Fundamentele Informatica 3
voorjaar 2016
http://www.liacs.leidenuniv.nl/~vlietrvanl/£fi3/
Rudy van Viliet
kamer 124 Snellius, tel. 071-527 5777
rvvliet(at)liacs(dot)nl
college 13, 2 mei 2016
10. Computable Functions

10.2. Quantification, Minimalization, and u-Recursive
Functions

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

A slide from lecture 12:
Definition 10.1. Initial Functions

The initial functions are the following:

1. Constant functions: For each k£ > 0 and each a > 0, the
constant function C* : N¥ — N is defined by the formula

CF(X)=a for every X € NF

2. The successor function s : N — N is defined by the formula
s(z) =x+1

3. Projection functions: For each kK > 1 and each ¢ with 1 <
i < k, the projection function p¥ : N¥ — N is defined by the
formula

pF(xe,xo,...,2) = 24

A slide from lecture 12:

Definition 10.2. The Operations of Composition and Primitive
Recursion

1. Suppose f is a partial function from N* to N, and for each 2
with 1 <4 <k, g; is a partial function from N to N.
The partial function obtained from f and gi1,92,...,9r by
composition is the partial function A from N to N defined
by the formula

h(X) = f(g1(X),92(X),...,9.(X)) for every X € N

A slide from lecture 12:

Definition 10.2. The Operations of Composition and Primitive
Recursion (continued)

2. Suppose n > 0 and g and h are functions of n and n 4 2
variables, respectively. (By *“a function of O variables,” we
mean simply a constant.)

The function obtained from ¢g and h by the operation of
primitive recursion is the function f : N*t+1 s N defined by
the formulas

f(X,0) = g(X)
f(X,kE+1) = h(X,k, f(X,k))
for every X € N and every k > 0.

A slide from lecture 12:
n-place predicate P is function from N™ to {true, false}

characteristic function xp defined by

|1 if P(X) is true
xp(X) = { 0 if P(X) is false

We say P is primitive recursive. . .

Theorem 10.6.

The two-place predicates LT, EQ, GT, LE, GE, and NE are
primitive recursive.

(LT stands for “less than,” and the other five have similarly
intuitive abbreviations.)

If P and Q are any primitive recursive n-place predicates, then
PAQ@Q, PVQ@Q and —P are primitive recursive.

Proof. ..

Structure tree xg@. . .

p.r.Sg

/N

Co C3

Structure tree xgg:

comp

/ \
Sub C% comp
Add C\Omp\ comp\
SQ/ \gub Sg/ comp

/\\2

Sub p% &

Structure tree xgg:

comp
\
Subp.r. C% comp
/\ N T
pl comp prAdd comp comp
Predp.r. p3pi comp p.r.Sg Subp.r. p.r.Sg comp
/\ /NN SN N /Y\\
Ccy p? s p3Cy C?2 pi comp C§ C% Subp.r.
/ A\ / \
Predp.r. p3 pl comp
/N / N\
08 p% Pred p.r p%

EXxercise.
Let f: N*t1 5 N be a primitive recursive function.

Show that the predicate P : N*T1 — {true, false} defined by

P(X,y) = (f(X,y) =0)

IS primitive recursive.

10

Let P be n-place predicate,

f17f27"'7fn:Nk_>N
Then Q = P(f1, fo,..., fn) is k-place predicate, with

XQ — XP(fl?fQ?”’?fn)

Primitive recursiveness. ..

11

Let P be n-place predicate,

fl?fQ)"'ufn:Nk_)N
then Q = P(f1, fo,..., fn) iS k-place predicate,

XQ — XP(fl?fQ?”’?fn)

Primitive recursiveness. ..

Example.

(f1=BfR2)°A(f3< fa+ f5)) V(P VQ)

12

Theorem 10.7.

Suppose fq, fo,..., fr are primitive recursive functions from N"
to N,
Py, P>, ..., P, are primitive recursive n-place predicates,

and for every X € N,
exactly one of the conditions P1(X), Po(X),..., PL.(X) is true.
Then the function f : N" — N defined by

(f1(X) if Pi(X) is true

F(X) = 1 fo(X) if Po(X) is true

| fr(X) if Pu(X) is true
IS primitive recursive.

Proof...
13

Example 10.8. The Mod and Div Functions

14

10.2. Quantification, Minimalization, and
u-Recursive Functions

15

A slide from lecture 12:

Theorem 10.4.

Every primitive recursive function is total and computable.

PR: Turing-computable functions:
total and computable not necessarily total
16

(Un)bounded quantification

Sq(z,y) = (y* ==)

PerfectSquare(z) = there exists y such that y2 =«

17

(Un)bounded quantification
Sa(z,y) = (y* =)
PerfectSquare(z) = there exists y such that y2 =z

Esq(z,k) = there exists y < k such that y? ==

18

(Un)bounded quantification

H(z,y) =

T, halts after exactly y moves on input sg

19

(Un)bounded quantification

H(z,y) =

Halts(x) =

T, halts after exactly y moves on input sg

there exists y such that
T, halts after exactly y moves on input sy

20

(Un)bounded quantification

H(z,y) =

Halts(x) =

EH(a:, k) —_

T, halts after exactly y moves on input s

there exists y such that
T, halts after exactly y moves on input sy

there exists y < k£ such that
T, halts after exactly y moves on input sy

21

Definition 10.9. Bounded Quantifications
Let P be an (n + 1)-place predicate. The bounded existential
quantification of P is the (n + 1)-place predicate Ep defined by

Ep(X,k) = (there exists y with 0 <y < k such that P(X,y) is true)

The bounded universal quantification of P is the (n + 1)-place
predicate Ap defined by

Ap(X, k) = (for every y satifying 0 <y <k, P(X,y) is true)

22

Theorem 10.10.

If P is a primitive recursive (n + 1)-place predicate,
both the predicates Ep and Ap are also primitive recursive.

Proof...

23

