
Fundamentele Informatica 3

voorjaar 2016

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777

rvvliet(at)liacs(dot)nl

college 12, 25 april 2016

9. Undecidable Problems

9.5. Undecidable Problems

Involving Context-Free Languages

10. Computable Functions

10.1. Primitive Recursive Functions

1

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

A slide from lecture 11

Theorem 9.20.

These two problems are undecidable:

1. CFGNonEmptyIntersection:

Given two CFGs G1 and G2, is L(G1) ∩ L(G2) nonempty?

2. IsAmbiguous:

Given a CFG G, is G ambiguous?

Proof. . .

2

A slide from lecture 11

Definition 9.21. Valid Computations of a TM

Let T = (Q,Σ,Γ, q0, δ) be a Turing machine.

A valid computation of T is a string of the form

z0#zr1#z2#zr3 . . .#zn#

if n is even, or

z0#zr1#z2#zr3 . . .#zrn#

if n is odd,
where in either case, # is a symbol not in Γ,
and the strings zi represent successive configurations of T on
some input string x, starting with the initial configuration z0 and
ending with an accepting configuration.

The set of valid computations of T will be denoted by CT .

3

A slide from lecture 11

Theorem 9.22.

For a TM T = (Q,Σ,Γ, q0, δ),

• the set CT of valid computations of T is the intersection of

two context-free languages,

• and its complement C′
T is a context-free language.

Proof. . .

4

Corollary.

The decision problem

CFGNonEmptyIntersection:

Given two CFGs G1 and G2, is L(G1) ∩ L(G2) nonempty?

is undecidable (cf. Theorem 9.20(1)).

Proof.

Let

AcceptsSomething: Given a TM T , is L(T) 6= ∅ ?

Prove that AcceptsSomething ≤ CFGNonEmptyIntersection

5

Theorem 9.23. The decision problem

CFGGeneratesAll: Given a CFG G with terminal alphabet

Σ, is L(G) = Σ∗ ?

is undecidable.

Proof.

Let

AcceptsNothing: Given a TM T , is L(T) = ∅ ?

Prove that AcceptsNothing ≤ CFGGeneratesAll . . .

6

Undecidable Decision Problems (we have discussed)

Self-Accepting

❄

Accepts

❄

PPPPPPPPPq

✲ MPCP ✲ PCP
�
�
�✒

✲

CFGNonEmptyIntersection

IsAmbiguous

Halts Accepts-Λ

❄ ❄

❳❳❳❳❳❳❳❳❳❳❳❳③

AcceptsEverything

❄

WritesSymbol PR (Rice)
✁

✁
✁☛

❄

❄

❄

❄

❆
❆
❆❯

Subset

❄

Equivalent

Accepts-L

AcceptsSomething

AcceptsTwoOrMore

AcceptsFinite

AcceptsRecursive

AcceptsNothing

❄

CFGGeneratesAll

❄
= reduction

❄
= application of result

7

10. Computable Functions

10.1. Primitive Recursive Functions

8

Exercise 10.1.

Let F be the set of partial functions from N to N. Then F = C∪U ,

where the functions in C are computable and the ones in U are

not.

Show that C is countable and U is not.

9

Exercise 7.37.

Show that if there is a TM T computing the function f : N → N,

then there is another one, T ′, whose tape alphabet is {1}.

10

Exercise 7.37.

Show that if there is a TM T computing the function f : N → N,

then there is another one, T ′, whose tape alphabet is {1}.

Suggestion: Suppose T has tape alphabet Γ = {a1, a2, . . . , an}.

Encode ∆ and each of the ai’s by a string of 1’s and ∆’s of

length n+1 (for example, encode ∆ by n+1 blanks, and ai by

1i∆n+1−i). Have T ′ simulate T , but using blocks of n+ 1 tape

squares instead of single squares.

11

Exercise.

How many Turing machines are there having n nonhalting states

q0, q1, . . . , qn−1 and tape alphabet {0,1} ?

12

Exercise 10.2.

The busy-beaver function b : N → N is defined as follows.

The value b(0) is 0.

For n > 0, there are only a finite number of Turing machines hav-

ing n nonhalting states q0, q1, . . . , qn−1 and tape alphabet {0,1}.

Let T0, T1, . . . , Tm be the TMs of this type that eventually halt

on input 1n, and for each i, let nTi be the number of 1’s that

Ti leaves on its tape when it halts after processing the input

string 1n. The number b(n) is defined to be the maximum of

the numbers nT0, nT1, . . . , nTm.

Show that the total function b : N → N is not computable.

13

Exercise 10.2.

The busy-beaver function b : N → N is defined as follows.

The value b(0) is 0.

For n > 0, there are only a finite number of Turing machines hav-

ing n nonhalting states q0, q1, . . . , qn−1 and tape alphabet {0,1}.

Let T0, T1, . . . , Tm be the TMs of this type that eventually halt

on input 1n, and for each i, let nTi be the number of 1’s that

Ti leaves on its tape when it halts after processing the input

string 1n. The number b(n) is defined to be the maximum of

the numbers nT0, nT1, . . . , nTm.

Show that the total function b : N → N is not computable.

Suggestion: Suppose for the sake of contradiction that Tb is

a TM that computes b. Then we can assume without loss of

generality that Tb has tape-alfabet {0,1}.

14

Definition 10.1. Initial Functions

The initial functions are the following:

1. Constant functions: For each k ≥ 0 and each a ≥ 0, the

constant function Ck
a : Nk → N is defined by the formula

Ck
a(X) = a for every X ∈ N

k

15

Definition 10.1. Initial Functions

The initial functions are the following:

1. Constant functions: For each k ≥ 0 and each a ≥ 0, the

constant function Ck
a : Nk → N is defined by the formula

Ck
a(X) = a for every X ∈ N

k

2. The successor function s : N → N is defined by the formula

s(x) = x+1

16

Definition 10.1. Initial Functions

The initial functions are the following:

1. Constant functions: For each k ≥ 0 and each a ≥ 0, the
constant function Ck

a : Nk → N is defined by the formula

Ck
a(X) = a for every X ∈ N

k

2. The successor function s : N → N is defined by the formula

s(x) = x+1

3. Projection functions: For each k ≥ 1 and each i with 1 ≤
i ≤ k, the projection function pki : Nk → N is defined by the
formula

pki (x1, x2, . . . , xk) = xi

17

Definition 10.2. The Operations of Composition and Primitive

Recursion

1. Suppose f is a partial function from N
k to N, and for each i

with 1 ≤ i ≤ k, gi is a partial function from N
m to N.

The partial function obtained from f and g1, g2, . . . , gk by

composition is the partial function h from N
m to N defined

by the formula

h(X) = f(g1(X), g2(X), . . . , gk(X)) for every X ∈ N
m

18

Definition 10.2. The Operations of Composition and Primitive

Recursion (continued)

2. Suppose n ≥ 0 and g and h are functions of n and n + 2

variables, respectively. (By “a function of 0 variables,” we

mean simply a constant.)

The function obtained from g and h by the operation of

primitive recursion is the function f : Nn+1 → N defined by

the formulas

f(X,0) = g(X)

f(X, k +1) = h(X, k, f(X, k))

for every X ∈ N
n and every k ≥ 0.

19

Example 10.5. Addition, Multiplication and Subtraction

Add(x, y) = x+ y

20

Example 10.5. Addition, Multiplication and Subtraction

Add(x, y) = x+ y

Structure tree:

✁
✁
✁

❆
❆
❆

✁
✁
✁

❆
❆
❆

p.r.

p11 comp

s p33

Add

21

Definition 10.3. Primitive Recursive Functions

The set PR of primitive recursive functions is defined as follows.

1. All initial functions are elements of PR.

2. For every k ≥ 0 and m ≥ 0, if f : Nk → N and g1, g2, . . . , gk :
N
m → N are elements of PR, then the function f(g1, g2, . . . , gk)

obtained from f and g1, g2, . . . , gk by composition is an ele-
ment of PR.

3. For every n ≥ 0, every function g : Nn → N in PR, and every
function h : N

n+2 → N in PR, the function f : N
n+1 → N

obtained from g and h by primitive recursion is in PR.

In other words, the set PR is the smallest set of functions that
contains all the initial functions and is closed under the opera-
tions of composition and primitive recursion.

22

Example 10.5. Addition, Multiplication and Subtraction

Mult(x, y) = x ∗ y

23

Example 10.5. Addition, Multiplication and Subtraction

Sub(x, y) =

{

x− y if x ≥ y

0 otherwise

x
.
− y

24

Example 10.5. Addition, Multiplication and Subtraction

Sub(x, y) =

{

x− y if x ≥ y

0 otherwise

x
.
− y

Sub(x,0) = x (so g = p11)

Sub(x, k +1) = Pred(Sub(x, k))

(= h(x, k,Sub(x, k)), so h = Pred(p33))

25

Example 10.5. Addition, Multiplication and Subtraction

Sub(x, y) =

{

x− y if x ≥ y

0 otherwise

Sub(x,0) = x (so g = p11)

Sub(x, k +1) = Pred(Sub(x, k))

(= h(x, k,Sub(x, k)), so h = Pred(p33))

✁
✁
✁

❆
❆
❆

✁
✁
✁

❆
❆
❆

✁
✁✁

❆
❆
❆

p.r.

p11 comp

p.r. p33

C0
0 p21

Sub

Pred

26

Theorem 10.4.

Every primitive recursive function is total and computable.

Proof. . .

27

Theorem 10.4.

Every primitive recursive function is total and computable.

i = 0;

v = g(x)

while (i<k)

{ v = h(x,i,v)

i ++;

}

28

Theorem 10.4.

Every primitive recursive function is total and computable.

PR:

total and computable

Turing-computable functions:

not necessarily total

29

Example 10.5. Addition, Multiplication and Subtraction

Sub(x, y) =

{

x− y if x ≥ y

0 otherwise

x
.
− y

30

n-place predicate P is function from N
n to {true, false}

characteristic function χP defined by

χP (X) =

{

1 if P (X) is true
0 if P (X) is false

We say P is primitive recursive. . .

31

Theorem 10.6.

The two-place predicates LT , EQ, GT , LE , GE , and NE are

primitive recursive.

(LT stands for “less than,” and the other five have similarly

intuitive abbreviations.)

If P and Q are any primitive recursive n-place predicates, then

P ∧Q, P ∨Q and ¬P are primitive recursive.

Proof. . .

32

