Solution to exercise Fundamentele Informatica 3

Variant of 7.28b): $\quad S \rightarrow S_{1} \$ \quad S_{1} \rightarrow S_{1} A|a| \Lambda \quad A \rightarrow A a \mid b$
This context-free grammar does not satisfy the LL(1) property, as

$$
\begin{array}{ll}
L A_{1}(A \rightarrow b)=\{b\} & L A_{1}(A \rightarrow A a)=\{b\} \\
L A_{1}\left(S_{1} \rightarrow a\right)=\{a\} & L A_{1}\left(S_{1} \rightarrow S_{1} A\right)=\{a, b\} \quad L A_{1}\left(S_{1} \rightarrow \Lambda\right)=\{\$, b\}
\end{array}
$$

We eliminate left recursion for non-terminal symbols S_{1} and A using new nonterminal symbols U and W, respectively:

$$
\begin{aligned}
& S_{1} \rightarrow a U|U \quad U \rightarrow \Lambda| A U \\
& A \rightarrow b W \quad W \rightarrow \Lambda \mid a W
\end{aligned}
$$

The productions of the resulting context-free grammar are

$$
S \rightarrow S_{1} \$ \quad S_{1} \rightarrow a U|U \quad U \rightarrow \Lambda| A U \quad A \rightarrow b W \quad W \rightarrow \Lambda \mid a W
$$

This grammar does satisfy the $\operatorname{LL}(1)$ property, as

$$
\begin{array}{ll}
L A_{1}(U \rightarrow A U)=\{b\} & L A_{1}(U \rightarrow \Lambda)=\{\$\} \\
L A_{1}\left(S_{1} \rightarrow a U\right)=\{a\} & L A_{1}\left(S_{1} \rightarrow U\right)=\{b, \$\} \\
L A_{1}(W \rightarrow a W)=\{a\} & L A_{1}(W \rightarrow \Lambda)=\{b, \$\}
\end{array}
$$

(RvV, 9 October 2006)

Solution to exercise Fundamentele Informatica 3

Excercise 11.12.1): Let us call the decision problem from this exercise SubSuperSet. We cannot apply Rice's theorem directly to SubSuperSet, because this decision problem has two TM's T_{1} and T_{2} as parameters, while Rice's theorem is about decision problems with (only) one TM as a parameter. Still, we can use the theorem to prove that SubSuperSet is unsolvable.
Let L_{2} be any recursively enumerable language over an alphabet Σ, such that $L_{2} \neq \emptyset$ and $L_{2} \neq \Sigma^{*}$. Further, let T_{2}^{\prime} be a TM accepting L_{2}. Then let SubSuperSet $\boldsymbol{L}_{\mathbf{2}}$ be the following decision problem:

Given a TM T, is $L(T) \subseteq L_{2}$ or $L_{2} \subseteq L(T)$?
Because $L_{2} \neq \emptyset$ and $L_{2} \neq \Sigma^{*}$, the property of being a subset or a superset of L_{2} is a non-trivial property of recursively enumerable languages (why exactly?). Hence, by Rice's theorem, the decision problem $\operatorname{SubSuperSet} \boldsymbol{L}_{\mathbf{2}}$ is unsolvable.

We now reduce $\operatorname{SubSuperSet} \boldsymbol{L}_{\mathbf{2}}$ to the decision problem SubSuperSet from this exercise. For this, we must define a computable transformation F from the instances of SubSuperSet $\boldsymbol{L}_{\mathbf{2}}$ (TM's T) to instances of SubSuperSet (pairs of TM's $\left(T_{1}, T_{2}\right)$), such that T is a yes-instance of $\operatorname{SubSuperSet} \boldsymbol{L}_{\mathbf{2}}$, if and only if $F(T)$ is a yes-instance of SubSuperSet. Let TM T be an arbitrary instance of SubSuperSet $\boldsymbol{L}_{\mathbf{2}}$. We define F by $F(T)=\left(T, T_{2}^{\prime}\right)$. Hence, $T_{1}=T$ and $T_{2}=T_{2}^{\prime}$. Indeed, the function F is computable.

Now, T is a yes-instance of $\operatorname{SubSuperSet} \boldsymbol{L}_{\mathbf{2}}$, if and only if

$$
L(T) \subseteq L_{2} \text { or } L_{2} \subseteq L(T)
$$

i.e., if and only if

$$
L(T) \subseteq L\left(T_{2}^{\prime}\right) \text { or } L\left(T_{2}^{\prime}\right) \subseteq L(T)
$$

i.e., if and only if $F(T)=\left(T, T_{2}^{\prime}\right)$ is a yes-instance of SubSuperSet.

Indeed, SubSuperSet $L_{2} \leq$ SubSuperSet. Because decision problem SubSuperSet $\boldsymbol{L}_{\mathbf{2}}$ is unsolvable, so is SubSuperSet.
(RvV, 6 December 2006)

