x) =

T, halts after exactly y moves on input sg

there exists y such that
T, halts after exactly y moves on input sy
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Definition 10.14. Unbounded Minimalization
If P is an (n+ 1)-place predicate, the unbounded minimalization
of P is the partial function Mp : N® — N defined by

Mp(X) =min{y | P(X,y) is true}

Mp(X) is undefined at any X € N for which there is no y satis-
fying P(X,vy).
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Definition 10.14. Unbounded Minimalization

If Pis an (n+ 1)-place predicate, the unbounded minimalization
of P is the partial function Mp : N — N defined by

Mp(X) =min{y | P(X,y) is true}

Mp(X) is undefined at any X € N” for which there is no y satis-
fying P(X,vy).

The notation py[P(X,y)] is also used for Mp(X).

In the special case in which P(X,y) = (f(X,y) = 0), we write
Mp = My and refer to this function as the unbounded minimal-
ization of f.
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Definition 10.15. p-Recursive Functions

The set M of u-recursive, or simply recursive, partial functions
is defined as follows.

1. Every initial function is an element of M.

2. Every function obtained from elements of M by composition
or primitive recursion is an element of M.

3. For every n > 0 and every total function f : N+l 5 N in M,
the function My : N — N defined by

M(X) = pylf(X,y) = 0]
is an element of M.

20



Example.

Let

f(x, k) = p3(z, k) — C3(x, k)
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Structure tree Mf:

Not total

M¢(1) p

f(2) comp

|
Subp.r. p32

/\

P comp

/ \

Predp.r.  p3

/N

0 2
Co 1

\C%
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EXxercise.

a. Give an example of a non-total function f and another func-
tion g, such that the composition of f and g is total.

b. Can you also find an example of a non-total function f and
another function g, such that the composition of g and f is total?
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Structure tree M¢(x%?2):

comp

Myg(1) p / \p.r. %2
RN
f(2) comp o comp
LN VRN
Subp.r. p? C?  Subp.r. C? p3
/ N\ / N\
p% comp p% comp
/N /N
Predp.r.  p3 Predp.r.  p3
/N /\
Co i o 1t

Total
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Theorem 10.16.

All p-recursive partial functions are computable.

Proof...
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10.3. Godel Numbering
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Definition 10.17.
The Godel Number of a Sequence of Natural Numbers

For every n > 1 and every finite sequence xqg,zq1,...,x,_1 Of
n natural numbers, the Godel number of the sequence is the
number

gn(xg,z1,...,Tp_1) = 2703%15%2 _ (PrNo(n — 1))*n-1
where PrNo(i) is the ith prime (Example 10.13).
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Exercise 10.16.

Show that for any n > 1, the functions Add,, and Mult, from N"
to N, defined by

Addn(x1,...,2n) 1+ a0+ -+ xn

Multy(xq,...,xn) = X1 *To* -+ *Tp

respectively, are both primitive recursive.
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Example 10.18.
The Power to Which a Prime is Raised in the Factorization of x

Function Exponent : N2 — N defined as follows:

the exp. of PrNo(4) in z's prime fact. if x >0

Exponent(i,xz) = { 0 =0
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A slide from lecture 12

Definition 10.2. The Operations of Composition and Primitive
Recursion (continued)

2. Suppose n > 0 and g and h are functions of n and n 4 2
variables, respectively. (By *“a function of O variables,” we
mean simply a constant.)

The function obtained from ¢g and h by the operation of
primitive recursion is the function f : N*t+1 s N defined by
the formulas

f(X,0) = g(X)
f(X,kE+1) = h(X,k, f(X,k))
for every X € N and every k > 0.
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f(X,E+1) =h(X,k, f(X,0),...

(X, E))
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(f(X,0),..., f(X,k), f(X,k+ 1)) = h(X,k, (f(X,0),..., f(X,k)))
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Theorem 10.19.

Suppose that g : N* - N and h: N"*t2 3 N are primitive recursive
functions, and f : N7+l _ N is obtained from g and h by course-
of-values recursion; that is

f(X,0) = g(X)
f(X,k+1) h(X,k,gn(f(X,0),..., f(X,k)))

Then f is primitive recursive.

Proof. ..
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Example.

Fibonacci

f(n) ={

O
1

fn—=1) 4+ f(n—2)

ifn=20
ifn=1
ifn>2
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