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Chapter 1

Introduction

This thesis describes DNA expressions, a formal notation for DNA molecules that may
contain nicks and gaps. In this chapter, we first sketch the background of this research,
the field of DNA computing. We subsequently describe our contribution to the field, and
give an outline of the thesis. We finally list the publications that have resulted from this
thesis work.

1.1 Background of the thesis

Natural computing is the field of research that, on the one hand, investigates ways of
computing inspired by nature, and, on the other hand, analyses computational processes
occurring in nature, see [Rozenberg et al., 2012]. Sources of inspiration are, a.o., the
organization of neurons in the brain, the operation of cells of organisms in general, and
also the crucial role for life of DNA.

Since the discovery of the structure and function of DNA molecules, DNA has been
(and still is) intensively studied by biologists and biochemists. In the course of time,
also computer scientists became interested in DNA. For example, the evolution of DNA
over the generations inspired researchers to develop evolutionary algorithms , which is one
branch of natural computing.

The probably best-known subbranch of evolutionary algorithms is formed by the ge-
netic algorithms . In a genetic algorithm, possible solutions to a problem are encoded as
strings (as analogues of DNA molecules). In an iterative process, the algorithm maintains
a population of these strings. Every iteration, the strings are evaluated and the ‘better’
strings in the population are selected to produce a next generation by operations resem-
bling recombination and mutation. This way, good solutions to the problem are obtained,
see, e.g., [Holland, 1975] and [Whitley & Sutton, 2012].

Another area where the study of DNA and computer science meet, is DNA computing ,
which is also a branch of natural computing. In this field, it is investigated how DNA
molecules themselves can be used to perform computations. That is, instead of mimicking
the ‘behaviour’ of DNA by software on silicon, the DNA molecules serve as the hardware
that really do the work. Also models to describe these computations are studied.

The formal study of computational properties of DNA really began when Tom Head
[1987] defined formal languages consisting of strings that can be modified by operations
based on the way that restriction enzymes process DNA molecules. Theoretical computer
scientists explored the generative power and other properties of such languages, see, e.g.,
[Kari et al., 1996] and [Head et al., 1997].
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2 Ch. 1 Introduction

The interest of the computer science community in the computational potential of
DNA was boosted, when Leonard Adleman [1994] demonstrated that (real, physical) DNA
molecules can in principle be used to solve computationally hard problems. He performed
an experiment in a biolab that solved a small instance of the directed Hamiltonian path
problem using DNA, enzymes and standard biomolecular operations.

Since then, research on DNA computing is flourishing. Researchers from various dis-
ciplines, ranging from theoretical computer science to molecular biology, investigate the
computational power of DNA molecules, both from a theoretical and an experimental
point of view. Research groups from all over the world operate in this field, as is illus-
trated by the contributions to the annual conference on DNA Computing and Molecular
Programming. For the latest two editions of this conference, see [Murata & Kobayashi,
2014] and [Phillips & Yin, 2015].

Initially, people even envisioned a universal DNA-based computer, i.e., a machine
that takes a program encoded in DNA as an input, and carries out that program using
(other) DNA molecules, in the same way that ordinary, electronic computers carry out
programs, see, e.g., [Kari, 1997]. Nowadays, the applications of DNA computing and other
types of molecular programming that are investigated are more specific. Current topics of
interest include, a.o., gene assembly in ciliates, DNA sequence design, self-assembly and
nanotechnology, see, e.g., [Ehrenfeucht et al., 2004], [Kari et al., 2005], [Winfree, 2003],
[Zhang & Seelig, 2011], and [Chen et al., 2006]. The basic concepts of DNA computing
are described in [Păun et al., 1998] and [Kari et al., 2012].

We conclude this section with two remarkable examples of DNA nanotechnology.
[Rothemund, 2006] reports on a method (called ‘scaffolded DNA origami’) to create nano-
scale shapes and patterns from DNA. With this method, a long single-stranded DNA
molecule (the scaffold) folds into a given shape, when combined with carefully designed
short pieces of DNA. Some of the shapes that Rothemund formed in his experiments in
the lab were stars, triangles, and smiley faces.

[Gu et al., 2010] describes the operation of a nanoscale assembly line built of DNA.
One DNA molecule (the ‘walker’) traverses a track provided by a second DNA molecule,
and on its way, picks up nanoparticles (‘cargo’) donated by three different DNA-based
machines. Each DNA machine carries a specific type of particle. As the machines can
be programmed independently either to donate particles or not, the assembly line can be
used to produce eight (= 23) distinct products.

1.2 Contribution of the thesis

Much research in the field of DNA computing concerns questions like what kind of DNA
molecules (or other types of molecules) can be constructed, and what these molecules may
be used for. As the DNA origami and assembly line from the previous section demonstrate,
DNA turns out to have unexpected applications. Less attention is paid in the literature to
formal ways to denote DNA molecules. Some examples are [Schroeder & Blattner, 1982],
[Boneh et al., 1996] and [Deaton et al., 1999].

An advantage of formal notations over more verbal descriptions, is that the former are
shorter and more precise. They do not give rise to ambiguities, e.g., as to which DNA
molecules are actually meant. They can be used to describe precisely what computations
are carried out with the molecules and what the results of these computations are. This
way, the notations may serve as (a first step towards) a formal calculus for the processing
of DNA molecules. Having such a calculus could be an advantage for research in areas
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such as DNA computing and (parts of) genetic engineering.

Formal grammars to describe DNA and RNA are considered in, among others, [Searls,
1992] and [Rivas & Eddy, 2000]. A useful property of such grammars, is that descriptions
of molecules satisfying a grammar may be automatically parsed, during which process
errors in the descriptions can be detected. A successful parse yields (some representation
of) a derivation of the expression parsed, which may be further interpreted. For example,
derivations of an RNA strand in a grammar may be used to predict its secondary structure,
i.e., the way the strand is folded. Different derivations for the same strand (if the grammar
is ambiguous) may yield different secondary structures, which are indeed observed in
reality.

The importance of formal notations is also recognized in other research areas. For ex-
ample, Laros et al. [2011] conclude that a formalization of the nomenclature for describing
human gene variants revealed the full complexity of this nomenclature. The grammars
they propose might also help to develop tools to recognize variants at the DNA level.

Let us return to DNAmolecules. In order to describe a double-stranded DNAmolecule,

people often use the standard double-word notation (like
ACATG
TGTAC ). If we were only

concerned with perfectly complementary, double-stranded DNA molecules like this, then
there would be an even simpler notation: it would suffice to specify the sequence of
nucleotides in one of the strands, assuming a certain orientation of this strand. The other
strand would be uniquely determined by Watson-Crick complementarity. For example,

a description of the molecule
ACATG
TGTAC might then be: ACATG. DNA molecules may,

however, also take other shapes, and it is desirable that non-standard DNA molecules can
also be denoted.

In this thesis, we describe a concise and precise notation for DNA molecules, based
on the letters A, C, G and T and three operators ↑, ↓ and l. The resulting DNA ex-
pressions denote formal DNA molecules – a formalization of DNA molecules. We do not
only account for perfect, double-stranded DNA molecules, but also for single-stranded
DNA molecules and for double-stranded DNA molecules containing nicks (missing phos-
phodiester bonds between adjacent nucleotides in the same strand) and gaps (missing
nucleotides in one of the strands).

Our three operators bear some resemblance to the operators used in [Boneh et al.,
1996] and [Li, 1999], but their functionality is quite different. The operator ↑ acts as
a kind of ligase for the upper strands: it creates upper strands and connects the upper
strands of its arguments. The operator ↓ is the analogue for lower strands. Finally, l fills
up the gap(s) in its argument. The effects of the three operators do not perfectly match
the effects of existing techniques in real-life DNA synthesis. Yet, the operators are useful
to describe certain types of DNA molecules.

In our formal language, different DNA expressions may denote the same formal DNA
molecule. Such DNA expressions are called equivalent . We examine which DNA ex-
pressions are minimal , which means that they have the shortest length among all DNA
expressions denoting the same formal DNA molecule. Among others, we describe how to
construct a minimal DNA expression for a given molecule.

For a given DNA expression E, one may want to find an equivalent, minimal DNA
expression, e.g., in order to save space for storing the description of a DNA molecule. A
natural way to achieve this consists of two steps: (1) to determine the molecule denoted by
E, and (2) to use the constructions mentioned above to obtain a minimal DNA expression
for that molecule.
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We present a different approach. We describe an efficient algorithm, which directly
rewrites E into an equivalent, minimal DNA expression. This approach is elegant, because
it operates at the level of DNA expressions only, rather than to refer to the DNA molecules
they denote. For many DNA molecules, there exist more than one (equivalent) minimal
DNA expressions. Depending on the input, the algorithm may yield each of these.

When one wants to decide whether or not two DNA expressions E1 and E2 are equi-
valent, one may determine the DNA molecules that they denote and check if these are the
same. Again, we choose a different approach. We define a normal form: a set of proper-
ties, such that for each DNA expression there is exactly one equivalent DNA expression
with these properties. As the DNA expressions that satisfy the normal form are minimal,
it is called a minimal normal form.

We subsequently describe an algorithm to rewrite an arbitrary DNA expression into
the normal form. Now to decide whether or not E1 and E2 are equivalent, one determines
their normal form versions and then checks if these are the same. Also this algorithm
strictly operates at the level of DNA expressions. It does not refer to the DNA molecules
denoted.

Recall that the algorithm for rewriting a given DNA expression into an equivalent,
minimal expression may produce any minimal DNA expression, depending on the input.
Hence, by itself, this algorithm is not sufficient to produce a normal form. However, the
algorithm serves as the first step of our algorithm for the minimal normal form.

1.3 Set-up of the thesis

This thesis is organized as follows. Chapter 2 is intended as an introduction to the
terminology from theoretical computer science and DNA, for readers that are not familiar
with (either of) these fields. In fact, many terms occurring in Sections 1.1 and 1.2 are
defined or explained there. The chapter also describes in more detail the contributions to
the area of DNA computing by Head and Adleman, mentioned in Section 1.1.

The description of our own research starts in Chapter 3, and consists of three parts.
Part I deals with DNA expressions in general. First, Chapter 3 describes a formalization
of DNA molecules with nicks and gaps. This is the semantic basis of our notation. In
Chapter 4, we define DNA expressions. Among other things, we examine how one can
check whether or not a given string is a DNA expression and how one can compute its
semantics. We also give a context-free grammar generating the DNA expressions. In
Chapter 5, we derive some general results on DNA expressions, e.g., about the molecules
that can be denoted by them, and about different DNA expressions that denote (almost)
the same molecule.

In Part II, we focus on minimal DNA expressions. In Chapter 6, we derive lower
bounds on the length of DNA expressions denoting a given molecule. Chapter 7 de-
scribes how to construct DNA expressions that actually achieve the lower bounds, and
thus are minimal. Different types of molecules are dealt with by different constructions.
In Chapter 8, we prove that there do not exist minimal DNA expressions other than
those obtained with the constructions described. We also give an elegant characterization
of minimal DNA expressions by six syntactic properties, which makes it easy to check
whether or not a given DNA expression is minimal. Finally, we compute the number
of minimal DNA expressions denoting a given molecule. In Chapter 9, we describe and
analyse a recursive algorithm to rewrite an arbitrary DNA expression into an equivalent,
minimal DNA expression. The algorithm applies a series of local rearrangements to the
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result brief description
Definition 3.2 (p. 35) formal DNA molecules
Definition 4.1 (p. 47) DNA expressions
Theorem 5.5 (p. 81) expressible formal DNA molecules
Theorem 6.31 (p. 134) lower bound on length DNA expr.
Theorem 7.5 (p. 138) minimal l-expressions
Theorem 7.24 (p. 158) construction of minimal, nick free

↑-expressions and ↓-expressions
Theorem 7.46 (p. 177) construction of minimal ↑-expressions

(and ↓-expressions) with nicks
Lemma 8.22 (p. 205), Theorem 8.26 (p. 211) characterization minimal DNA expr.
Corollary 8.47 (p. 232) number of minimal DNA expressions
Figure 9.15 (p. 285) algorithm for minimality
Definition 10.1 (p. 314) minimal normal form
Lemma 10.6 (p. 317), Theorem 10.8 (p. 322) characterization minimal normal form
Figure 11.6 (p. 356) algorithm for minimal normal form

Table 1.1: Overview of main results from the thesis.

input DNA expression, which make sure that step by step, the DNA expression acquires
the six properties that characterize minimality, while still denoting the same molecule.
We prove that this algorithm is efficient.

The minimal normal form is the subject of Part III. In Chapter 10, we define the nor-
mal form. We prove that the DNA expressions in minimal normal form are characterized
by five syntactic properties. The language of all normal form DNA expressions turns out
to be regular. Chapter 11 is about algorithms to rewrite a given DNA expression into
the normal form. First, we propose a recursive set-up, which appears to be inefficient.
Therefore, we also describe an alternative, two-step algorithm. This algorithm first makes
the DNA expression minimal (using the algorithm from Chapter 9) and then rewrites the
resulting minimal DNA expression into the normal form. This second algorithm, which
uses the characterization of the normal form by five properties, is efficient.

In Chapter 12 we summarize and discuss the results, draw conclusions from our work
and suggest directions for future research.

To facilitate a quick look-up, we list the main results from the thesis also in Table 1.1.
The contents of the thesis is schematically summarized in Figure 1.1. The figure can
be understood as follows. In order to denote (formal) DNA molecules, we use letters
representing the bases, and operators ↑, ↓ and l. The result are DNA expressions. Every
expressible formal DNA molecule is denoted by infinitely many DNA expressions. Some of
these DNA expressions are shorter than others. We consider the ones with minimal length,
the minimal DNA expressions. There may be more than one minimal DNA expression for
the same DNA molecule. Only one of these is in (minimal) normal form.

1.4 Resulting publications

We have published the definitions and the main results from this thesis in two technical
reports, one conference paper and three journal papers. We list them here:

• R. van Vliet: Combinatorial Aspects of Minimal DNA Expressions (ext.), Technical
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Figure 1.1: Schematic view of the contents of the thesis.

Report 2004-03, Leiden Institute of Advanced Computer Science, Leiden University
(2004), see the repository of Leiden University at

https://openaccess.leidenuniv.nl

This report contains, a.o., the formal proofs of the results in the conference paper
Combinatorial aspects of minimal DNA expressions below. Due to space limitations,
these could not be included in the paper itself. The report roughly corresponds to
Chapters 3–8 of this thesis.

• R. van Vliet, H.J. Hoogeboom, G. Rozenberg: Combinatorial aspects of minimal
DNA expressions, DNA Computing – 10th International Workshop on DNA Com-
puting, DNA10, Milan, Italy, June 7–10, 2004 – Revised Selected Papers , Lecture
Notes in Computer Science 3384 (C. Ferretti, G. Mauri, C. Zandron, eds), Springer
(2005), 375–388.

This paper has been presented at the conference mentioned. It was awarded one of

https://openaccess.leidenuniv.nl
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the two best student papers awards from this conference. The paper contains some
of the main results from Chapters 3–8 of this thesis.

• R. van Vliet, H.J. Hoogeboom, G. Rozenberg: The construction of minimal DNA
expressions, Natural Computing 5(2) (2006), 127–149.

After DNA10, six of the papers presented at the conference were selected for a
special issue of Natural Computing . Among these was the above paper Combinatorial
aspects of minimal DNA expressions . We significantly revised the paper, focusing on
the construction of minimal DNA expressions. Because of the more limited scope,
we could elaborate more on the proof that the resulting DNA expressions are really
minimal. These aspects are covered in Chapters 6 and 7 of this thesis.

• R. van Vliet: All about a Minimal Normal Form for DNA Expressions , Technical
Report 2011-03, Leiden Institute of Advanced Computer Science, Leiden University
(2011), see the repository of Leiden University at

https://openaccess.leidenuniv.nl

This report contains, a.o., more details about the results in the two journal papers
Making DNA expressions minimal and A minimal normal form for DNA expressions
below. The report roughly corresponds to Chapters 9–11 of this thesis.

• R. van Vliet, H.J. Hoogeboom: Making DNA expressions minimal, Fundamenta
Informaticae 123(2) (2013), 199–226.

This paper is part 1 of a diptych, which were published together. It contains some
of the main results from Chapter 9 of this thesis. Part 2 is the paper A minimal
normal form for DNA expressions below.

• R. van Vliet, H.J. Hoogeboom: A minimal normal form for DNA expressions, Fun-
damenta Informaticae 123(2) (2013), 227–243.

This paper is part 2 of a diptych, which were published together. It contains some
of the main results from Chapters 10 and 11 of this thesis. Part 1 is the above paper
Making DNA expressions minimal .

https://openaccess.leidenuniv.nl




Chapter 2

Preliminaries

The topic of this thesis is a formal language to describe DNA molecules. As such, it is
a combination of theoretical computer science and molecular biology. Therefore, in the
description and discussion of the subject, we will frequently use terms and concepts from
both fields. Readers with a background in biology may not be familiar with the termino-
logy from computer science and vice versa. In order for this thesis to be understandable
to readers with either background, this chapter provides a brief introduction to the two
fields.

First, we introduce some terminology and present a few results from computer science,
concerning strings, trees, grammars, relations, and algorithmic complexity. Next, we
discuss DNA, its structure and some possible deviations from the perfect double-stranded
DNA molecule. We finally describe two important contributions to the field of DNA
computing, which has emerged at the interface of computer science and biology.

Readers that are familiar with both theoretical computer science and DNA, may skip
over this chapter and proceed to Chapter 3. If necessary, they can use the list of symbols
and the index at the end of this thesis to find the precise meaning of a symbol or term
introduced in the present chapter.

2.1 Strings, trees, grammars, relations and complex-

ity

An alphabet is a finite set, the elements of which are called symbols or letters . A finite
sequence of symbols from an alphabet Σ is called a string over Σ. For a string X =
x1x2 . . . xr over an alphabet Σ, with x1, x2, . . . , xr ∈ Σ, the length of X is r. In general,
we use |X| to denote the length of a string X. The length of the empty string λ equals 0.

For a non-empty string X = x1x2 . . . xr, we define L(X) = x1 and R(X) = xr. The
concatenation of two strings X1 and X2 over an alphabet Σ is usually denoted as X1X2;
sometimes, however, we will explicitly write X1 · X2. Concatenation is an associative
operation, which means that (X1 ·X2) ·X3 = X1 · (X2 ·X3) for all strings X1, X2, X3 over
Σ. Because of this, the notation X1X2X3 (or X1 ·X2 ·X3) is unambiguous.

For a letter a from the alphabet Σ, the number of occurrences of a in a string X is
denoted by #a(X). Sometimes, we are not so much interested in the number of occurrences
of a single letter in a stringX, but rather in the total number of occurrences of two different
letters a and b in X. This total number is denoted by #a,b(X).

One particular alphabet that we will introduce in this thesis is Σ = {A, C, G, T}. If

9
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X = ACATGCAT, then, for example, |X| = 8, L(X) = A and #A,T(X) = 5.

The set of all strings over an alphabet Σ is denoted by Σ∗, and Σ+ = Σ∗ \ {λ} (the set
of non-empty strings). A language over Σ is a subset K of Σ∗.

Substrings

A substring of a string X is a (possibly empty) string Xs such that there are (possibly
empty) strings X1 and X2 with X = X1X

sX2. If X
s 6= X, then Xs is a proper substring

of X. We call the pair (X1, X2) an occurrence of Xs in X. If X1 = λ, then Xs is a prefix
of X; if X2 = λ, then Xs is a suffix of X. If a prefix of X is a proper substring of X,
then it is also called a proper prefix . Analogously, we may have a proper suffix of X.

For example, the stringX = ACATGCAT has one occurrence of the substring ATGCA
and two occurrences of the substring AT. One of the occurrences of AT is (ACATGC, λ),
so AT is a (proper) suffix of X.

If (X1, X2) and (Y1, Y2) are different occurrences of Xs in X, then (X1, X2) precedes
(Y1, Y2) if |X1| < |Y1|. Hence, all occurrences inX of a given stringXs are linearly ordered,
and we can talk about the first, second, . . . occurrence of Xs in X. Although, formally,
an occurrence of a substring Xs in a string X is the pair (X1, X2) surrounding Xs in X,
the term will also be used to refer to the substring itself, at the position in X determined
by (X1, X2).

Note that for a string X = x1x2 . . . xr of length r, the empty string λ has r + 1
occurrences: (λ,X), (x1, x2 . . . xr), . . . , (x1 . . . xr−1, xr), (X, λ).

If a string X is the concatenation of k times the same substring Xs, hence X =
Xs . . . Xs

︸ ︷︷ ︸
k times

, then we may write X as (Xs)k.

Let (Y1, Y2) and (Z1, Z2) be occurrences in a string X of substrings Y s and Zs, re-
spectively. We say that (Y1, Y2) and (Z1, Z2) are disjoint , if either |Y1| + |Y s| ≤ |Z1| or
|Z1| + |Zs| ≤ |Y1|. Intuitively, one of the substrings occurs (in its entirety) before the
other one.

If the two occurrences are not disjoint, hence if |Z1| < |Y1|+ |Y s| and |Y1| < |Z1|+ |Zs|,
then they are said to intersect . Note that, according to this formalization of intersection,
an occurrence of the empty string λ may intersect with an occurrence of a non-empty
string. In this thesis, however, we will not deal with this pathological type of intersections.
Occurrences of two non-empty substrings intersect, if and only if the substrings have at
least one (occurrence of a) letter in common.

We say that (Y1, Y2) overlaps with (Z1, Z2), if either |Y1| < |Z1| < |Y1| + |Y s| <
|Z1| + |Zs| or |Z1| < |Y1| < |Z1| + |Zs| < |Y1| + |Y s|. Hence, one of the substrings starts
before and ends inside the other one.

Finally, the occurrence (Y1, Y2) of Y
s contains (or includes) the occurrence (Z1, Z2) of

Zs, if |Y1| ≤ |Z1| and |Z1|+ |Zs| ≤ |Y1|+ |Y s|.
In Figure 2.1, we have schematically depicted the notions of disjointness, intersection,

overlap and inclusion.

If it is clear from the context which occurrences of Y s and Zs in X are considered,
e.g., if these strings occur in X exactly once, then we may also say that the substrings Y s

and Zs themselves are disjoint, intersect or overlap, or that one contains the other.

Note the difference between intersection and overlap. If (occurrences of) two substrings
intersect, then either they overlap, or one contains the other, and these two possibilities are
mutually exclusive. For example, in the string X = ACATGCAT the (only occurrence of



2.1 Strings, trees, grammars, relations and complexity 11

X

Y1 Y s Y2

Z1 Zs Z2 (a)

Y1 Y s Y2

Z1 Zs Z2 (b)

Y1 Y s Y2

Z1 Zs Z2 (c)

Figure 2.1: Examples of disjoint and intersecting occurrences (Y1, Y2) of Y
s and (Z1, Z2)

of Zs in a string X. (a) The occurrences are disjoint: |Y1| + |Y s| ≤ |Z1|. (b) The
occurrences overlap: |Z1| < |Y1| < |Z1| + |Zs| < |Y1| + |Y s|. (c) The occurrence of Y s

contains the occurrence of Zs: |Y1| ≤ |Z1| and |Z1|+ |Zs| ≤ |Y1|+ |Y s|.

the) substring Y s = ATGCA intersects with both occurrences of the substring Zs = AT.
It contains the first occurrence of Zs and it overlaps with the second occurrence of Zs.

Functions on strings

Let Σ be an alphabet. We can consider the set Σ∗ (of strings over Σ) as an algebraic
structure, with the concatenation as operation: the concatenation of two strings over Σ
is again a string over Σ. In this context, the empty string λ is the identity 1Σ∗ , i.e., the
unique element satisfying X · 1Σ∗ = 1Σ∗ ·X = X for all X ∈ Σ∗.

Let K be a set with an associative operation ◦ and identity 1K . A function h from
Σ∗ to K is called a homomorphism, if h(X1X2) = h(X1) ◦ h(X2) for all X1, X2 ∈ Σ∗ and
h(1Σ∗) = 1K . Hence, to specify h if suffices to give its values for the letters from Σ and
for the identity 1Σ∗ = λ.

We have already seen an example of a homomorphism. The length function | · | is
a homomorphism from Σ∗ to the non-negative integers with addition as the operation.
Indeed, |λ| = 0, which is the identity for addition of numbers.

If a homomorphism h maps the elements of Σ∗ into Σ∗ (i.e., if K = Σ∗ and the
operation of K is concatenation), then h is called an endomorphism.

Rooted trees

A graph is a pair (V,E), where V is a set of nodes or vertices and E is a set of edges
between the nodes. If the edges are undirected, then the graph itself is called undirected .
Otherwise, the graph is directed . Figure 2.2 shows examples of an undirected graph and
a directed graph.

A tree is a non-empty, undirected graph such that for all nodes X and Y in the graph,



12 Ch. 2 Preliminaries

✈

✈

✈

✈

✈

✈✈

�
�

�
�

�
�

�
��❇

❇
❇
❇
❇
❇
❇
❇
✟✟✟✟✟✟ ❍❍❍❍❍❍

❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈ ✂
✂
✂
✂
✂
✂
✂
✂

�
�
�
�

✏✏✏✏✏✏✏✏✏✏✏✏✏

✂
✂
✂✂

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

�
�

�
�

�
�

��✠

✛

�
�
�
�

�
�
��✒

❇
❇
❇
❇
❇
❇
❇▼❇
❇
❇
❇
❇
❇
❇◆

✟✟✟✟✟✯ ❍❍❍❍❍❥
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❲ ✂

✂
✂
✂
✂
✂
✂✍

✛ �
�
��✒

✏✏✏✏✏✏✏✏✏✏✏✏✶

✂
✂
✂✍

✲

Figure 2.2: Examples of graphs. (a) An undirected graph with seven nodes. (b) A
directed graph with seven nodes.
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Figure 2.3: Examples of trees. (a) A tree with ten nodes. (b) A rooted tree with
ten nodes, in which the root and some non-roots, internal nodes and leaves have been
indicated.

there is exactly one simple path between X and Y . In particular, a tree is connected.
Figure 2.3(a) shows an example of a tree. The distance between two nodes in a tree is the
number of edges on the path between the two nodes. For example, the distance between
nodes X and Y in the tree from Figure 2.3(a) is 3.

A rooted tree is a tree with one designated node, which is called the root of the tree.
A non-root in the tree is a node other than the root of the tree. Let X be a non-root in a
rooted tree t. The nodes on the path from the root of the tree to X (including the root,
but excluding X) are the ancestors of X. The last node on this path is the parent of X.
X is called a child of its parent. All nodes ‘below’ a node X in the tree, i.e., nodes that X
is an ancestor of, are called descendants of X. The subtree rooted in X is the subtree of t
with root X, consisting of X and all its descendants, together with the edges connecting
these nodes. A leaf in a rooted tree is a node without descendants. Nodes that do have
descendants are called internal nodes . We thus have two ways to partition the nodes in a
rooted tree: either in a root and non-roots, or in leaves and internal nodes.

Usually, in a picture of a rooted tree, the root is at the top, its children are one level
lower, the children of the children are another level lower, and so on. An example is
given in Figure 2.3(b). In this example we have also indicated the root and some of the
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non-roots, internal nodes and leaves. Note that the choice of a root implicitly fixes an
orientation of the edges in the tree: from the root downwards.

A level of a rooted tree is the set of nodes in the tree that are at the same distance
from the root of the tree. The root is at level 1, the children of the root are at level 2, and
so on. The height of a rooted tree is the maximal non-empty level of the tree. Obviously,
this maximal level only contains leaves. There may, however, also be leaves at other levels.
For example, the height of the tree depicted in Figure 2.3(b) is 4, level 2 contains a leaf
and an internal node, and level 4 contains five leaves.

It follows immediately from the definition that the height of a tree can be recursively
expressed in the heights of its subtrees:

Lemma 2.1 Let t be a rooted tree, and let X1, . . . , Xn for some n ≥ 0 be the children of
the root of t.

1. If n = 0 (i.e., if t consists only of a root), then the height of t is 1.

2. If n ≥ 1, then the height of t is equal to

n
max
i=1

(height of the subtree of t rooted at Xi)+ 1.

A rooted tree is ordered if for each internal node X, the children of X are linearly
ordered (‘from left to right’). Finally, an ordered, rooted, node-labelled tree is an ordered
rooted tree with labels at the nodes.

Grammars

A grammar is a formalism that describes how the elements of a language (i.e., the strings)
can be derived from a certain initial symbol using rewriting rules. We are in particular
interested in context-free grammars and right-linear grammars.

A context-free grammar is a 4-tuple G = (V,Σ, P, S), where

• V is a finite set of non-terminal symbols (or variables): symbols that may occur in
intermediate strings derived in the grammar, but not in final strings,

• Σ is a finite set of terminal symbols : symbols that may occur in intermediate strings
and final strings derived in the grammar,

• P is a finite set of productions : rewriting rules for elements from V ,

• S ∈ V is the start symbol .

The sets V and Σ are disjoint. Every production is of the form A −→ Z, where A ∈ V
and Z ∈ (V ∪ Σ)∗. It indicates that the non-terminal symbol A may be replaced by the
string Z over V ∪ Σ.

Let (X1, X2) be an occurrence of the non-terminal symbol A in a string X over V ∪Σ.
Hence, X = X1AX2 for some X1, X2 ∈ (V ∪Σ)∗. When we apply the production A −→ Z
to this occurrence of A in X, we substitute A in X by Z. The result is the string X1ZX2.

A string that can be obtained from the start symbol S by applying zero or more
productions from P , is called a sentential form. In particular, the string S (containing
only the start symbol) is a sentential form. It is the result of applying zero productions.
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The language of G (or the language generated by G) is the set of all sentential forms
that only contain terminal symbols, i.e., the set of all strings over Σ that can be obtained
from the start symbol S by the application of zero or more1 productions. We use L(G)
to denote the language of G.

A language K is called context-free, if there exists a context-free grammar G such that
K = L(G).

Let X be an arbitrary string over V ∪Σ. A derivation in G of a string Y from X is a
sequence of strings starting with X and ending with Y , such that we can obtain a string
in the sequence from the previous one by the application of one production from P . If we
use X0, X1, . . . , Xk to denote the successive strings (with X0 = X and Xk = Y ), then the
derivation is conveniently denoted as X0 =⇒ X1 =⇒ · · · =⇒ Xk. If the initial string X in
the derivation is equal to the start symbol S of the grammar, then we often simply speak
of a derivation of Y (and do not mention S).

For arbitrary strings X over V ∪ Σ, the language LG(X) is the set of all strings over
Σ that can be derived in G from X:

LG(X) = {Y ∈ Σ∗ | there exists a derivation in G of Y from X}.
If the grammar G is clear from the context, then we will also write L(X). In particular,
L(G) = LG(S) = L(S).

Example 2.2 Consider the context-free grammar G = ({S,A,B}, {a, b}, P, S), where
P = {S −→ λ,

S −→ ASB,
A −→ a,
B −→ b }.

A possible derivation in G is

S =⇒ ASB
=⇒ AASBB
=⇒ AASBb
=⇒ aASBb
=⇒ aASbb
=⇒ aaSbb
=⇒ aabb

(2.1)

In this derivation, we successively applied the second, the second, the fourth, the third,
the fourth, the third and the first production from P .

It is not hard to see that L(G) = {ambm | m ≥ 0}.
The notation

A −→ Z1 | Z2 | . . . | Zn

is short for the set of productions

A −→ Z1,
A −→ Z2,
...

...
...

A −→ Zn

1In practice, of course, because S /∈ Σ, we need to apply at least one production to obtain an element
of the language of G.
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For example, the set of productions from the grammar G in Example 2.2 can be written
as

P = {S −→ λ | ASB,
A −→ a,
B −→ b }.

With this shorter notation for the productions, we may use ‘production (i, j)’ to refer to
the production with the jth right-hand side from line i. In our example, production (1, 2)
is the production S −→ ASB.

If a sentential form contains more than one non-terminal symbol, then we can choose
which one to expand next. Different choices usually yield different derivations, which may
still yield the same final string. If, in each step of a derivation, we expand the leftmost
non-terminal symbol, then the derivation is called a leftmost derivation. Derivation (2.1)
in Example 2.2 is clearly not a leftmost derivation.

Example 2.3 Let G be the context-free grammar from Example 2.2. A leftmost deriva-
tion of the string aabb in G is

S =⇒ ASB
=⇒ aSB
=⇒ aASBB
=⇒ aaSBB
=⇒ aaBB
=⇒ aabB
=⇒ aabb

(2.2)

The structure of a derivation in a context-free grammar that begins with the start
symbol, can be conveniently expressed by means of an ordered, rooted, node-labelled tree,
which is called a derivation tree or a parse tree. To build up the tree, we closely follow
the derivation.

We start with only a root, which is labelled by the start symbol S. This corresponds to
the first string in the derivation. In each step of the derivation, a production A −→ Z is
applied to a certain occurrence of a non-terminal A in the current string. Let Z = x1 . . . xr

for some r ≥ 0 and letters x1, . . . , xr from V ∪ Σ. For i = 1, . . . , r, we create a node with
label xi. In the special case that r = 0, we create one node with label λ. By construction,
there already exists a node corresponding to (this occurrence of) the non-terminal A. The
new nodes become the children of this node, and are arranged from left to right according
to the order of their labels in Z.

The concatenation of the labels of the leaves (in the order of their occurrence from left
to right in the tree) is called the yield of the derivation tree. By construction, it is equal
to the string derived.

Different derivations may have the same derivation tree. In our example grammar G,
this is also the case for the two derivations of aabb that we have seen. Figure 2.4(a) shows
their common derivation tree. Indeed, the yield of this tree is aa · λ · bb = aabb. For each
derivation tree, however, there is only one leftmost derivation.

A context-free grammar G is called ambiguous , if there is at least one string X ∈ L(G)
which is the yield of two (or more) different derivation trees in G, i.e., for which the
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Figure 2.4: Two derivation trees. (a) The derivation tree corresponding to both Deriva-
tion (2.1) and Derivation (2.2) of aabb in the example context-free grammar G. It is also
a derivation tree for aabb in the context-free grammar G′ from Example 2.4. (b) Another
derivation tree for aabb in G′.

grammatical structure is not unique. In this case, X also has two (or more) different
leftmost derivations in G.

A context-free grammar that is not ambiguous, is unambiguous . One can prove that
grammar G from Example 2.2 and Example 2.3 is unambiguous. In particular, the tree
in Figure 2.4(a) is the unique derivation tree of aabb in G.

Example 2.4 Consider the context-free grammarG′ = ({S, T,A,B}, {a, b}, P ′, S), where

P ′ = {S −→ λ | ASB | AATB,
T −→ ATB | b,
A −→ a,
B −→ b }.

Then the tree from Figure 2.4(a) is also a derivation tree for aabb in G′. However, Fig-
ure 2.4(b) contains another derivation tree for the same string in G′. Hence, G′ is am-
biguous. It is not hard to see that L(G′) = L(G) = {ambm | m ≥ 0}.
A right-linear grammar is a special type of context-free grammar, in which every produc-
tion is either of the from A −→ λ or of the form A −→ aB with A,B ∈ V and a ∈ Σ. A
language K is called regular , if there exists a right-linear grammar G such that K = L(G).

Example 2.5 Consider the right-linear grammar G = {{S,B}, {a, b}, P, S}, where
P = {S −→ λ | aB,

B −→ bS }.
A possible derivation in G is

S =⇒ aB
=⇒ abS
=⇒ abaB
=⇒ ababS
=⇒ ababaB
=⇒ abababS
=⇒ ababab.

It is not hard to see that in this case, L(G) = {(ab)m | m ≥ 0}.
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To prove that a given language is regular, one may prove that it is generated by a
certain right-linear grammar. Sometimes, however, one can also use a result from formal
language theory, stating that a language generated by a context-free grammar with a
particular property is regular.

Let G be a context-free grammar, let Σ be the set of terminal symbols in G and let A
be a non-terminal symbol in G. We say that A is self-embedding if there exist non-empty
strings X1, X2 over Σ, such that the string X1AX2 can be derived from A. Intuitively,
we can ‘blow up’ A by rewriting it into X1AX2, rewriting the new occurrence of A into
X1AX2, and so on.

G itself is called self-embedding, if it contains at least one non-terminal symbol that
is self-embedding. In other words: G is not self-embedding, if none of its non-terminal
symbols is self-embedding. A right-linear grammar is not self-embedding, because for
each production A −→ Z in such a grammar, the right hand side Z contains at most
one non-terminal symbol, which then is the last symbol of Z. Hence, if we can derive a
string X1AX2 from a non-terminal symbol A, then X2 = λ. This observation implies that
any regular language can be generated by a grammar that is not self-embedding. As was
proved in [Chomsky, 1959], the reverse is also true: a context-free grammar that is not
self-embedding generates a regular language. We thus have:

Proposition 2.6 A language K is regular, if and only if it can be generated by a context-
free grammar that is not self-embedding.

To prove that a given language is not regular, one often uses the pumping lemma for
regular languages. This lemma describes a property that all regular languages have. If
the given language lacks this property, then it cannot be regular.2

Proposition 2.7 (Pumping lemma for regular languages). Let K be a regular lan-
guage over an alphabet Σ. There exists an integer n ≥ 1, such that for each string x ∈ K
with |x| ≥ n, there exist three strings u, v, w over Σ, such that

1. x = uvw, and

2. |uv| ≤ n, and

3. |v| ≥ 1 (i.e., v 6= λ), and

4. for every i ≥ 0, also the string uviw ∈ K.

Hence, each string x ∈ K that is sufficiently long can be ‘pumped’ (in particular, the
substring v, which is ‘not far’ from the beginning of x, can be pumped), and the result will
still be an element of K. We give an example to explain how the lemma is often applied.

Example 2.8 Let K be the context-free language from Example 2.2: K = {ambm | m ≥
0}.

Suppose that K is regular. By Proposition 2.7, there exists an integer n ≥ 1, such
that each string x ∈ K with |x| ≥ n can be written as x = uvw and can then be pumped.
If we choose x = anbn, then by Property (2), the substring v consists of only a’s. When
we take, e.g., i = 2, by Property (3), the number of a’s in the string uviw becomes larger
than the number of b’s. This implies that this string is not in K. As this contradicts
Property (4), the hypothesis that K is regular must be false.

2Unfortunately, the reverse implication does not hold. That is, there exist languages that have the
property, but are not regular.
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Figure 2.5: Graphical representation of the binary relation R from Example 2.9.

Binary relations

A binary relation R on a set X is a subset of X ×X = {(x, y) | x, y ∈ X}. If (x, y) ∈ R,
then we also write xRy; if (x, y) /∈ R, then we may write x /Ry. A binary relation can be
naturally depicted as a directed graph G = (X,R), i.e., a graph with the elements of X
as nodes and edges determined by R.

Example 2.9 Let X = {1, 2, 3, 4}. Then R = {(1, 2), (1, 3), (1, 4), (3, 4), (4, 4)} is a bin-
ary relation on X. This relation has been depicted in Figure 2.5.

A binary relation R on X is
• reflexive if for every x ∈ X, xRx
• symmetric if for every x, y ∈ X, xRy implies yRx
• antisymmetric if for every x, y ∈ X, (xRy and yRx) implies x = y
• transitive if for every x, y, z ∈ X, (xRy and yRz) implies xRz
The relation R from Example 2.9 is antisymmetric and transitive. It is not reflexive and
not symmetric.

If a relation R is reflexive, symmetric and transitive, R is called an equivalence relation;
if R is reflexive, antisymmetric and transitive, we call R a partial order .

Given a binary relation R, the set R−1 = {(y, x) | (x, y) ∈ R} is the inverse relation
of R. A binary relation R1 is a refinement of a binary relation R2 if R1 ⊆ R2, in other
words: if xR1y implies xR2y. In this case R2 is called an extension of R1.

Complexity of an algorithm

An algorithm is a step-by-step description of an effective method for solving a problem or
completing a task. There are, for example, a number of different algorithms for sorting a
sequence of numbers. In this thesis, we describe an algorithm to determine the semantics
of a DNA expression, and a few algorithms to transform a given DNA expression into
another DNA expression with some desired properties. In each of these cases, the input of
the algorithm is a DNA expression E, which is in fact just a string over a certain alphabet,
satisfying certain conditions.

Algorithms can, a.o., be classified by the amount of time or by the amount of memory
space they require, depending on the size of the input. In particular, one is often interested
in the time complexity (or space complexity) of an algorithm, which expresses the rate by
which the time (space) requirements grow when the input grows. In our case, the size of
the input is the length |E| of the DNA expression E. Hence, growing input means that
we consider longer strings E.

For example, an algorithm is said to have linear time complexity, if its time require-
ments are roughly proportional to the size of its input: when the input size (the length
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|E|) grows with a certain factor, the time required by the algorithm grows with roughly
the same factor. In this case, we may also say that this time is linear in the input size.
An algorithm has quadratic time complexity, if its time requirements grow with a factor
c2 when the input size grows with a factor c.

We speak of a polynomial time complexity, if the time requirements can be written
as a polynomial function of the input size. Both linear time complexity and quadratic
time complexity are examples of this. If the time required by an algorithm grows by an
exponential function of the input size, the algorithm has an exponential time complexity.

In the analysis of complexities, we will also use the big O notation. For example, we
may say that the time spent in an algorithm for a given DNA expression E is in O(|E|).
By this, we mean that this time grows at most linearly with the length of E. We thus
have an upper bound on the time complexity. In this case, in order to conclude that the
algorithm really has linear time complexity, we need to prove that |E| also provides a
lower bound for the complexity.

2.2 DNA molecules

Many properties of organisms are (partly) determined by their genes. Examples for hu-
mans are the sex, the colour of the eyes and the sensitivity to certain diseases. The genetic
information is stored in DNA molecules , and in fact, a gene is a part of a DNA molecule.
Copies of an organism’s DNA can be found in nearly every cell of the organism. In the
cell, a DNA molecule is packaged in a chromosome, together with DNA-bound proteins.
A human cell contains 23 pairs of chromosomes, where each pair consists of a chromosome
inherited from the father and one from the mother.

The structure of the DNA molecule was first described by the scientists James Watson
and Francis Crick in [1953]. The model they proposed was confirmed by experiments by,
a.o., Maurice Wilkins and Rosalind Franklin. Watson, Crick and Wilkins jointly received
the Nobel Prize in Physiology or Medicine in 1962. Franklin died four years before this
occasion.

Nucleotides

The acronym DNA stands for DeoxyriboNucleic Acid . This name refers to the basic build-
ing blocks of the molecule, the nucleotides , each of which consists of three components:
(i) a phosphate group (related to phosphoric acid), (ii) the sugar deoxyribose and (iii) a
base or nucleobase. Here, the prefix ‘nucleo’ refers to the place where the molecules were
discovered: the nucleus of a cell.

The chemical structure of a nucleotide is depicted in Figure 2.6(a). The subdivision
into three components is shown in Figure 2.6(b). The phosphate group is attached to the
5′-site (the carbon atom numbered 5′) of the sugar. The base is attached to the 1′-site.
Within the sugar, we also identify a hydroxyl group (OH), which is attached to the 3′-site.

There are four types of bases: adenine, cytosine, guanine and thymine, which are
abbreviated by A, C, G and T, respectively. The only place where nucleotides can differ
from each other is the base. Hence, each nucleotide is characterized by its base. Therefore,
the letters A, C, G and T are also used to denote the entire nucleotides.
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Figure 2.6: (a) Simplified picture of the chemical structure of a nucleotide, with 1′

through 5′ numbering carbon atoms. (b) The three components of a nucleotide: the
phosphate group (i), the sugar (ii) and the base.
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Figure 2.7: Schematical pictures of of two (different) single-stranded DNA molecules:
(a) 5′-ACATG-3′; (b) 3′-ACATG-5′.

Connections between nucleotides

Different nucleotides can bind to each other in two ways.
First, the hydroxyl group of one nucleotide can interact with the phosphate group of

another nucleotide, yielding the so-called phosphodiester bond . This is a strong (covalent)
bond. The formation of a phosphodiester bond is facilitated by a ligase enzyme.

The resulting molecule has a free (unused) phosphate group at the 5′-site of one nucle-
otide and a free hydroxyl group at the 3′-site of the other nucleotide. These can, in turn,
connect to the hydroxyl group or the phosphate group, respectively, of yet another nuc-
leotide. The so obtained chains of nucleotides are called single-stranded DNA molecules ,
or simply single strands or strands . In biochemistry, this last term is also used to refer to
double-stranded DNA molecules (which will be introduced shortly), but we will limit the
use of ‘strand’ to single-stranded DNA molecules.

The end of the strand that has a free phosphate group at its 5′-site is called the 5′-end
of the strand. The other end then is the 3′-end of the strand. The chemical properties of
the 5′-end (with its phosphate group) and the 3′-end (with its hydroxyl group) are very
different, and so single strands have a well-defined orientation.

Figure 2.7(a) shows a single strand consisting of nucleotides A, C, A, T and G, with
the 5′-end at the first A nucleotide and the 3′-end at the G nucleotide. A simpler notation
for this DNA molecule is 5′-ACATG-3′ or 3′-GTACA-5′.

The same sequence of nucleotides A, C, A, T and G could also be linked in the opposite
way. Then the phosphate group of the first A nucleotide would be connected to the
hydroxyl group of the C nucleotide (instead of the other way round), and analogously for
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Figure 2.8: Schematical picture of a double-stranded DNA molecule.

the other nucleotides. The resulting strand is depicted in Figure 2.7(b) and it is denoted by
3′-ACATG-5′ or by 5′-GTACA-3′. The orientation of 3′-ACATG-5′ is opposite to that of
5′-ACATG-3′. For example, the G in 5′-ACATG-3′ can be connected by a phosphodiester
bond to the C in 5′-CAT-3′, whereas the G in 3′-ACATG-5′ cannot.

Two single-stranded DNA molecules can bind through their bases, forming a double-
stranded DNA molecule, as illustrated in Figure 2.8. The base of a nucleotide in one strand
is connected to the base of a nucleotide in the other strand. Consecutive nucleotides in
one strand are connected to consecutive nucleotides in the other strand. This is the second
type of bond between nucleotides, called a hydrogen bond . In fact, one pair of nucleotides
forms two or three hydrogen bonds, depending on the bases.

Hydrogen bonds between two nucleotides can be formed only if the nucleotides satisfy
a complementarity constraint. An A can bind only (by two hydrogen bonds) to a T and
vice versa. Similarly, a C can bind only (by three hydrogen bonds) to a G and vice versa.
Hence, A and T are each other’s complements and so are C and G. This complementarity
is known as the Watson-Crick complementarity , after the scientists Watson and Crick
that discovered it. A pair of complementary nucleotides connected by hydrogen bonds is
called a base pair .

A second requirement for two strands to form a double-stranded DNA molecule is that
they have opposite orientations. Since this is not the case for 5′-ACATG-3′ and 5′-TGTAC-
3′, these two strands cannot form a double-stranded molecule. On the other hand, the
strands 5′-ACATG-3′ and 3′-TGTAC-5′ can form a double-stranded DNA molecule, the
one depicted in Figure 2.8.

The chromosomes in a cell contain double-stranded DNA. In total, the 46 chromosomes
in a human cell contain over six billion (6× 109) base pairs.

The hydrogen bonds between complementary strands of DNA are much weaker than
the phosphodiester bonds between adjacent nucleotides in the same strand. Actually,
hydrogen bonds are not even strong enough to bind a single pair of (complementary)
nucleotides. It takes the cooperation of a number of pairs of nucleotides to keep two
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Figure 2.9: Four ways to denote the same double-stranded DNA molecule. (a) Simple
notation for the DNA molecule from Figure 2.8. (b) The result after a reflection in the
Y-axis. (c) The result after a reflection (of the original notation) in the X-axis. (d) The
result after a rotation (of the original notation) by an angle of 180°.

single strands together.

It is worth mentioning that the relative weakness of the hydrogen bonds (as compared
to the phosphodiester bonds) is in fact essential for life. Because of this weakness, it is
possible to separate the two strands of a double-stranded DNA molecule, while leaving
the strands themselves intact. This happens, e.g., during cell division, when two exact
copies of the DNA molecule must be made, one copy for each of the two new cells that
are formed out of one. In this process, the two strands are separated and each of them
serves as a template for a new complementary strand, built up of free nucleotides.3

The expression of genes also benefits from the relative weakness of the hydrogen bonds.
Recall that a gene is a segment of a DNA molecule. The first step in the expression of
a gene is the transcription of the gene into a related molecule called RNA. For this, the
double-stranded DNA molecule is temporarily split at the gene’s location, allowing for
RNA to be formed. After the RNA molecule has been released, the two strands of DNA
reunite. As a next step, the RNA molecule may be translated into a protein.

Double word notation

For single-stranded DNA molecules like the ones depicted in Figure 2.7, we introduced a
simpler notation. For example, the molecule from Figure 2.7(a) can also be denoted by 5′-
ACATG-3′. We can do something similar for double-stranded DNA molecules. The result
for the molecule from Figure 2.8 is given in Figure 2.9(a). As illustrated by Figure 2.9(b)–
(d), the same DNA molecule can be denoted in three more ways, resulting from reflections
and a rotation of the molecule.

To simplify the notation even further, we can omit the explicit indication of the ori-
entations in a double-stranded DNA molecule. This does not lead to confusion, when
we adopt the convention that the upper strand in the notation is read from 5′-end to
3′-end (reading from left to right). Because the lower strand has an opposite orientation,
it is read from 3′-end to 5′-end. The result is a double word , and the notation is called
the double-word notation. Of course, by rotating a double word by an angle of 180°, we
obtain a double word denoting the same molecule. The two possible double words for our
example molecule are given in Figure 2.10.

If the rotation yields the same double word, then the molecule denoted is called a
palindrome4 – actually palindrome molecules are quite common in molecular biology. An

3In fact, the addition of complementary nucleotides already starts when part of the double-stranded
molecule is separated.

4Unfortunately, the term ‘palindrome’ has different (though related) meanings in linguistics and in
molecular science.
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Figure 2.10: The double-word notation for the double-stranded DNA molecule from
Figure 2.8 and Figure 2.9. (a) The double word corresponding to Figure 2.9(a). (b) The
result after a rotation of 180°. This double word corresponds to Figure 2.9(d).
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Figure 2.11: The typical double-helix structure of a double-stranded DNA molecule.

example of a palindrome is
CATG
GTAC.

We want to emphasize that the double word notation only tells us which nucleotides
are connected to which other nucleotides by which type of bond. It does not provide
information about the spatial structure of the DNA molecule. The notation may suggest
that the DNA molecules are linear, i.e., that the nucleotides in each strand are spatially
organized in a straight line. This is, however, not the case, and in fact, it would be
physically impossible in vivo. The largest human chromosome would then be more than
8cm long, which would not fit in the average cell. In general, the spatial structure of a
double-stranded DNA molecule is very complex. A typical aspect of this structure is that
usually the two strands are twisted around each other, like a winding staircase, forming
the famous double helix depicted in Figure 2.11.

Nicks, gaps and other deviations

DNA molecules are not always ‘perfect’. That is, they are not always comprised of two
equally long, perfectly complementary strands of nucleotides, like the molecule in Fig-
ure 2.10. There exist many types of deviations in the structure of DNA molecules. We
list six of them:

Nick Sometimes the phosphodiester bond between adjacent nucleotides in the same
strand is missing. The molecule does not fall apart though, because a phosphodiester
bond binds the complementary nucleotides in the other strand. The non-existence
of a phosphodiester bond between two nucleotides is referred to as a nick . In the
double-word notation for DNA molecules, we denote a nick by the symbol ▽ in the
upper word and by the symbol △ in the lower word. Hence, the DNA molecule given
in Figure 2.12(a) has nicks between A and C in the upper word and between T and
A in the lower word.

Gap A gap results when one or more consecutive nucleotides in one strand of a DNA
molecule miss their complementary nucleotides in the other strand. The nucleotides
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Figure 2.12: Some deviations from the standard double-stranded DNA molecule. (a) A
molecule with two nicks. (b) A molecule with two gaps. (c) A molecule with a mismatch
between T in the upper strand and G in the lower strand. Hydrogen bonds present are
explicitly indicated. (d) A molecule with a bulge in the upper strand. Phosphodiester
bonds present are explicitly indicated. (e) A single-stranded molecule with a hairpin loop.
Phosphodiester bonds present are explicitly indicated. (f) A circular molecule.

on both sides of the gap (if these nucleotides exist, i.e. if the gap is not located at
an end of the molecule) are not linked directly by a phosphodiester bond. This is
illustrated in Figure 2.12(b). The molecule depicted here contains two gaps: one in
each strand.

When we have a gap at an end of the DNA molecule (like we have in Figure 2.12(b)),
the non-complemented nucleotides present at the other strand form a so-called sticky
end. This name refers to the fact that the non-complemented nucleotides stick easily
to a strand of complementary nucleotides.

Mismatch We have a mismatch, if two nucleotides at corresponding positions in the
strands of a double-stranded DNA molecule are not complementary. As a result,
these two nucleotides cannot form proper hydrogen bonds. When there are enough
neighbouring nucleotides in both strands that are each other’s complements, the
two strands as a whole can still stick together. This situation is depicted in Fig-
ure 2.12(c).

Bulge A bulge is a piece of single-stranded DNA inserted between two nucleotides in one
strand of a double-stranded DNA molecule. The two nucleotides involved are not
directly connected by a phosphodiester bond, whereas their respective complements
in the other strand are. This phenomenon is depicted in Figure 2.12(d).5 Note the
similarity between a DNA molecule with a bulge and one with a gap. Both molecules
have a subsequence of unpaired nucleotides in one of the strands. In case of a bulge,

5In practice, the molecule will be kinked at the site of the bulge. In our example, with the bulge in
the upper strand, the molecule will bend down.
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the nucleotides flanking the subsequence on the opposite strand are connected by a
phosphodiester bond. In case of a gap, this bond is missing.

Hairpin loop When a single strand of DNA or RNA contains a subsequence of nucle-
otides that is complementary to another subsequence of the same strand in reverse
order, we may obtain a hairpin loop: the strand folds back and hydrogen bonds
between the complementary nucleotides are formed. This is illustrated by Fig-
ure 2.12(e). Hairpins occur in vivo, e.g., in RNA molecules that are used in the
synthesis of proteins.

Circular molecule DNA molecules may be circular . That is, the 5′-end of a strand may
get connected by a phosphodiester bond to the 3′-end of the same strand. In case
of a double-stranded molecule, this may happen to both strands, as is depicted in
Figure 2.12(f). Circular DNA molecules occur, e.g., in viruses and ciliates (some
kind of unicellular organisms). In the latter case, they are formed as a by-product
during the conversion of micronuclear DNA into macronuclear DNA, which are two
versions of the DNA each residing in its own nucleus in the cell. One part of this
conversion involves the excision (removal) of fragments of DNA from the micronuc-
lear DNA. When a fragment is excised, the two pieces of DNA flanking the fragment
are connected directly, and the removed fragment forms a circular DNA molecule,
see [Prescott, 1994].

In this thesis, we describe and analyse expressions for DNA molecules that may have nicks
and/or gaps. We do not consider other deviations, because we wanted to start simple,
with a limited set of operators. This limited set of operators turned out to be rich enough
to derive many interesting results from.

2.3 DNA computing

DNA computing is the field of research that studies how DNA molecules can be used
to perform computations. By the nature of the subject, DNA computing is a highly
interdisciplinary field of research. In this section, we discuss two important contributions
to the field. First, we consider splicing systems , which form a theoretical model for the
way that double-stranded DNA molecules can be modified with the use of restriction
enzymes . Second, we describe how real (physical) DNA molecules can be used to solve a
notoriously hard decision problem.

2.3.1 Splicing systems

Splicing systems were introduced by Tom Head in [1987]. Head’s purpose was to relate
formal language theory to the world of macromolecules like DNA. He modelled the ac-
tion of restriction enzymes on DNA in terms of a formal language. Restriction enzymes
are enzymes that recognize a specific sequence of nucleotides in a double-stranded DNA
molecule, i.e., a sequence specific for the enzyme, and cut the DNA in a special way.

For example, consider a DNA molecule as depicted in Figure 2.13(a). The restriction

enzyme EcoRI recognizes the segment
GAATTC
CTTAAG and cleaves the molecule in such a way

that the two molecules with 5′-overhangs (sticky ends) in Figure 2.13(b) result.
When the two molecules get in each other’s proximity, they may reassociate in the

presence of a ligase to seal the nicks in both strands. Now, when EcoRI finds two molecules
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Figure 2.13: The effect of restriction enzyme EcoRI. (a) A double-stranded DNA mo-

lecule with recognition site
GAATTC
CTTAAG. The N’s represent arbitrary nucleotides satisfying

the complementarity constraint. (b) The two DNA molecules with 5′-overhangs after
cleavage by EcoRI.

X1 and X2 with the required recognition site
GAATTC
CTTAAG , they may both be cleaved. The

left-hand molecule derived from X1 may reassociate with the right-hand molecule derived
from X2, and vice versa, simply because their sticky ends match. In fact, because the

sticky ends form the palindrome
AATT
TTAA , the left-hand molecule derived from X1 may

reassociate with the left-hand molecule derived from X2, and similarly for the right-hand
molecules. This way, starting from a given set of double-stranded DNA molecules, EcoRI
may produce a completely different set of molecules.

EcoRI is not the only restriction enzyme. There exist many restriction enzymes, with
different (or sometimes the same) recognition sites and leaving different sticky ends after
cleavage. It is also possible to obtain 3′-overhangs instead of 5′-overhangs.

Now, a splicing system is a language-theoretic model for such a system of DNA mo-
lecules and enzymes. The main ingredients of this model are

1. a set of initial strings, corresponding to the initial DNA molecules, and

2. rules to obtain new strings from strings with a certain common substring, corres-
ponding to the way new molecules may result from molecules containing the recog-
nition site of a certain restriction enzyme.

Later, different types of splicing systems were introduced, allowing, e.g., more general
types of rules. In particular, the effect of restriction enzymes leaving blunt ends (i.e.,
without overhangs) when they cut a molecule, can also be described. In this case, there
are no sticky ends that might facilitate the left-hand side of one molecule to reassociate
with the right-hand side of another molecule. Instead, the two submolecules are joined
together directly by a ligase enzyme.

Head posed the question what types of languages (sets of strings) may result from a
given set of initial strings and a given set of rules. Many researchers followed up on this
question, yielding a wealth of results. An overview of the results of the first ten years can
be found in [Head et al., 1997].

2.3.2 Adleman’s experiment

Although in nature, DNA molecules occur mainly in cells of organisms, they can also
be produced (and manipulated) in vitro, in a laboratory. In fact, there are machines
available that can synthesize any given single strand of DNA up to about 200 nucleotides.
Such relatively short single strands can then be used to generate arbitrarily long double-
stranded DNA molecules.
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Figure 2.14: Graph for which Adleman solved the directed Hamiltonian path problem
using DNA molecules.

Yi

Xi,j

Yj

Figure 2.15: Single strands of DNA as used by Adleman to encode nodes and edges.
The strands Yi and Yj encode the nodes i and j, respectively. The strand Xi,j encodes
the edge (i, j).

Leonard Adleman [1994] (see also [Adleman, 1998]) realized that DNA molecules in a
lab can be used to store information and perform computations. To demonstrate this, he
used such molecules to solve a small instance of the directed Hamiltonian path problem.

In this problem, we are given a directed graph and two nodes vin and vout in this
graph. We must decide whether or not there is a Hamiltonian path in this graph from vin
to vout, i.e., a path from vin to vout that visits every node exactly once. This problem is
NP-complete, which means that there probably does not exist an efficient algorithm for
the problem. The only algorithms known for the problem require more than polynomial
time.

Adleman considered the seven-node graph in Figure 2.14, with vin is node 0 and vout
is node 6. It can easily be verified that there is a unique Hamiltonian path in this graph,
viz 0 → 1 → 2 → 3 → 4 → 5 → 6.

For every node in the graph, Adleman defined a single-stranded DNA molecule, con-
sisting of twenty nucleotides. Let us use Yi to denote the DNA molecule for node i.

The edges between the nodes were also encoded as single-stranded DNA molecules of
twenty nucleotides. For an edge from node i to node j, Adleman joined the second half
of the Watson-Crick complement of Yi and the first half of the complement of Yj. Let us
call the resulting molecule Xi,j , as in Figure 2.15.

Note that an edge from j to i would result in a different molecule Xj,i. Hence, this
encoding preserves edge orientation. Indeed, in Adleman’s description, the single-stranded
molecules Yi encoding the nodes were lower strands, i.e., their orientation ran from 3’-end
to 5’-end.

Adleman took certain quantities of DNA molecules corresponding to the nodes and
the edges of the seven-node graph, put them together under the right conditions and in
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Y2
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Y2
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♣♣♣♣ ♣♣♣♣ ♣♣♣♣ ♣♣♣♣ ♣♣♣♣ ♣♣♣♣ ♣♣♣♣ ♣♣♣♣ ♣♣♣♣ ♣♣♣♣X3,4

(b)

Figure 2.16: Single strands of DNA forming a double-stranded molecule, representing a
path in the graph in Adleman’s experiment. (a) Hydrogen bonds are established between
strands encoding node 2, edge (2, 3) and node 3. (b) Result after a strand encoding edge
(3, 4) has attached to the molecule.

the presence of ligase, and waited for the result.

To understand the outcome of this self-assembly process, we consider the small example
in Figure 2.16. The molecule X2,3 (corresponding to the edge from 2 to 3) may form
hydrogen bonds with part of Y2 and part of Y3, yielding a double-stranded DNA molecule
with sticky ends at the left-hand side (consisting of the first half of Y2) and the right-hand
side (the second half of Y3), as depicted in Figure 2.16(a). The ligase enzyme establishes
a connection between the rightmost nucleotide of Y2 and the leftmost nucleotide of Y3.

The edge from node 3 to node 4 is encoded as a strand X3,4, which may now attach to
the sticky end to the right, see Figure 2.16(b). This way, longer and longer DNA molecules
arise.

Given a proper encoding of nodes into nucleotide sequences, two nodes (the corres-
ponding lower strands) may only be linked if the graph has an edge between them. In
other words, each double-stranded DNA molecule that results corresponds uniquely to
a path in the graph. Of course, the paths that are formed are completely random, and
hence, most of them are not Hamiltonian paths. There may, however, be some among
them.

In order to check for the presence of a Hamiltonian path from node 0 to node 6,
Adleman used some biomolecular tools to

1. keep only the molecules beginning with the nucleotide sequence for node 0 and
ending with the sequence for node 6

2. keep only the molecules of length 140, i.e., containing seven nodes

3. split the double-stranded DNA molecules into single strands and keep only the mo-
lecules containing the nucleotide sequence for every node.

Since there were molecules remaining after these three steps, Adleman could conclude
that a Hamiltonian path from 0 to 6 was found.

In his experiment, Adleman exploited three properties of DNA molecules. First, be-
cause the molecules are so small, compared to the units from which a computer is built,
they are a very efficient means to store information (in this case: concerning the presence
of nodes and edges in a graph). Second, the formation of larger molecules (representing
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random paths in the graph) from relatively short single strands is an automatic and highly
parallel process. Third, this process requires very little energy.

The second property, the parallel computation of paths in the graph, has important
implications for the time complexity of the process. While existing algorithms for the
Hamiltonian path problem on conventional computers take more than polynomial time,
Adleman expected that the time required by his biomolecular algorithm would scale lin-
early with the number of nodes in the graph.

However, as Adleman [1994] acknowledged, this speed-up comes at a price. First, in
general, the number of edges in a graph of N nodes grows quadratically with N . Therefore,
the number of different strands encoding a node or an edge in the graph should also grow
quadratically with N . Even worse, the number of possible paths in a graph of N nodes
grows more than exponentially with N . This implies that the number of copies of each
strand encoding a node or an edge in the graph, should also grow more than exponentially
with N , to ensure (with a very high probability) that a Hamiltonian path from vin to vout
(if it exists) is among the random paths that are constructed by the self-assembly process.
Consequently, the volume of DNA that is needed to solve the Hamiltonian path problem
for graphs of practical interest becomes too large. For example, a simple calculation in
[Hartmanis, 1995] showed that the weight of DNA required to encode all paths of length
N in a graph with N = 200 nodes, would be more than the weight of the earth.

Another problem with the biomolecular operations used in the experiment is that they
are far from error free. For example, as we have seen in Section 2.2, mismatches may
occur. It is possible that two (parts of) strands form hydrogen bonds, although they are
not completely complementary. As a consequence, in the case of the Hamiltonian path
problem, nodes may be connected that do not have an edge between them in the graph.
The algorithms using DNA molecules should be adjusted to that.

Nevertheless, Adleman’s experiment made it clear that biomolecules have a computa-
tional potential, not just in theory but also in the lab. This inspired many researchers to
come up with other applications of this kind, or to examine how the formation of undesir-
able bonds may be avoided, see, e.g., [Lipton, 1995], [Boneh et al., 1996], [Deaton et al.,
1997], and [Kari et al., 2005].

In fact, Adleman’s experiment initiated a series of annual conferences, known today as
International Conference on DNA Computing and Molecular Programming, see www.dna-
computing.org.
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Chapter 3

Formal DNA Molecules

Before we define the expressions in our DNA language, we want to be more precise about
their meaning – the semantics of the DNA expressions. For this purpose, we formalize the
double-word notation for DNA molecules that may contain nicks and gaps.

In this chapter, we introduce and analyse the resulting formal DNA molecules . We first
consider N -words, non-empty strings over the alphabet of the four different nucleotides.
We subsequently define the formal DNA molecules and we identify components of these
molecules. We finally discuss some properties, relations and functions of formal DNA
molecules.

3.1 N -words

Let N = {A, C, G, T} be the alphabet of nucleotides, and let the elements of N be called
N -letters . We use the symbol a (possibly with a subscript) to denote single N -letters.
A non-empty string over N is called an N -word . Obviously, the set N+ of N -words
is closed under concatenation. We reserve the symbol α (possibly with a subscript) to
denote N -words.

In general, when α is an N -word (e.g. α = ACATG), it corresponds to two single-
stranded DNA molecules: 5′-α-3′ and 3′-α-5′. Only if α happens to be a palindrome (in
the linguistic sense), e.g., if α = ACTCA, these two DNA molecules are the same.

The symbol c denotes the complement function. It is an endomorphism on N ∗, spe-
cified by

c(A) = T, c(C) = G, c(G) = C, c(T) = A.

Thus, for an N -word α, c(α) results by replacing each letter of α by its Watson-Crick
complement. For example, c(ACATG) = TGTAC.

Note that c(α) itself is not a DNA molecule, with an orientation. It is just an N -
word, corresponding to two single-stranded DNA molecules with opposite orientations.
Of course, for a given N -word α, the two strands 5′-α-3′ and 3′-c(α)-5′ (for example) are
each other’s Watson-Crick complement in the molecular sense.

3.2 Definition of formal DNA molecules

In the double-word notation of a perfect, double-stranded DNA molecule, every symbol
in the upper word corresponds to a symbol in the lower word. Two such corresponding

33
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symbols denote a base pair – two complementary nucleotides that are connected through
a hydrogen bond.

In our formalization of the double-word notation, a base pair is represented by a

composite symbol x =
(
x+

x−

)
. Here x+ stands for the nucleotide in the upper word and x−

stands for the nucleotide in the lower word.
Since we also want to denote DNA molecules with nicks and gaps, we need to extend

this notation. We first consider the gaps. When we have a gap in either of the strands,

we still use composite symbols
(
x+

x−

)
, but the missing nucleotides are denoted by −. We

thus have x+, x− ∈ N ∪ {−}. For convenience, we will speak of a base pair also if one of
two complementary nucleotides is missing. If both nucleotides are present, we may call
the base pair complete.

Of course, the value of x+ restricts the value of x−, and vice versa. Because of the
Watson-Crick complementarity and the fact that a missing nucleotide cannot face an-

other missing nucleotide, only twelve of the twenty-five possible composite symbols
(
x+

x−

)

are really allowed:
(
A
T

)
,
(
C
G

)
,
(
G
C

)
,
(
T
A

)
,
(
A
−
)
,
(
C
−
)
,
(
G
−
)
,
(
T
−
)
,
(−
A

)
,
(−
C

)
,
(−
G

)
,
(−
T

)
. The set

containing these twelve composite symbols is denoted by A.

For future use, we partition A into three subsets: A± =
{(

A
T

)
,
(
C
G

)
,
(
G
C

)
,
(
T
A

)}
, A+ =

{(
A
−
)
,
(
C
−
)
,
(
G
−
)
,
(
T
−
)}

and A− =
{(−

A

)
,
(−
C

)
,
(−
G

)
,
(−
T

)}
. The elements of A are called

A-letters , the elements of A± are double A-letters , the elements of A+ are upper A-letters ,
and the elements of A− are lower A-letters. Letters can be used to form strings. A non-
empty string over A is called an A-word . Analogously, we have a double A-word (with
letters from A±), an upper A-word (with letters from A+) and a lower A-word (with
letters from A−).

We also need symbols to denote nicks in a double word. There are three possibilities
for the connection structure of two adjacent base pairs in a double word: there can be a
nick in the upper word, there can be a nick in the lower word, or there can be no nick at
all between the base pairs. Note that there cannot be both a nick in the upper word and
a nick in the lower word between two adjacent base pairs. In such a situation, there would
be no connection whatsoever between the base pairs, so they would be parts of different
DNA molecules.

The case that there is no nick at all is our default; it is not denoted explicitly. A nick
in the upper word is denoted by ▽ and a nick in the lower word by △. We call ▽ and △ the
nick letters – ▽ is the upper nick letter, and △ is the lower nick letter.

Now, a complete description of a DNA molecule possibly containing nicks and gaps
can be given by a non-empty string X over A▽△

= A ∪ {▽, △}.

Example 3.1 The DNA molecules depicted in Figure 2.10(a), Figure 2.12(a) and Fig-
ure 2.12(b) are denoted by

X1 =
(
A
T

)(
C
G

)(
A
T

)(
T
A

)(
G
C

)
,

X2 =
(
A
T

)
▽
(
C
G

)(
A
T

)
△

(
T
A

)(
G
C

)
, and

X3 =
(
A
T

)(
C
−
)(

A
T

)(
T
A

)(−
C

)(−
G

)
,

respectively. X1 has length 5, X2 has length 7, and X3 has length 6.

Not every string over A▽△
represents a DNA molecule. The requirements that strings over

A▽△
need to satisfy follow from three observations on DNA molecules:
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ATG
TG AC

(a)

ACATG
TGTAC

△

(b)

CATG
TG C

▽ ▽

(c)

Figure 3.1: Examples of impossible DNA molecules. (a) A gap in one strand that is
adjacent to a gap in the other strand. (b) A nick at the left end of the molecule. (c) Nicks
between base pairs that are not (both) complete.

1. To enable at least one phosphodiester bond between adjacent base pairs, a gap in
one strand cannot be adjacent to a gap in the other strand (see Figure 3.1(a)).

2. A nick may occur only between two base pairs. In particular, it cannot occur at the
left end or the right end of a DNA molecule (see Figure 3.1(b)).

3. Since a nick is a missing phosphodiester bond between two adjacent nucleotides
in the same strand, we really need to have nucleotides on both sides of the nick.
Moreover, the complementary nucleotides in the other strand must be present and
they must be connected by a phosphodiester bond. Hence, a nick may occur only
between two complete base pairs (see Figure 3.1(c)).

Now, we are ready to define our formalization of DNA molecules that may contain
nicks and gaps:

Definition 3.2 A formal DNA molecule is a string X = x1x2 . . . xr with r ≥ 1 and for
i = 1, . . . , r, xi ∈ A▽△

, satisfying

1. if xi ∈ A+, then xi+1 /∈ A− (i = 1, 2, . . . , r − 1),

if xi ∈ A−, then xi+1 /∈ A+ (i = 1, 2, . . . , r − 1),

2. x1, xr ∈ A,

3. if xi ∈ {▽, △}, then xi−1, xi+1 ∈ A± (i = 2, 3, . . . , r − 1).

The language of all formal DNA molecules is denoted by F . Since X ∈ F is called a
molecule (albeit ‘formal’), we will refer to the sequence of (possibly missing) nucleotides
x+
i and upper nick letters in X as the upper strand of X. The lower strand of X is defined

analogously.
Note, however, that it does not make sense to talk about the upper strand and the

lower strand of a (physical) DNA molecule, because a rotation of the molecule by an angle
of 180° would change the upper strand into a lower strand and vice versa.

If a formal DNA molecule does not contain upper nick letters (or lower nick letters),
then we say that its upper strand (lower strand, respectively) is nick free. If a formal
DNA molecule does not contain nick letters at all, then the molecule itself is called nick
free.

When we build up a formal DNA molecule from left to right, the choice of a certain
letter completely determines the possibilities for the next letter. For example: a nick letter
must be succeeded by a double A-letter; an upper A-letter may be succeeded by either an



36 Ch. 3 Formal DNA Molecules

other upper A-letter or a double A-letter, or it may terminate the formal DNA molecule
(see Definition 3.2). With this in mind, it is easy to construct a right-linear grammar that
generates the language F . We thus have:

Lemma 3.3 The language F of formal DNA molecules is regular.

3.3 Components of a formal DNA molecule

Let X = x1 . . . xr be a formal DNA molecule, with xi ∈ A▽△
for i = 1, . . . , r. A formal

DNA submolecule of X is a substring Xs of X such that Xs is a formal DNA molecule.
It is easy to see that

Lemma 3.4 A substring Xs of a formal DNA molecule X is a formal DNA molecule if
and and only if |Xs| ≥ 1 and L(Xs), R(Xs) ∈ A.

Hence, Xs should not be empty and neither its first symbol nor its last symbol should be
a nick letter.

If a formal DNA submolecule Xs of X is an upper A-word, a lower A-word or a
double A-word, and |Xs| ≥ 2, then it is possible to simplify the notation for Xs and X.
Let α = a1 . . . al be an N -word with ai ∈ N (i = 1, . . . , l), and let Xs be a formal DNA
submolecule of X with Xs = xi0 . . . xi0+l−1 for some i0 with 1 ≤ i0 ≤ r−l+1 (so |Xs| = l).

If Xs =
(
a1
−
)
· · ·
(
al
−
)
, then we may write

Xs =
(
α
−
)
and X = x1 . . . xi0−1

(
α
−
)
xi0+l . . . xr.

Similarly, if Xs =
(−
a1

)(−
a2

)
· · ·
(−
al

)
, then we may write

Xs =
(−
α

)
and X = x1 . . . xi0−1

(−
α

)
xi0+l . . . xr.

Finally, if Xs =
(

a1
c(a1)

)(
a2

c(a2)

)
· · ·
(

al
c(al)

)
, then we may write

Xs =
(

α
c(α)

)
and X = x1 . . . xi0−1

(
α

c(α)

)
xi0+l . . . xr.

By simplifying the notation, we may seem to extend the alphabet of F with infinitely

many symbols
(
α
−
)
,
(−
α

)
and

(
α

c(α)

)
. We want to emphasize, however, that we actually

only simplify the presentation of the formal DNA molecules. The formal DNA molecules
themselves do not change; they are still strings over the finite alphabet A▽△

. In particular,
the length of a formal DNA molecule X = x1 . . . xr with xi ∈ A▽△

for i = 1, . . . , r remains
r, even if X is written in a simplified notation.

Definition 3.5 Let X be a formal DNA molecule. Then the decomposition of X is the
sequence x′

1, . . . , x
′
k of k ≥ 1 non-empty strings over A▽△

such that

• X = x′
1 . . . x

′
k,

• for i = 1, . . . , k, x′
i is either an upper A-word, or a lower A-word, or a double

A-word, or a nick letter, and

• for i = 1, . . . , k − 1, if x′
i is an upper A-word, then x′

i+1 is not an upper A-word,
and similarly for lower A-words and double A-words.
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component

�
�
�

❅
❅
❅

double component(
CA
GT

) non-double component

✡
✡
✡
✡✡

❏
❏
❏
❏❏

single-stranded component

✁
✁
✁

❆
❆
❆

nick letter

�
�
�

❅
❅
❅

upper component(
C
−
) lower component( −

CG

) lower nick letter

△

upper nick letter
▽

Figure 3.2: Relations between different types of components. Components can be divided
into double components and non-double components, non-double components can in turn
be divided into single-stranded components and nick letters, etcetera.

Hence, the decomposition of X cannot be simplified any further by concatenating con-
secutive elements of the same type. For the ease of notation, we will in general omit the
commas and write x′

1 . . . x
′
k instead of x′

1, . . . , x
′
k.

Example 3.6 The decompositions of the formal DNA molecules from Example 3.1 (de-
noting the molecules shown in Figure 2.10, Figure 2.12(a) and Figure 2.12(b)) are

X1 =
(
ACATG
TGTAC

)
,

X2 =
(
A
T

)
▽
(
CA
GT

)
△

(
TG
AC

)
and

X3 =
(
A
T

)(
C
−
)(

AT
TA

)( −
CG

)
,

respectively.

If x′
1 . . . x

′
k for some k ≥ 1 is the decomposition of a formal DNA molecule X, then the

substrings x′
i are called the components of X. For i = 1, . . . , k, if x′

i is an upper A-word
(lower A-word or double A-word), then x′

i is called an upper component (lower component
or double component , respectively) of X. If x′

i is not a double component, then we may
also call it a non-double component of X. Upper components and lower components of
X are also called single-stranded components of X. The (rooted) tree in Figure 3.2 shows
the relations between the different types of components.

Often, we will use pictures as the one in Figure 3.3 to depict a formal DNA molecule.

For example, the N -word α3 in this picture represents the lower component
(−
α3

)
, the

N -word α5 represents the upper component
(
α5

−
)
, the N -word α6 represents the double

A-word
(

α6

c(α6)

)
(which is not a component!), the first occurrence of the symbol △ represents
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α1 α2
α3

α4 α5 α6 α7 α8 α9 α10 α11 α12 α13
α14 α15△ △

▽

Figure 3.3: Pictorial representation of a formal DNA molecule X. The N -words
α1, . . . , α15 represent upper A-words, lower A-words and double A-words occurring in
X. The symbols △ and ▽ represent lower nick letters and upper nick letters, respectively.

a lower nick letter between the double components
(

α1

c(α1)

)
and
(

α2

c(α2)

)
, and the symbol ▽

represents an upper nick letter between the double components
(

α12

c(α12)

)
and

(
α13

c(α13)

)
.

In a formal DNA molecule, double components and non-double components alternate:

Lemma 3.7 Let X be a formal DNA molecule and let x′
1 . . . x

′
k for some k ≥ 1 be the

decomposition of X. Then

• for i = 1, . . . , k−1, if x′
i is a non-double component, then x′

i+1 is a double component;

• for i = 1, . . . , k−1, if x′
i is a double component, then x′

i+1 is a non-double component.

Indeed, the formal DNA molecule depicted in Figure 3.3 consists of a double component(
α1

c(α1)

)
, a lower nick letter, a double component

(
α2

c(α2)

)
, a lower component

(−
α3

)
, a double

component
(

α4

c(α4)

)
, an upper component

(
α5

−
)
, a double component

(
α6α7

c(α6α7)

)
, an upper

component
(
α8

−
)
, a double component

(
α9

c(α9)

)
, a lower nick letter, a double component(

α10

c(α10)

)
, an upper component

(
α11

−
)
, a double component

(
α12

c(α12)

)
, an upper nick letter,

a double component
(

α13

c(α13)

)
and a lower component

( −
α14α15

)
.

Proof: If for some i with 1 ≤ i ≤ k− 1, x′
i is a double component, then by the definition

of the decomposition, the next component x′
i+1 is a non-double component. Because nick

letters can only occur between two double components and because an upper component
cannot occur next to a lower component (see Definition 3.2), the reverse is also true: if
for some i with 1 ≤ 1 ≤ k − 1, x′

i is an upper component, a lower component or a nick
letter, then the next component x′

i+1 is a double component.

Two special cases of this result will also turn out to be useful:

Corollary 3.8 Let X be a nick free formal DNA molecule and let x′
1 . . . x

′
k for some k ≥ 1

be the decomposition of X.

1. For i = 1, . . . , k, x′
i is either an upper component, or a lower component, or a double

component.

2. For i = 1, . . . , k − 1,

• if x′
i is a single-stranded component, then x′

i+1 is a double component, and

• if x′
i is a double component, then x′

i+1 is a single-stranded component.

When we observe that by definition the first and the last component of a formal DNA
molecule cannot be nick letters, we also find
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Corollary 3.9 Let X be a formal DNA molecule which does not contain any single-
stranded component, and let x′

1 . . . x
′
k for some k ≥ 1 be the decomposition of X.

1. For i = 1, . . . , k, x′
i is either a double component, or an upper nick letter, or a lower

nick letter.

2. k = 2m− 1 for some m ≥ 1 (hence, k is odd) and

X =
(

α1

c(α1)

)
y1
(

α2

c(α2)

)
y2 . . . ym−1

(
αm

c(αm)

)

for N -words α1, . . . , αm and nick letters y1, . . . , ym−1.

3.4 Properties, relations and functions of formal DNA

molecules

In this section, we introduce some properties of formal DNA molecules, relations between
formal DNA molecules and functions on formal DNA molecules. We need these, to be
able to define the syntax and semantics of DNA expressions in Chapter 4.

Properties

Let X = x1 . . . xr be a formal DNA molecule, with xi ∈ A▽△
for i = 1, . . . , r. Then the

upper strand of X is said to cover the lower strand to the right if R(X) = xr /∈ A−,
hence, if x+

r 6= −; note that, since xr is not allowed to be a nick letter (Condition 2 of
Definition 3.2), x+

r is well defined. Intuitively, in this case, the upper strand extends at
least as far to the right as the lower strand.

If R(X) = xr ∈ A+, hence x−
r = − (the upper strand extends even beyond the lower

strand to the right), then the upper strand strictly covers the lower strand to the right.
In an analogous way we can define ‘(strict) covering to the left ’.

Of course, the definition of ‘(strict) covering’ can also be formulated for the lower
strand. For example, in the formal DNA molecule X3 from Example 3.1, the lower strand
strictly covers the upper strand to the right. Here, the strands extend equally far to the
left, and so we say that the upper strand covers the lower strand to the left and vice versa.

Relations

We say that a formal DNA molecule X1 prefits a formal DNA molecule X2 by upper
strands , denoted by X1⊏X2, if the upper strand of X1 covers the lower strand to the right
and the upper strand of X2 covers the lower strand to the left, hence, if R(X1) /∈ A− and
L(X2) /∈ A−. Intuitively, when we write X1 and X2 after each other in such a case, the
respective upper strands ‘make contact’.

Analogously, we define X1 to prefit X2 by lower strands if R(X1) /∈ A+ and L(X2) /∈
A+, and write then X1⊏X2. If either X1⊏X2 or X1⊏X2, then we may also say that X1

prefits X2, and write X1 ⊏ X2.
If the order of the formal DNA molecules is clear, then we may also say that X1 and

X2 fit together (by upper/lower strands).
In fact, we used the notion of prefitting already in the definition of a (single) formal

DNA molecule X. When we demanded that an element of A+ cannot be succeeded or
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X1 X2

Figure 3.4: Schematic representation of two formal DNA molecules X1 and X2 such that
the concatenation X1X2 is not a formal DNA molecule.

preceded by an element of A− (Condition 1 in Definition 3.2), we actually demanded

that the formal DNA molecule
(x+

i

x−
i

)
(of length 1) should prefit the formal DNA molecule

(x+

i+1

x−
i+1

)
(for each i such that neither xi nor xi+1 is a nick letter).

Unlike the set of all N -words N+, the set of formal DNA molecules F is not closed
under concatenation. Let, for example, X1 and X2 be formal DNA molecules, such that
the upper strand of X1 strictly covers the lower strand to the right and the lower strand
of X2 strictly covers the upper strand to the left. Then the concatenation X1X2 is not
a formal DNA molecule, because Condition 1 of Definition 3.2 is violated for i = |X1|.
This is illustrated in Figure 3.4. Thus in particular, even if X1 =

(
A
T

)(
C
G

)(
A
T

)(
T
−
)(

G
−
)

and X2 =
(−
A

)(−
C

)(
C
G

)(
A
T

)(
T
A

)
(so that the respective sticky ends of the DNA molecules

form a perfect match), then X1X2 is not a formal DNA molecule. As a matter of fact,
the following property holds:

Lemma 3.10 The concatenation of two formal DNA molecules X1 and X2 is again a
formal DNA molecule, if and only if X1 ⊏ X2.

Functions

We define four endomorphisms on the set A∗
▽△

: ν+, ν−, ν and κ. Let x ∈ A▽△
. Then the

functions are defined by

ν+(x) =

{
x if x ∈ A ∪ {△}
λ if x = ▽ (3.1)

ν−(x) =

{
x if x ∈ A ∪ {▽}
λ if x = △

(3.2)

ν(x) =

{
x if x ∈ A
λ if x ∈ {▽, △} (3.3)

κ(x) =





x if x ∈ A± ∪ {▽, △}(
a

c(a)

)
if x =

(
a
−
)
for a ∈ N(

c(a)
a

)
if x =

(−
a

)
for a ∈ N

(3.4)

Thus, ν+ removes all upper nick letters from its argument, ν− removes all lower nick
letters from its argument, ν removes both the upper nick letters and the lower nick letters
from its argument, and κ replaces every symbol from A+ and A− in its argument by the
corresponding symbol from A±.

From the point of view of the molecules represented, ν+ replaces all nicks in the upper
strand of its argument by phosphodiester bonds, and ν− does the same for nicks in the
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lower strand of its argument. The function ν replaces all nicks in both the upper strand and
the lower strand by phosphodiester bonds. Finally, κ provides a complementary nucleotide
for every nucleotide in its argument which is not complemented yet. The function does not
introduce nicks, i.e., the nucleotides added get connected to their respective neighbours.
On the other hand, the nicks present in the argument are not removed by κ.

It is easy to see (by inspecting the effect of the functions on the symbols from A▽△
),

that the composition of functions from the set {ν+, ν−, ν, κ} is commutative, i.e.,

h2(h1(X)) = h1(h2(X)) for all h1, h2 ∈ {ν+, ν−, ν, κ} and X ∈ A∗
▽△

. (3.5)

For example, κ(ν+(X)) = ν+(κ(X)) for each X ∈ A∗
▽△

.
Further, the functions are idempotent. That is, applying the same function more than

one time, does not change the result:

h(h(X)) = h(X) for each h ∈ {ν+, ν−, ν, κ} and X ∈ A∗
▽△

. (3.6)

For example, ν(ν(X)) = ν(X) for each X ∈ A∗
▽△

.
Finally, one can verify that

ν−(ν+(X)) = ν(X) for each X ∈ A∗
▽△

. (3.7)

Hence, ν is equal to the composition of ν+ and ν− (and, by commutativity, ν is equal to
the composition of ν− and ν+).

Because F , the set of formal DNA molecules, is a subset of A∗
▽△

, ν+, ν−, ν and κ can

be applied to F . It is easy to verify that for each X ∈ F and h ∈ {ν+, ν−, ν, κ}, also
h(X) ∈ F . For example, because of Condition 3 of Definition 3.2, every nick letter in X
is both preceded and succeeded by an element of A±. When such a nick letter is removed
from X, by either ν+, ν− or ν, these elements of A± become adjacent and this does not
violate any condition of Definition 3.2.

Since we are really interested in F , we will consider the restriction of the functions ν+,
ν−, ν and κ to this subdomain. In order not to burden our notation too much, we will
still use the notation ν+, ν−, ν and κ, respectively for these restricted functions, instead
of ν+|F , etc. – this should, however, not lead to confusion.

For the composition of functions from {ν+, ν−, ν, κ} with the functions L and R we
have the following results (they follow directly from the definitions of L, R, ν+, ν−, ν and
κ and the definition of a formal DNA molecule):

Lemma 3.11 For each X ∈ F ,

L(ν+(X)) = L(ν−(X)) = L(ν(X)) = L(X),

R(ν+(X)) = R(ν−(X)) = R(ν(X)) = R(X),

L(κ(X)), R(κ(X)) ∈ A±.





Chapter 4

DNA Expressions

The formal DNA molecules constitute the basis of our DNA language. They allow us to
define the actual elements of the language: the DNA expressions. DNA expressions are
strings that denote (formal) DNA molecules, in a similar way that arithmetic expressions
denote numbers. They are the central concept of this thesis, and are introduced in this
chapter.

After defining the DNA expressions, we examine how one can reconstruct their struc-
ture, i.e., how they are built up, from their appearance as flat strings. We subsequently
explain how to decide whether or not a given string is a DNA expression. We show that
the set of all DNA expressions is a context-free language, by means of a proper context-free
grammar. DNA expressions may be represented by their derivation trees in this grammar,
but these trees are very large. Therefore, we define another, more concise tree represent-
ation: the structure tree of a DNA expression. Finally, we introduce several notions of
equivalence, for DNA expressions that denote (almost) the same formal DNA molecule.

4.1 Operators and DNA expressions

The basic building blocks of DNA expressions are N -words. DNA expressions result by
applying operators to N -words. The operators we consider in this thesis are ↑, ↓ and l, to
be pronounced as uparrow , downarrow and updownarrow , respectively. DNA expressions
also contain opening and closing brackets: 〈 and 〉, which delimit the scope of the operators
– each (occurrence of an) operator acts only on the part of the expression that is contained
between its opening and closing brackets. Hence, the set of all DNA expressions, denoted
by D, is a language over the alphabet ΣD, where ΣD = N ∪{↑, ↓, l, 〈 , 〉} = {A,C,G,T, ↑
, ↓, l, 〈 , 〉}.

We will use the symbol E (possibly with annotations like subscripts) to denote a DNA
expression. If a string can be either an N -word or a DNA expression, then we use ε
(possibly with annotations like subscripts) to denote it.

Informally, a DNA expression is a string of the form 〈↑ ε1ε2 . . . εn〉, 〈↓ ε1ε2 . . . εn〉 or
〈l ε1〉, where n ≥ 1 and the εi’s are either N -words or DNA expressions themselves. The
εi’s are called the arguments of the operator involved. We say that an operator is applied
to its arguments. The arguments of the operators ↑ and ↓ must satisfy certain conditions,
which will be explained shortly.

Clearly, not every string over ΣD is a DNA expression. In particular, every DNA
expression contains brackets and at least one operator, which implies that N -words are
not DNA expressions.

43
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If E is a DNA expression, then the semantics of E, denoted by S(E), is the formal
DNA molecule represented by E. For every DNA expression, there is exactly one such
formal DNA molecule, so S is a mapping from our language of DNA expressions D into F .
When we precisely define the DNA expressions, we will also describe the corresponding
semantics. We do not define DNA expressions and their semantics separately, because
there are restrictions on the DNA expressions we can construct (the syntax) that are
explained best in terms of the molecules denoted (the semantics).

In fact, it is possible to rephrase the semantic restrictions in syntactic terms. That
would, however, make the definition far more tedious. In Section 4.3, we discuss how
to check whether or not a given string over ΣD is a DNA expression. We will see then,
that in order to verify the semantic restrictions, we do not have to compute the complete
semantics of (parts of) the DNA expression. In Section 4.5, we give a context-free grammar
generating the language of all DNA expressions. This may be considered as a purely
syntactic definition of the DNA expressions. The official definition, however, will make
use of semantic terms, because that makes the definition easier to understand.

Properties of formal DNA molecules carry over in a natural way to DNA expressions
by the following convention:

property P holds for a DNA expression E1 (DNA expressions E1 and E2)
⇐⇒

property P holds for S(E1) (S(E1) and S(E2), respectively).

Thus, e.g., we may say that the upper strand of DNA expression E1 strictly covers the
lower strand to the right, or that DNA expression E1 prefits DNA expression E2 by upper
strands.

Before we present the formal definition of a DNA expression, we want to provide some
intuition for the action of the three operators and for the restrictions that are imposed
onto their arguments.

The most elementary expressions in our DNA language are the applications of the
operators to a (single) N -word α: 〈↑ α〉, 〈↓ α〉 and 〈l α〉. The expression 〈↑ α〉 denotes

the upper A-word
(
α
−
)
(which, in turn, denotes the strand 5′-α-3′), 〈↓ α〉 denotes the

lower A-word
(−
α

)
(the strand 3′-α-5′), and 〈l α〉 denotes the double A-word

(
α

c(α)

)
with

upper strand α (the double-stranded DNA molecule
α

c(α)
5′- -3′

3′- -5′ without nicks).

For example, if α = ACATG, then 〈↑ α〉 denotes
(
ACATG

−
)
, 〈↓ α〉 denotes

( −
ACATG

)

and 〈l α〉 denotes
(
ACATG
TGTAC

)
.

In the basic DNA expressions, the three operators have one argument, anN -word α. In
general, however, the operators ↑ and ↓ may have more than one argument. Moreover, the
arguments of an operator do not have to be N -words; they may also be DNA expressions.
Then, starting from the simple, basic DNA expressions, one can build more and more
complex DNA expressions. There are, however, some restrictions on the arguments, which
we will describe now for each of the operators.

The operator ↑ can have an arbitrary number n ≥ 1 of arguments. Each argument
εi (i = 1, 2, . . . , n) must be either an N -word α, or a DNA expression E. The resulting
DNA expression is 〈↑ ε1ε2 . . . εn〉.

From the molecular point of view, the effect of the operator ↑ is threefold: (1) it pro-
duces upper strands corresponding to arguments that are N -words α (as in the basic DNA
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S
(〈↑ C

G
AT GC

CG

▽ 〉)
= CATGC

G CG
S
(〈↑ A

T
T
A

〉)
= AT

TA
△

(a)

S
(〈↓ T CATGC

G CG
AT
TA
△

〉)
= CATGCAT

TG CGTA

▽

(b)

S
(〈l CATGCAT

TG CGTA

▽ 〉)
= ACATGCAT

TGTACGTA

▽

(c)

Figure 4.1: Examples of the effects of the three operators.2 (a) The effect of the oper-
ator ↑. (b) The effect of the operator ↓. (c) The effect of the operator l.

expression 〈↑ α〉), (2) it repairs all nicks occurring in the upper strands of its arguments by
establishing the missing phosphodiester bonds and (3) it fixes such connections between
the upper strands of consecutive arguments. In short, ↑ connects all pairs of adjacent
nucleotides in the upper strands of its arguments.

The third type of effect imposes a (semantic) restriction on the arguments of ↑: con-
secutive arguments must prefit each other by upper strands. Otherwise, there would be a
gap in the upper strand ‘between’ two arguments, and we would not be able to connect
the upper strands. Since we have defined ‘prefitting each other by upper strands’ only for
formal DNA molecules and for DNA expressions, we consider an N -word α here as the

DNA expression 〈↑ α〉, which represents the upper A-word
(
α
−
)
.

The three types of effect of ↑ are illustrated by the first example in Figure 4.1(a).
Nicks that are present in the lower strands of the arguments are not repaired by

the operator ↑. As a matter of fact, ↑ introduces nicks between the lower strands of
consecutive arguments if these consecutive arguments also happen to prefit each other by
lower strands, i.e., if they have a blunt edge at each other’s side. The second example in
Figure 4.1(a) shows such a situation.

The operator ↓ is the dual of ↑. It can have an arbitrary number n ≥ 1 of arguments,
with each argument εi (i = 1, . . . , n) being either an N -word or a DNA expression. The
resulting DNA expression is 〈↓ ε1ε2 . . . εn〉.

The effect of this operator is similar to that of ↑; the only difference is that the roles
of the upper strands and the lower strands of the arguments are changed. Consequently,
also the requirement on consecutive arguments is changed: for i = 1, 2, . . . , n− 1, εi must
prefit εi+1 by lower strands. Here, when an argument εi is an N -word α, it is interpreted

as the DNA expression 〈↓ α〉, which denotes the lower A-word
(−
α

)
. The effect of ↓ is

illustrated by Figure 4.1(b).

Unlike the other two operators, l can have only one argument ε1. It is either an
N -word or an (arbitrary) DNA expression. The resulting DNA expression is 〈l ε1〉.

If ε1 is a DNA expression E, then, intuitively, in the DNA molecule denoted by E, the
operator l provides a complementary nucleotide for every nucleotide which is not yet com-
plemented. So it fills up every gap in the DNA molecule. Further, the operator establishes
phosphodiester bonds between the nucleotides added and their respective neighbours in
the strand. Hence, it does not introduce new nicks. On the other hand, if the DNA
molecule denoted by E has nicks already, then these nicks are not repaired by l. The

2The reader should not be diverted by the informal presentation of the examples. Formally, the
arguments of our operators are N -words and/or DNA expressions, and not DNA molecules. And formally,
the semantics of a DNA expression is not a DNA molecule, but a formal DNA molecule.
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A

❞

❄ C

❞
A

❞
T

❞
G

❞
C

❞
A

❞
T

❞

T❞ G❞
T❞
✻

A❞
✻ C❞ G❞ T❞ A❞

−→
A

❞
C

❞
A

❞
T

❞
G

❞
C

❞
A

❞
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❞

T❞ G❞ T❞ A❞ C❞ G❞ T❞ A❞

Figure 4.2: Pictorial representation of the effect of the operator l.

effect of this operator is illustrated in Figure 4.1(c).

The basic DNA expression 〈l α〉 was the result of applying l to an N -word α. This
result can also be explained in terms of complements, as follows: if the argument of l is
an N -word α, the operator conceives it as the DNA expression 〈↑ α〉 and then performs
the same action as for ‘ordinary’ DNA expressions.

The notation l may be a bit misleading. It may suggest to be a combination of the
operators ↑ and ↓. It would, e.g., repair nicks in both upper strands and lower strands
then, like the function ν does with formal DNA molecules. In fact, an operator with such
effect might be more realistic than the separate operators ↑ and ↓ that we have, as this
effect comes closer to the effect of the enzyme ligase than the separate effects of ↑ and ↓.

Indeed, we could have chosen to use other, completely different operators to construct
DNA expressions. Our choice for the three operators ↑, ↓ and l was based on two consid-
erations: (1) the basic two components of a double-stranded DNA molecule are the two
strands, and (2) the operators we consider should obey some notion of locality.

In the case of the operators ↑ and ↓, ‘locality’ means that they act on one of the strands
– in particular, ↑ seals (repairs) the nicks only in the upper strand, while ↓ seals the nicks
only in the lower strand. Note that applying both ↑ and ↓ (in any order) to one argument
will seal any existing nick. In the case of the operator l, ‘locality’ means that the string of
nucleotides filling in a gap gets also properly connected (bonded) to its neighbours, while
the pre-existing nicks are not sealed.

Therefore, in this thesis, we will build a theory with the operators ↑, ↓ and l as we
have introduced them.

There is a nice pictorial interpretation of the operators’ effects. We can consider a
nucleotide as a puppet, the phosphate group at the 5′-site and the hydroxyl group at the
3′-site being its arms. When there is a horizontal connection between two adjacent nucle-
otides, we can view that as if both puppets raised one arm and joined hands. A phosphate
group or a hydroxyl group that is not used for a phosphodiester bond corresponds to an
arm hanging down. So in case of a nick, the two nucleotides involved keep the arm on the
other one’s side down.

Now when the operator ↑ is applied, the puppets in the upper strand raise their arms
and, if there is an adjacent puppet, they connect. The effect of ↓ can be viewed similarly.
Finally, when l complements a nucleotide, it inserts a puppet with both arms raised.
Either of these arms seizes the arm of a neighbour and makes a connection. This case is
depicted in Figure 4.2.
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We are ready now to give a formal definition of DNA expressions and their semantics.

Definition 4.1 A DNA expression is a string in any of the following forms:

• 〈↑ ε1ε2 . . . εn〉,
where n ≥ 1, for i = 1, 2, . . . , n, εi is either an N -word or a DNA expression, and
for i = 1, 2, . . . , n− 1, S+(εi)⊏S+(εi+1), where the function S+ is defined by

S+(ε) =

{ (
α
−
)

if ε is an N -word α

S(ε) if ε is a DNA expression
. (4.1)

Further,

S(〈↑ ε1ε2 . . . εn〉) = ν+(S+(ε1))y1ν
+(S+(ε2))y2 . . . yn−1ν

+(S+(εn)) (4.2)

with

yi =





△ if S+(εi)⊏S+(εi+1), i.e., if both R(S+(εi)) ∈ A±

and L(S+(εi+1)) ∈ A±

λ otherwise, i.e., if either R(S+(εi)) ∈ A+

or L(S+(εi+1)) ∈ A+ (or both)

(i = 1, 2, . . . , n− 1).

(4.3)

• 〈↓ ε1ε2 . . . εn〉,
where n ≥ 1, for i = 1, 2, . . . , n, εi is either an N -word or a DNA expression, and
for i = 1, 2, . . . , n− 1, S−(εi)⊏S−(εi+1), where the function S− is defined by

S−(ε) =

{ (−
α

)
if ε is an N -word α

S(ε) if ε is a DNA expression
. (4.4)

Further,

S(〈↓ ε1ε2 . . . εn〉) = ν−(S−(ε1))y1ν
−(S−(ε2))y2 . . . yn−1ν

−(S−(εn))

with

yi =





▽ if S−(εi)⊏S−(εi+1), i.e., if both R(S−(εi)) ∈ A±

and L(S−(εi+1)) ∈ A±

λ otherwise, i.e., if either R(S−(εi)) ∈ A−

or L(S−(εi+1)) ∈ A− (or both)

(i = 1, 2, . . . , n− 1).

• 〈l ε1〉,
where ε1 is either an N -word or a DNA expression.

Further,

S(〈l ε1〉) = κ(S+(ε1)).

for the function S+ defined above.
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One can verify that indeed, for each DNA expression E satisfying this definition, S(E) is
a formal DNA molecule. Now, the formal language D is the set of all DNA expressions.

Example 4.2 The DNA expression

E = 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉 〈↑ 〈l A〉 〈l T〉〉〉 ,

uses all three operators. It is easily verified that E denotes the DNA molecule from
Figure 4.1(b).

We call a DNA expression of the form 〈↑ ε1 . . . εn〉 an ↑-expression, one of the form
〈↓ ε1 . . . εn〉 a ↓-expression, and one of the form 〈l ε1〉 an l-expression. Hence, the DNA
expression in Example 4.2 is a ↓-expression.

In this thesis, we will often introduce a general ↑-expression as ‘〈↑ ε1 . . . εn〉 for some
n ≥ 1 and N -words and DNA expressions ε1, . . . , εn’. Here, the phrase ‘N -words and
DNA expressions ε1, . . . , εn’ does not necessarily mean that there is at least one argument
εi that is an N -word and at least one argument εi that is a DNA expression. It is just an
easy way to express that for i = 1, . . . , n, εi is either an N -word or a DNA expression. It
is in principle possible that each εi is an N -word or that each εi is a DNA expression. Of
course, we use this type of formulation also for ↓-expressions.

The formal DNA molecule S+(ε), occurring in the definition of a DNA expression of
the form 〈↑ ε1ε2 . . . εn〉, can be considered as a kind of ‘upper semantics’ of the argument ε.
Similarly, the formal DNA molecule S−(ε), occurring in the definition of a DNA expression
of the form 〈↓ ε1ε2 . . . εn〉, can be considered as a kind of ‘lower semantics’ of the argument
ε.

When we define functions Exp+ and Exp− by

Exp+(ε) =

{
〈↑ α〉 if ε is an N -word α
ε if ε is a DNA expression

(4.5)

and

Exp−(ε) =

{
〈↓ α〉 if ε is an N -word α
ε if ε is a DNA expression,

(4.6)

it is easy to see that for every N -word or DNA expression ε, S+(ε) = S(Exp+(ε)) and
S−(ε) = S(Exp−(ε)). Consequently, for N -words or DNA expressions ε1 and ε2, we
have S+(ε1)⊏S+(ε2), if and only if Exp+(ε1)⊏Exp+(ε2), where the relation ⊏ is used in
the context of formal DNA molecules first, and in the context of DNA expressions next.
Analogously, S−(ε1)⊏S−(ε2), if and only if Exp−(ε1)⊏Exp−(ε2). The DNA expressions
Exp+(ε) and Exp−(ε) can be considered as a kind of ‘upper DNA expression’ and ‘lower
DNA expression’ corresponding to the argument ε, respectively.

Note that, indeed, the operator l does not introduce new nicks in its argument, simply
because the function κ does not do so.

We need to mention that the interpretation of the arguments of ↑-expressions and
↓-expressions may be ambiguous. For example, consider DNA expression E from Ex-
ample 4.2. Unless we have additional information, we cannot tell whether the N -word
AT is itself an argument of the first occurrence of ↑, or that it is the concatenation of
two arguments A and T. Consequently, we cannot tell, either, how many arguments this
occurrence of ↑ has. This ambiguity occurs whenever an operator ↑ or ↓ has consecutive
arguments that are N -words, or has an argument that is an N -word α with |α| ≥ 2.
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Fortunately, even though it may be unclear what exactly the arguments of operators ↑
and ↓ occurring in a DNA expression are, there can be no doubt about the (formal) DNA
molecule denoted by the DNA expression. This is implied by the following result:

Theorem 4.3 Let 1 ≤ i0 < j0 ≤ n, and let E = 〈↑ ε1 . . . εi0−1αi0 . . . αj0εj0+1 . . . εn〉 be
a DNA expression, for some N -words or DNA expressions ε1, . . . , εi0−1, εj0+1, . . . , εn and
some N -words αi0 , . . . , αj0. Let α = αi0 . . . αj0. Then S(E) is the same, regardless of the
interpretation of α as one argument or as a sequence of separate arguments αi0 , . . . , αj0.

Hence, any partitioning of an argument α of ↑ into a sequence of arguments αi0 , . . . , αj0

yields the same semantics. Of course, an analogous result holds for ↓-expressions.

Proof: When we interpret α as one argument, Equation (4.2) becomes

S(E) = ν+(S+(ε1))y1 . . . yi0−2ν
+(S+(εi0−1)) ·

(
α
−
)
·

ν+(S+(εj0+1))yj0+1 . . . yn−1ν
+(S+(εn)), (4.7)

where the yi’s are defined by (4.3). Note that S+(α) =
(
α
−
)
and also ν+(S+(α)) =

(
α
−
)
.

Indeed, because L(
(
α
−
)
), R(

(
α
−
)
) ∈ A+, both yi0−1 and yj0 equal λ.3

On the other hand, when we interpret α as a sequence of separate arguments αi0 , . . . ,
αj0 , we obtain

S(E) = ν+(S+(ε1))y1 . . . yi0−2ν
+(S+(εi0−1)) ·

(
αi0

−
)
. . .
(
αj0

−
)
·

ν+(S+(εj0+1))yj0+1 . . . yn−1ν
+(S+(εn)), (4.8)

where the yi’s are the same as in (4.7). Because
(
αi0

−
)
. . .
(
αj0

−
)
=
(
αi0 . . . αj0

−
)

=
(
α
−
)
,

Equation (4.8) reduces to (4.7).

Note that the interpretation of N -words α of length |α| ≥ 2 as argument(s) of an
operator is unambiguous for the operator l, because this operator can have only one
argument.

Example 4.4 Let E = 〈↑ ACATG〉. Then there are many possible interpretations of
the arguments of the operator ↑. We might, e.g., interpret E as 〈↑ α1 . . . α5〉, with five
arguments α1 = A, α2 = C, α3 = A, α4 = T and α5 = G. But we might as well interpret E
as 〈↑ α1α2〉 with two arguments α1 = AC and α2 = ATG, as 〈↑ α1α2〉 with two arguments
α1 = ACAT and α2 = G, or as 〈↑ α1〉 with only one argument α1 = ACATG. Whatever

interpretation we choose, S(E) =
(
ACATG

−
)
.

By the above, we are free to interpret consecutive N -words in a DNA expression as one
N -word. This motivates the definition of a maximal N -word occurrence in a string X
(e.g., in a DNA expression E) as an occurrence (X1, X2) of an N -word α in X such that
(1) if X1 6= λ then R(X1) /∈ N and (2) if X2 6= λ then L(X2) /∈ N . Hence, the N -word α
‘cannot be extended either to the left or to the right’.

Example 4.5 In the DNA expression

〈↓ T 〈↑ 〈l C〉AT 〈l GCAT〉〉〉
3If i0 = 1 or j0 = n, then, of course, yi0−1 or yj0 , respectively, does not even exist.
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the first occurrence of C and the first occurrence of AT are maximal N -word occurrences.
This is, however, not the case with the second occurrences of these N -words, as they can
be extended to GCAT.

Although we may interpret consecutive N -words in a DNA expression as one N -word, we
do not always do so in this thesis. In particular, we still allow occurrences of the operators
↑ and ↓ in a DNA expression to have consecutive arguments that are N -words.

Additional terminology

We say that an operator governs its argument(s) and everything inside its argument(s).
In every DNA expression we can identify an outermost operator. This is the operator
which has been performed last. It governs the entire DNA expression.

Because of the 1–1 correspondence between a DNA expression and its outermost
operator, we will sometimes use one term while meaning the other. In particular, we
may speak of the arguments of a DNA expression, while we actually mean the argu-
ments of the outermost operator of a DNA expression. For example, the (three) ar-
guments of the DNA expression from Example 4.2 are the N -word T, the ↑-expression
〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉 and the ↑-expression 〈↑ 〈l A〉 〈l T〉〉.

We call (an occurrence of) an operator in a DNA expression E which is not the
outermost operator, an inner occurrence of this operator in E.

An operator may occur more than once in a DNA expression. To denote a specific
occurrence of an operator, we may provide the operator with a subscript. For example,
we may have ↑0 or ↓1.

A DNA subexpression Es of a DNA expression E is a substring of E which is itself a
DNA expression. If Es 6= E, then we call Es a proper DNA subexpression of E. Clearly,
the outermost operator of a proper DNA subexpression of E is an inner occurrence of this
operator in E.

We will use the term ↑-subexpression of E to refer to a DNA subexpression of E which
is an ↑-expression. Analogously, we may have a ↓-subexpression and an l-subexpression
of E.

For every N -word α occurring in a DNA expression E and for every proper DNA
subexpression Es of E we define its parent operator to be the operator which has the
N -word or DNA subexpression as an immediate argument. For example, in the DNA
expression from Example 4.2, the parent operator of the N -word AT is the first occurrence
of the operator ↑ in the DNA expression; for the second occurrence of the N -word C it
is clearly the operator l standing in front of it; and the parent operator of the DNA
subexpression 〈l G〉 is the second occurrence of the operator ↓.

An occurrence of an operator is an ancestor operator of an N -word or a DNA subex-
pression ε occurring in E, if ε is contained in an argument of the operator. For example,
the ancestor operators of the second occurrence of the N -word C in the DNA expression
from Example 4.2 are: the first occurrence of ↓ (the outermost operator), the first occur-
rence of ↑, the second occurrence of ↓ and the third occurrence of l (the parent operator
of C).

If an argument of a certain (occurrence of an) operator is an N -word, then we may call
it an N -word-argument of the operator. If, on the other hand, the argument is a DNA
expression, then we may call it an expression-argument of the operator. In particular, if it
is an ↑-expression, then we may call it an ↑-argument . In an analogous way, we define a ↓-
argument and an l-argument of an operator. At some point in this thesis, it will be useful
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to have a single term for arguments that are not l-expressions, i.e., for N -word-arguments,
↑-arguments and ↓-arguments. We call such arguments non-l-arguments .

Let us assume that the N -word-arguments of a certain ↑-expression or ↓-expression E
are maximal N -word occurrences. We say that E is alternating , if its arguments are max-
imalN -word occurrences and DNA expressions, alternately. Because by definition, a max-
imal N -word occurrence cannot be preceded or succeeded by another N -word-argument,
this is equivalent to saying that E does not have consecutive expression-arguments. An
occurrence of an operator ↑ or ↓ is alternating, if the corresponding DNA subexpression
is alternating.

Example 4.6 Let

E1 = 〈↑ α1〉 ,
E2 = 〈↑ 〈l α1〉〉 ,
E3 = 〈↓ 〈↑ α1 〈l α2〉〉α3α4 〈l α5〉〉 ,
E4 = 〈↓ α1 〈↓ 〈l α2〉 〈↑ 〈l α3〉α4〉〉〉 .

Both E1 and E2 have only one argument, and are by definition alternating. The N -word-
arguments α3 and α4 of E3 together form a maximalN -word occurrence. This makes E3 al-
ternating. Finally, E4 is alternating, although its second argument 〈↓ 〈l α2〉 〈↑ 〈l α3〉α4〉〉
is not alternating. The ↓-expression in Example 4.2 is not alternating, because both its
second argument 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉 and its third argument 〈↑ 〈l A〉 〈l T〉〉 are
DNA expressions.

Let E be a DNA expression, and let α1, . . . , αk for some k ≥ 1 be the maximal N -
word occurrences in E, in the order of their occurrence from left to right. Then we
will sometimes write E as a function of these maximal N -word occurrences, hence E =
E(α1, . . . , αk). Clearly, α1, . . . , αk also show up in the corresponding formal DNA molecule
S(E), and they occur in S(E) in the same order as in E.

Note, however, that different maximal N -word occurrences αi in E may end up in the
same component of S(E). Moreover, if the parent operator of a maximal N -word occur-

rence αi is ↓ (which implies that a lower A-word
(−
αi

)
is introduced into the semantics),

then this lower A-word may be complemented by an occurrence of l. This would result

in a double A-word
(
c(αi)
αi

)
. Hence, the component of S(E) in which a maximal N -word

occurrence αi of E appears, is not necessarily an element of
{(

αi

−
)
,
(−
αi

)
,
(

αi

c(αi)

)}
. For

example, if E = E(α1, α2) = 〈l 〈↓ α1 〈l α2〉〉〉, then S(E) =
(
c(α1)α2

α1c(α2)

)
.

4.2 Brackets, arguments and DNA subexpressions

The brackets in a DNA expression determine a structure with different levels. An opening
bracket 〈 corresponds to an increase of the level by 1, a closing bracket 〉 to a decrease of
the level by 1. The resulting levels are called the nesting levels of the brackets.

Initially, before the first letter of a DNA expression, the nesting level is 0. Since
every opening bracket precedes the corresponding closing bracket, the nesting level is non-
negative at any position in a DNA expression. Further, because the number of opening
brackets equals the number of closing brackets, the nesting level is back at 0 at the end of
a DNA expression. In Figure 4.3, we show the nesting level as a function of the position in
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❆
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❆
❆❆✁
✁✁. . . . .

〉 〉 〉 〈

❆
❆
❆
❆
❆
❆❆✁
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↑ 〈 l A

✁
✁✁. . . . .

〉 〈 l T

❆
❆❆✁
✁✁. . . . .

〉 〉 〉

❆
❆
❆
❆
❆
❆❆

Figure 4.3: Nesting level as a function of the position in the DNA expression from
Example 4.2. Horizontal dotted lines connect changes of the nesting level due to pairs of
corresponding brackets.

the DNA expression from Example 4.2. The maximal nesting level of a DNA expression
is of particular interest. For example, the maximal nesting level of the DNA expression
from Figure 4.3 is 4.

A DNA expression consists of an opening bracket, an operator, one or more arguments
and a closing bracket. Hence, the nesting level structure of a DNA expression is determined
by the nesting level structure of its arguments. In particular, the maximal nesting level
of a DNA expression is determined by the maximal nesting levels of those arguments that
are DNA expressions themselves:

Lemma 4.7 Let E be a DNA expression and let E1, . . . , Er for some r ≥ 0 be the
expression-arguments of E.

1. If r = 0 (i.e., if E only has N -word-arguments), then the maximal nesting level of
E is 1.

2. If r ≥ 1, then the maximal nesting level of E is equal to

r
max
j=1

(maximal nesting level of Ej)+ 1.

Of course, in the expression in Claim 2, the expression-arguments Ej are viewed as inde-
pendent DNA expressions, which start at level 0.

We can use the notion of the nesting level for identifying substrings of a DNA expres-
sion. We do this in the following two results.

Lemma 4.8 Suppose that the opening bracket of a DNA subexpression Es of a DNA
expression E raises the nesting level of E from l − 1 to l for a certain positive integer l.
Then the closing bracket of Es is the first closing bracket after this opening bracket to
lower the nesting level from l to l − 1. In particular, between the opening bracket and the
closing bracket of Es, the nesting level is at least l.



4.2 Brackets, arguments and DNA subexpressions 53

E: 〈 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 〉
Es

1: 〈 . . . . . . . . . 〉
Es

2: 〈. . . . . . . . . . . . . .〉

Figure 4.4: Schematic representation of two (hypothetically) overlapping DNA subex-
pressions Es

1 and Es
2 of a DNA expression E.

Proof: Straightforward by induction on the number of operators occurring in Es.

To illustrate this lemma, we have drawn dotted lines between corresponding increases
and decreases of the nesting level in Figure 4.3. We can thus use the nesting levels of the
brackets in a DNA expression E, to reconstruct the DNA subexpressions that occurred in
the recursive definition of E. We proceed with arbitrary arguments of operators occurring
in E.

Theorem 4.9 Let E be a DNA expression, and assume that each N -word-argument of an
operator occurring in E is a maximal N -word occurrence. Let |0 be an operator at nesting
level l in E. Then (an occurrence of) a substring between |0 and the closing bracket of |0
is an argument of |0, if and only if

• either it is a maximal N -word occurrence in E at nesting level l,

• or it starts with an opening bracket raising the nesting level from l to l+1 and ends
with the corresponding closing bracket.

This result is important, because it enables us to determine the structure of a DNA
expression, i.e., how the DNA expression has been built up, even though it is just a
sequence of symbols.

Note that by Theorem 4.3, the assumption that each N -word-argument of an operator
is in fact a maximal N -word occurrence, is not restrictive.

Clearly, as every DNA (sub-)expression is of the form 〈|0ε1 . . . εn〉 for an operator |0
and arguments ε1, . . . , εn, the arguments are indeed substrings between |0 and the closing
bracket of |0. Hence, this theorem covers all arguments of |0.

We do not give a proof for Theorem 4.9. First, because the result is intuitively clear
anyway, and second, because the inductive arguments that are used in the proof are a bit
tedious, although not extremely complicated. We only mention that both in the proof
from left to right and in the proof from right to left, there is a crucial role for Lemma 4.8.

Lemma 4.8 may also be used in a formal proof of the following result. Again, however,
because this result is standard in the world of bracketed expressions, we omit the proof.

Theorem 4.10 Two (occurrences of) DNA subexpressions in a DNA expression E cannot
overlap. So either one is contained in the other, or they do not have a common (occurrence
of a) substring at all.

Hence, a situation as depicted in Figure 4.4 is not possible.

Corollary 4.11 If Es is a proper DNA subexpression of a DNA expression E, then Es

is contained in an argument of E.
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Proof: Because Es is a proper DNA subexpression of E, it is a substring of ε1 . . . εn, the
concatenation of the arguments of E. Let εi be the first argument that has a non-empty
intersection with Es. Then εi contains the opening bracket of Es, which implies that εi
is a DNA expression (and not an N -word).

If the opening bracket of Es is the opening bracket of εi, then also the closing brackets
must match, so Es is equal to εi. In particular, Es is contained in εi. If the opening
bracket of Es is not the opening bracket of εi, then εi is clearly not contained in Es. By
Theorem 4.10, Es must be (properly) contained in εi then.

We conclude this section with a simple, but useful result. It says that arguments of
DNA expressions cannot just consist of brackets and operators:

Lemma 4.12 Let E ∈ D be a DNA expression. Every argument of every operator in E
contains at least one N -word α.

Proof: Straightforward by induction on the number of operators occurring in an argu-
ment.

4.3 Recognition of DNA expressions

As mentioned before, not every string over ΣD, i.e., consisting of N -words α, operators
and brackets, is a DNA expression. Given an arbitrary string E over this alphabet, we
may want to verify whether or not it is a DNA expression. A natural way to do this,
is simply to check all requirements from the (recursive) definition of a DNA expression,
as given in Definition 4.1. One requirement is that the arguments of (occurrences of)
operators ↑ and ↓ must fit together by upper strands or lower strands, respectively. In
this section, we discuss how to check this without explicitly computing the semantics of
the arguments.

Before we can examine the arguments of operators, we must look at the structure of
the string E we are given. In particular, we must verify (1) that there are as many opening
brackets as closing brackets in the string, (2) that each opening brackets comes before the
corresponding closing bracket, (3) that the first symbol of the string is an opening bracket
and the last symbol is the corresponding closing bracket, (4) that each opening bracket
is immediately succeeded by an operator, and (5) that there are no other occurrences of
operators in the string.

Next, by using Theorem 4.9, we can determine the arguments εi of the outermost
operator |0 of the string. If |0 is l, then there has to be exactly one argument; if it is either
↑ or ↓, then there has to be at least one argument. In particular, we cannot have E = 〈↑〉,
E = 〈↓〉 or E = 〈l〉. For those arguments that are no (maximal) N -word occurrences, we
can check recursively whether they are DNA expressions.

If, up to here, all requirements are met and |0 has only one argument, then the string is
a DNA expression. If the number of arguments n is greater than 1 (which implies that |0 is
↑ or ↓), then we have to do some more work. We must verify the semantic restriction that
the arguments ε1, . . . , εn fit together by upper strands or lower strands (depending on the
operator), see Definition 4.1. In fact, we may have had to perform such a check already
for occurrences of ↑ and ↓ inside the arguments, when we checked that these arguments
are really DNA expressions.
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The requirement for ↑-expressions can be expressed formally in terms of R(S+(εi))
and L(S+(εi+1)) for i = 1, . . . , n − 1. However, if we only want to check whether or not
two arguments of an operator fit together by upper strands, then we are not interested in
the complete semantics of these arguments. In fact, it could be very inefficient to compute
the complete semantics for just this check.

Therefore, it would be desirable if we could compute L(S+(εi)) and R(S+(εi)) for an
N -word or DNA expression εi without having to compute S+(εi) explicitly. Actually,
we only need to know which of the subsets A+, A− and A± the A-letters L(S+(εi))
and R(S+(εi)) belong to. For consecutive arguments εi and εi+1, both R(S+(εi)) and
L(S+(εi+1)) must be in A+ ∪ A±.

Of course, to check if the arguments ε1, . . . , εn of an operator ↓ fit together by lower
strands, we need to answer a similar question for L(S−(εi)) and R(S−(εi)). Note that
if εi is a DNA expression Ei, then S+(εi) = S−(εi) = S(Ei). In that case, L(S+(εi)) =
L(S−(εi)) and R(S+(εi) = R(S−(εi)).

We can use the following result to recursively determine the subsets ofA that L(S+(εi)),
R(S+(εi)), L(S−(εi)) and R(S−(εi)) belong to:

Lemma 4.13 Let εi be an N -word or a DNA expression.

1. If εi is an N -word α, then

L(S+(εi)), R(S+(εi)) ∈ A+,

L(S−(εi)), R(S−(εi)) ∈ A−.

2. If εi is an l-expression, then

L(S+(εi)) = L(S−(εi)) = L(S(εi)) ∈ A±,

R(S+(εi)) = R(S−(εi)) = R(S(εi)) ∈ A±.

3. If εi is an ↑-expression 〈↑ εi,1 . . . εi,m〉 for some m ≥ 1 and N -words and DNA
expressions εi,1, . . . , εi,m, then

L(S+(εi)) = L(S−(εi)) = L(S(εi)) = L(S+(εi,1)),

R(S+(εi)) = R(S−(εi)) = R(S(εi)) = R(S+(εi,m)).

4. If εi is a ↓-expression 〈↓ εi,1 . . . εi,m〉 for some m ≥ 1 and N -words and DNA ex-
pressions εi,1, . . . , εi,m, then

L(S+(εi)) = L(S−(εi)) = L(S(εi)) = L(S−(εi,1)),

R(S+(εi)) = R(S−(εi)) = R(S(εi)) = R(S−(εi,m)).

Proof:

1. This claim follows immediately from the observation that for an N -word α, S+(α) =(
α
−
)
and S−(α) =

(−
α

)
.
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2. Assume that εi = 〈l εi,1〉 for an N -word or a DNA expression εi,1. By the defin-
ition of the semantics of an l-expression, S(εi) = κ(S+(εi,1)). Hence, L(S(εi)) =
L(κ(S+(εi,1))) and R(S(εi)) = R(κ(S+(εi,1))). By Lemma 3.11, these are in A±.

3. Assume that εi = 〈↑ εi,1 . . . εi,m〉 for some m ≥ 1 and N -words and DNA expressions
εi,1, . . . , εi,m. According to the definition of an ↑-expression and its semantics,

S(εi) = ν+(S+(εi,1))y1 . . . ym−1ν
+(S+(εi,m))

for yi’s as in (4.3). Consequently,

L(S(εi)) = L(ν+(S+(εi,1))) = L(S+(εi,1)).

The second equality in this derivation follows from Lemma 3.11.

In a similar way, we find R(S(εi)) = R(S+(εi,m)).

4. The proof of this claim is analogous to that of the previous claim.

Once we know L(S+(εi)) and R(S+(εi)) (if |0 =↑) or L(S−(εi)) and R(S−(εi)) (if
|0 =↓) for i = 1, . . . , n, it is easy to check whether or not the arguments fit together by
upper strands or lower strands, respectively. If so, then the string E is a DNA expression;
otherwise, it is not.

In Figure 4.5, we give a recursive function CheckExpression, which uses Lemma 4.13
to decide whether or not a string E over ΣD is a DNA expression. Whenever the function
is called (recursively) for a DNA expression E, it returns the subsets of A that L(S(E))
and R(S(E)) belong to. These subsets can be used higher up in the recursion to verify that
consecutive arguments of operators ↑ and ↓ fit together. CheckExpression assumes that
the brackets and the operators in E are positioned correctly. This implies in particular
that it is possible to actually identify the arguments of E, using Theorem 4.9.

It is not difficult to verify the assumption about the positioning of the brackets and the
corresponding operators in E. One can do this by simply traversing the string from left
to right, counting opening brackets (followed by operators) and closing brackets. Then
the entire algorithm for the recognition of a DNA expression takes time that is linear in
the length of the string.

Concatenation of DNA expressions

By Lemma 3.10, the concatenation of two formal DNA molecules is not necessarily a
formal DNA molecule itself. For DNA expressions, the situation is even worse. The mere
concatenation of two DNA expressions E1 and E2 is never a DNA expression, not even if
E1 and E2 fit together.

This conclusion follows immediately from an examination of the brackets. The first
and the last symbol of a DNA expression have to be corresponding opening and closing
brackets. However, although the first and the last symbol of the string E1E2 are an
opening and a closing bracket, respectively, they are not corresponding opening and closing
brackets.
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1. bool CheckExpression (E, L0, R0)
// checks if the string E, whose brackets and operators
// are positioned correctly, is a DNA expression;
// if so, then also returns the subsets L0 and R0 of A
// which L(S(E)) and R(S(E)) belong to

2. {
3. |0 = outermost operator of E;
4. OK = true;
5. n = 0; // number of arguments
6. while (OK and there are arguments of E left)
7. do n++;
8. ε = next argument of E;
9. if (|0 ==l)
10 then if (n == 1)
11. then if (ε is not an N-word)

then // it should be a DNA expression
12. OK = CheckExpression (ε, L1, R1);
13. fi
14. if (OK) // in particular, if ε is an N-word
15. then L0 = A±;
16. R0 = A±;
17. fi
18. else // n ≥ 2
19. OK = false; // more than one argument for l
20. fi

21. else // |0 ==↑ or |0 ==↓;
// without loss of generality, assume |0 ==↑

22. if (ε is an N-word)
23. then L1 = A+;
24. R1 = A+;
25. else // ε should be a DNA expression
26. OK = CheckExpression (ε, L1, R1);
27. fi
28. if (OK)
29. then if (n == 1) // first argument
30. then L0 = L1;
31. R0 = R1;
32. else // n ≥ 2
33. if (R0 6= A− and L1 6= A−)

// last two arguments fit together
34. then R0 = R1;
35. else OK = false;
36. fi
37. fi
38. fi
39. fi
40. od

41. if (n == 0) // operator without arguments
42. then OK = false;
43. fi
44. return OK;
45. }

Figure 4.5: Pseudo-code of the recursive function CheckExpression.
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1. ComputeSem (E)
// computes and returns the semantics of the DNA expression E

2. {
3. if (E is an l-expression 〈l ε1〉)
4. then if (ε1 is an N-word α1)

5. then X =
(

α1

c(α1)

)
;

6. else // ε1 is a DNA expression E1

7. X1 = ComputeSem (E1);
8. X = κ(X1);
9. fi
10. return X;
11. else // E is an ↑-expression or a ↓-expression;

// without loss of generality, assume it is
// an ↑-expression 〈↑ ε1 . . . εn〉 for some n ≥ 1
// and N-words and DNA expressions ε1, . . . , εn

12. for (i = 1 to n)
13. do if (εi is an N-word αi)

14. then Xi =
(
αi

−
)
;

15. else // εi is a DNA expression Ei

16. Xi = ComputeSem (Ei);
17. fi
18. if (i == 1) // first argument
19. then X = ν+(Xi); // semantics up to current argument
20. else // i ≥ 2
21. if (R(X) ∈ A± and L(Xi) ∈ A±)
22. then X = X ·

△
· ν+(Xi);

23. else X = X · ν+(Xi);
24. fi
25. fi
26. od
27. return X;
28. fi
29. }

Figure 4.6: Pseudo-code of the recursive function ComputeSem.

Thus, E1E2 is just a string consisting of two separate DNA expressions. This is in line
with the (natural) interpretation of DNA expressions as DNA molecules. By putting two
DNA molecules in each other’s vicinity, we do not automatically get a new DNA molecule.
It requires a chemical reaction to achieve that. In the world of DNA expressions, the
analogue of such a chemical reaction is an operator. In particular, the operators ↑ and ↓
that we have defined can be used to combine two or more DNA expressions into one new
DNA expression.

4.4 Computing the semantics of a DNA expression

For a given DNA expression E, we can compute the semantics S(E) directly from the
definition, which is part of Definition 4.1. As this definition is recursive (the semantics of
a DNA expression is built up of the semantics of the arguments of the DNA expression),
it is natural to use a recursive function for this. In Figure 4.6, we give such a function,
called ComputeSem, which closely follows the definition.
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The computational complexity of ComputeSem, as it is described in Figure 4.6, is
dominated by the calls of the function κ in line 8 and the function ν+ in lines 19, 22 and 23.
Parts of the semantics of E may be subject to these functions more than once, leading to
at least a quadratic time complexity in the worst case. We consider two examples of this.

In line 8, the function κ complements its argument X1. In fact, it only complements
the single-stranded components of X1; the other components are not affected by κ (see the
definition in (3.4)). In Figure 4.6, we have not specified how to find the single-stranded
components. The most natural way to do this, would be to examine all components of X1

to see if they are single-stranded.

Example 4.14 Let α be an arbitrary N -word, and let

E1 = 〈l αα〉
E2p = 〈↑ E2p−1 〈l α〉α〉 (p ≥ 1)
E2p+1 = 〈l E2p〉 (p ≥ 1).

Hence,

E1 = 〈l αα〉
E2 = 〈↑ 〈l αα〉 〈l α〉α〉
E3 = 〈l 〈↑ 〈l αα〉 〈l α〉α〉〉
E4 = 〈↑ 〈l 〈↑ 〈l αα〉 〈l α〉α〉〉 〈l α〉α〉

. . .

It is easy to prove by induction on p, that for any p ≥ 1,

• both E2p and E2p+1 are DNA expressions,

•

S(E2p) =
(

αα
c(αα)

)
△
. . .
(

αα
c(αα)

)
△︸ ︷︷ ︸

p times

(
α

c(α)

)(
α
−
)

(4.9)

S(E2p+1) =
(

αα
c(αα)

)
△
. . .
(

αα
c(αα)

)
△︸ ︷︷ ︸

p times

(
αα

c(αα)

)

• |E2p| = 3 · 3p+ (2p+ 2) · |α| and |E2p+1| = 3 · (3p+ 1) + (2p+ 2) · |α|.

In particular, the lengths of E2p and E2p+1 are linear in p.
Now, let p ≥ 1 and let us apply the function ComputeSem to the l-expression E2p+1,

with argument E2p. When we call the function recursively for E2p (in line 7), it returns
X1 = S(E2p), as described in (4.9). This semantics consists of 2p+2 components. It takes
time that is linear in p to examine them all to see if they are single-stranded. Only the
last component actually is single-stranded, and thus is complemented by the function κ
in line 8.

Likewise, at a higher level of the recursion, we have had to examine the 2p, 2p −
2, 2p − 4, . . . , 4 components of S(E2(p−1)),S(E2(p−2)),S(E2(p−3)), . . . ,S(E2), respectively.
Altogether, this takes time that is quadratic in p, and thus in the length of E2p+1.
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In lines 19, 22 and 23 of ComputeSem, the function ν+ is applied to the formal DNA mo-
lecule Xi. It removes the upper nick letters from this argument. The double components
preceding and succeeding such an upper nick letter are merged. The other components of
Xi are not affected by ν+ (see the definition in (3.1)). In Figure 4.6, we have not specified
how to find the upper nick letters. The most natural way to do this, would be to examine
all components of Xi to see if they are upper nick letters.

Example 4.15 Let α be an arbitrary N -word, and let

E1 = 〈l αα〉
E2p = 〈↑ E2p−1 α 〈l α〉 〈l α〉〉 (p ≥ 1)
E2p+1 = 〈↓ E2p〉 (p ≥ 1).

Hence,

E1 = 〈l αα〉
E2 = 〈↑ 〈l αα〉α 〈l α〉 〈l α〉〉
E3 = 〈↓ 〈↑ 〈l αα〉α 〈l α〉 〈l α〉〉〉
E4 = 〈↑ 〈↓ 〈↑ 〈l αα〉α 〈l α〉 〈l α〉〉〉α 〈l α〉 〈l α〉〉

. . .

It is easy to prove by induction on p, that for any p ≥ 1,

• both E2p and E2p+1 are DNA expressions,

•

S(E2p) =
(

αα
c(αα)

)(
α
−
)
. . .
(

αα
c(αα)

)(
α
−
)

︸ ︷︷ ︸
p times

(
α

c(α)

)
△

(
α

c(α)

)
(4.10)

S(E2p+1) =
(

αα
c(αα)

)(
α
−
)
. . .
(

αα
c(αα)

)(
α
−
)

︸ ︷︷ ︸
p times

(
αα

c(αα)

)

• |E2p| = 3 · 4p+ (3p+ 2) · |α| and |E2p+1| = 3 · (4p+ 1) + (3p+ 2) · |α|.

In particular, the lengths of E2p and E2p+1 are linear in p.
Now, let p ≥ 1 and let us apply the function ComputeSem to the ↓-expression E2p+1,

with argument E2p. When we call the function recursively for E2p (in line 16), it returns
Xi = S(E2p), as described in (4.10). This semantics consists of 2p + 3 components. It
takes time that is linear in p to examine them all to see if they are lower nick letters.
Only the last but one component actually is a lower nick letter, and thus is removed by
the function ν− in line 19 (of the analogue for ↓-expressions E of ComputeSem).

Likewise, at a higher level of the recursion, we have had to examine the 2p + 1, 2p −
1, 2p − 3, . . . , 5 components of S(E2(p−1)),S(E2(p−2)),S(E2(p−3)), . . . ,S(E2), respectively.
Altogether, this takes time that is quadratic in p, and thus in the length of E2p+1.

The quadratic time complexity of ComputeSem can be brought back to a linear one, by
means of a proper data structure to store the semantics. In particular, we could maintain
lists of single-stranded components (to be utilized by κ) and lists of nick letters (to be



4.4 Computing the semantics of a DNA expression 61

utilized by ν+ and ν−) occurring in the semantics. This data structure would be very
similar to the data structure we propose in Section 9.3 to solve a similar problem.

Here, we choose a different approach to avoid the quadratic time complexity. In the
description of this approach, we use E∗

1 to denote the DNA expression as a whole, to clearly
distinguish this DNA expression from the parameter E of (a recursive call of) ComputeSem
and the expression-arguments Ei. When we apply ComputeSem to E∗

1 , we recursively call
the function for each DNA subexpression E of E∗

1 . We now give the function three
additional, boolean parameters ↑-anc, ↓-anc and l-anc, which indicate whether or not
the parameter E has ancestor operators ↑, ↓ and l, respectively. We use these three
parameters to adjust the semantics of E to the presence of these operators, already while
evaluating E. Obviously, the three parameters are false, when we call ComputeSem for the
first time, i.e., for E∗

1 itself.
For example, suppose that E is a ↓-expression, which is a proper DNA subexpression

of an ↑-expression (↑-anc is true). Then it does not make sense (in the end) to introduce
upper nick letters into S(E), as they will be removed by the occurrence of ↑, anyway.
Therefore, we simply omit these upper nick letters. This implies that we do not have to
apply ν+ to the arguments of the operator ↑ any more.

The parameter ↓-anc is used in an analogous way, which takes away the need to apply
ν− to the arguments of the operator ↓.

Finally, we complement an N -word-argument of an ↑-expression or ↓-expression E, if
E is governed by an occurrence of l (l-anc is true). Consequently, we do not have to
apply κ to an expression-argument of an operator l.

Note that this way, the function ComputeSem no longer computes the semantics of its
parameter E, but it computes the semantics corresponding to E, in the context of E∗

1 .

Example 4.16 Consider the ↑-expression

E∗
1 = 〈↑ 〈↓ α1 〈l α2〉 〈l α3〉〉 〈↑ α4 〈l α5〉〉〉 ,

where α1, . . . , α5 are arbitrary N -words. When we apply the modified version of
ComputeSem to E∗

1 , the recursive call for its first argument E1 = 〈↓ α1 〈l α2〉 〈l α3〉〉 will
produce

(−
α1

)(
α2α3

c(α2α3)

)
, while actually S(E1) =

(−
α1

)(
α2

c(α2)

)
▽
(

α3

c(α3)

)
. The upper nick let-

ter is omitted, because it would be removed by the outermost operator ↑ of E∗
1 , anyway.

Indeed,

S(E∗
1) =

(−
α1

)(
α2α3

c(α2α3)

)(
α4

−
)(

α5

c(α5)

)

does not contain upper nick letters (and no lower nick letters, either).

When we complement N -word-arguments of operators ↑ and ↓ because of the presence
of an ancestor operator l, we must be careful not to introduce additional (and incorrect)
nick letters.

Example 4.17 Let us apply l to the DNA expression E∗
1 from Example 4.16, yielding:

E∗
0 = 〈l 〈↑ 〈↓ α1 〈l α2〉 〈l α3〉〉 〈↑ α4 〈l α5〉〉〉〉 .

The ↑-argument E∗
1 of E∗

0 has two expression-arguments E1 = 〈↓ α1 〈l α2〉 〈l α3〉〉 and
E2 = 〈↑ α4 〈l α5〉〉. When we (recursively) call ComputeSem for E1 and E2, the boolean
parameters ↑-anc and l-anc are true, because E1 and E2 have ↑ and l as ancestor operators.
Consequently, the function yields X1 =

(
c(α1)α2α3

α1c(α2α3)

)
and X2 =

(
α4α5

c(α4α5)

)
for E1 and E2,
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respectively. As E1 and E2 are consecutive arguments of an operator ↑, and both R(X1)
and L(X2) are inA±, we might be tempted to introduce a lower nick letter betweenX1 and

X2. This would, however, be incorrect because S(E2) =
(
α4

−
)(

α5

c(α5)

)
and L(S(E2)) ∈ A+.

Indeed,

S(E∗
0) =

(
c(α1)α2α3α4α5

α1c(α2α3α4α5)

)

is nick free.

We can avoid the incorrect nick letters by giving ComputeSem two more return values L0

and R0. For a DNA expression E (the first parameter of ComputeSem), L0 and R0 indicate
the subsets ofA (A+, A− orA±) that L(S(E)) andR(S(E)) belong to, respectively. These
values are used (together with ↑-anc and ↓-anc) to decide whether or not to introduce a
nick letter between two arguments of an operator ↑ or ↓.

In Figure 4.7, we give a pseudo-code implementation of ComputeSem, which includes
the additional features. In this implementation, the values L0 and R0 are returned as
parameters of the function.

It is important to realize that, when we make a recursive call to ComputeSem for an
argument Ei of a DNA expression E, we do not have to copy Ei as a sequence of individual
characters into the actual parameter of the call. Instead, we can make a ‘call by reference’.
For example, we may simply pass the starting position of the argument (the position of its
opening bracket) in the overall DNA expression E∗

1 . When, in the course of ComputeSem,
we just keep track of the current position in the DNA expression, it does not cost time
to determine this starting position. This implies that the time needed to set the actual
parameters of the function is constant for each call.

For the efficiency of ComputeSem, it is also important that the concatenation of pieces
of the semantics (as in lines 30′ and 31′ of the function) can be done in constant time. It
should not require time that is proportional to the length of the pieces involved. Otherwise,
we could easily construct an example DNA expression for which the running time of
ComputeSem is quadratic, due to these concatenations. Fortunately, it is not difficult to
achieve constant time concatenation, e.g., by storing the semantics in linked lists of A-
letters and nick letters. With such a data structure, it is also possible to efficiently return
X at the end of the function (lines 11′ and 36′).

We can now prove that the running time of ComputeSem is linear in the length of its
argument E.

Theorem 4.18 Let E be an arbitrary DNA expression. The time required by the function
ComputeSem for E is linear in |E|.
Proof: Let us use TCS(E) to denote the time required by ComputeSem for E.

When ComputeSem is applied to E, the function recursively examines all arguments of
E. This way, in principle, every letter of E is considered. This implies that TCS(E) is at
least linear in |E|.

We now derive an upper bound on TCS(E). For this, we define five constants, which
are upper bounds on the time spent in specific parts of ComputeSem:

c1 is the maximum time spent in ComputeSem for an l-expression E, except the time spent
in recursive calls of ComputeSem and the time spent to obtain the double A-word(

α1

c(α1)

)
for an N -word-argument α1.
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1′. ComputeSem (E, ↑-anc, ↓-anc, l-anc, L0, R0)
// computes and returns the semantics
// corresponding to the DNA expression E

2′. {
3′. if (E is an l-expression 〈l ε1〉)
4′. then if (ε1 is an N-word α1)

5′. then X =
(

α1

c(α1)

)
;

6′. else // ε1 is a DNA expression E1

7′. X = ComputeSem (E1, ↑-anc, ↓-anc, true, L1, R1);
8′. fi
9′. L0 = A±;
10′. R0 = A±;
11′. return X;
12′. else // E is an ↑-expression or a ↓-expression;

// without loss of generality, assume it is
// an ↑-expression 〈↑ ε1 . . . εn〉 for some n ≥ 1
// and N-words and DNA expressions ε1, . . . , εn

13′. for (i = 1 to n)
14′. do if (εi is an N-word αi)
15′. then if (l-anc)
16′. then Xi =

(
αi

c(αi)

)
;

17′. else Xi =
(
αi

−
)
;

18′. fi
19′. Li = A+;
20′. Ri = A+;
21′. else // εi is a DNA expression Ei

22′. Xi = ComputeSem (Ei, true, ↓-anc, l-anc, Li, Ri);
23′. fi
24′. if (i == 1) // first argument
25′. then X = Xi; // semantics up to current argument
26′. L0 = Li;
27′. R0 = Ri;
28′. else // i ≥ 2
29′. if (R0 == A± and Li == A± and (not ↓-anc))
30′. then X = X ·

△
·Xi;

31′. else X = X ·Xi;
32′. fi
33′. R0 = Ri;
34′. fi
35′. od
36′. return X;
37′. fi
38′. }

Figure 4.7: Pseudo-code of the modified recursive function ComputeSem.
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Hence, c1 is the maximum time required for setting the actual parameters in line 1′

and executing lines 3′–11′ and 37′, except line 5′ and the recursive call in line 7′.

c2 is the maximum time spent in ComputeSem per letter of an N -word-argument α1 of an
l-expression E.

Hence, c2 is the maximum time required per letter of α1 for executing line 5′. We
define c2 as the time per letter , because it is natural to assume that the time required

to obtain the double A-word
(

α1

c(α1)

)
from the N -word α1 is (at most) proportional

to the length of α1.

c3 is the maximum time spent in ComputeSem for an ↑-expression E, except the time spent
for each of its arguments ε1, . . . , εn.

Hence, c3 is the maximum time required for setting the actual parameters in line 1′

and executing lines 3′, 12′, 36′–37′ and the initialization of the for-loop in line 13′.

c4 is the maximum time spent in ComputeSem for an argument εi of an ↑-expression E,
except the time spent in recursive calls of ComputeSem and the time spent to obtain

a double A-word
(

αi

c(αi)

)
or an upper A-word

(
αi

−
)
for an N -word-argument αi.

Hence, c4 is the time required for executing lines 14′–15′, 18′–21′, 23′–35′ and the
iteration in line 13′.

c5 is the maximum time spent in ComputeSem per letter of an N -word-argument αi of an
↑-expression E.

Hence, c5 is the time required per letter of αi for executing lines 16′ or 17′. We
define c5 as the time per letter , for the same reason as for c2.

It follows from the observations made before this result (about passing parameters for
the recursive calls of ComputeSem and about the data structure to store (pieces of) the
semantics), that c1, . . . , c5 are indeed constants.
Now, let

c∗ = max

{
c2,

c1 + c4
3

, c4 + c5,
c3 + c4

3

}
.

We prove by induction on the number p of operators occurring in E, that TCS(E) ≤
c∗ · |E|− c4. We subtract c4 here, to be prepared for the additional constant time required
for every argument of an ↑-expression E. We come back to this later.

• If p = 1, then E has only N -word-arguments. When we apply ComputeSem to E,
we do not have recursive calls of the function.

If E is an l-expression, then E = 〈l α1〉 for anN -word α1. In this case, |E| = 3+|α1|
and

TCS(E) ≤ c1 + c2 · |α1| ≤ 3c∗ − c4 + c∗|α1| = c∗ · |E| − c4,

where the second inequality follows from c∗ ≥ c1+c4
3

(which is equivalent to c1 ≤
3c∗ − c4) and c∗ ≥ c2.



4.4 Computing the semantics of a DNA expression 65

If E is an ↑-expression, then E = 〈↑ α1 . . . αn〉 for some n ≥ 1 and N -words
α1, . . . , αn. In this case, |E| = 3 + |α1 . . . αn| and

TCS(E) ≤ c3 + (c4 + c5 · |α1|) + · · ·+ (c4 + c5 · |αn|)
≤ 3c∗ − c4 + (c4 + c5) · |α1|+ · · ·+ (c4 + c5) · |αn|)
≤ 3c∗ − c4 + c∗ · |α1 . . . αn| = c∗ · |E| − c4,

where the second inequality follows from c∗ ≥ c3+c4
3

and |αi| ≥ 1 for i = 1, . . . , n,
and the third inequality follows from c∗ ≥ c4 + c5.

If E is a ↓-expression, then the proof is completely analogous.

• Let p ≥ 1, and suppose that TCS(E) ≤ c∗ ·|E|−c4 for all DNA expressions containing
at most p operators (induction hypothesis). We now consider a DNA expression E
that contains p+ 1 operators.

If E is an l-expression, then E = 〈l E1〉 for a DNA expression E1 with p operators.
By the induction hypothesis, TCS(E1) ≤ c∗ · |E1| − c4. In this case, |E| = 3 + |E1|
and

TCS(E) ≤ c1 + TCS(E1) ≤ 3c∗ − c4 + c∗ · |E1| − c4 = c∗ · |E| − 2c4,

where the second inequality follows from c∗ ≥ c1+c4
3

.

If E is an ↑-expression, then E = 〈↑ ε1 . . . εn〉 for some n ≥ 1 and N -words and
DNA expressions ε1, . . . , εn. In this case, |E| = 3+ |ε1 . . . εn|. We consider the time
spent by ComputeSem on a single argument εi of E.

If εi is an N -word αi, then this time is bounded by c4 + c5 · |αi|. As we have seen in
the proof of the base case of the induction, this is at most c∗ · |αi|. If, on the other
hand, εi is a DNA expression Ei, then Ei contains at most p operators. Hence, we
can apply the induction hypothesis to it: TCS(Ei) ≤ c∗ · |Ei| − c4. Now the time
spent by ComputeSem on the argument Ei of E is bounded by c4+TCS(Ei) ≤ c∗ · |Ei|.
Note that this is where we benefit from the term − c4 in the induction hypothesis.

We conclude that both if εi is an N -word αi, and if it is a DNA expression Ei,
ComputeSem spends at most c∗ · |εi| on this argument of E. This implies that

TCS(E) ≤ c3 + c∗ · |ε1|+ · · ·+ c∗ · |εn|
≤ 3c∗ − c4 + c∗ · |ε1 . . . εn| = c∗|E| − c4,

where the second inequality follows from c∗ ≥ c3+c4
3

.

If E is a ↓-expression, then the proof is completely analogous.

We have thus proved that for each DNA expression E, TCS(E) ≤ c∗ · |E|−c4. This implies
that TCS(E) is at most linear in |E|.

We briefly discuss the space complexity of the function ComputeSem. For this, let us
again use E∗

1 to denote the DNA expression that we apply the function to.
The assumption that we simply pass the starting position of an expression-argument

Ei to a recursive call of ComputeSem (rather than copying Ei itself) is also important
for the space complexity. It implies that the space required to store the parameters of



66 Ch. 4 DNA Expressions

a single call is constant. For each DNA subexpression of E∗
1 , the function ComputeSem

is called exactly once. Since there is a 1–1 correspondence between DNA subexpressions
and occurrences of operators in a DNA expression, the total space required to store the
parameters for all calls is at most linear in |E∗

1 |.
For every N -word-argument αi of its parameter E, ComputeSem produces an upper A-

word, a lower A-word or a double A-word. For an expression-argument, it may produce a
nick letter. These A-words and nick letters become parts of the overall semantics S(E∗

1).
Because each part of the semantics is produced only once (and no copies are made) during
the execution of ComputeSem, the total space required to store (parts of) the semantics is
linear in |S(E∗

1)|. It is not too hard to prove that this is at most linear in |E∗
1 |.

It is instructive to consider examples of DNA expressions for which ComputeSem indeed
requires linear space, or for which it really requires less than linear space.

Example 4.19 Let α be an arbitrary N -word, and let Ep be defined by

Ep = 〈↑ 〈↑ . . . 〈↑︸ ︷︷ ︸
p times

α 〉 . . .〉〉︸ ︷︷ ︸
p times

(p ≥ 1).

It is easy to see that for any p ≥ 1, Ep is a DNA expression, with |Ep| = 3p + |α| and
S(Ep) =

(
α
−
)
. When we call the recursive function ComputeSem for Ep, the maximum

nesting level of the recursion becomes p. This implies that the space we need to store the
parameters of subsequent recursive calls is linear in p, and thus linear in |Ep|.

Example 4.20 Let α be an arbitrary N -word, and let Ep be defined by

Ep =

〈
↑ αα . . . α︸ ︷︷ ︸

p times

〉
(p ≥ 1).

It is easy to see that for any p ≥ 1, Ep is a DNA expression, with |Ep| = 3 + p · |α| and

S(Ep) =
( p times︷ ︸︸ ︷
αα . . . α

−
)
. Hence, |S(Ep)| = p · |α|, which implies that the space we need to store

the result of ComputeSem is linear in p, and thus linear in |Ep|.

Example 4.21 Let α be an arbitrary N -word, and let Ep be defined by

Ep =

〈
↑ 〈↑ 〈↑ . . . 〈↑︸ ︷︷ ︸

p times

α 〉 . . .〉〉︸ ︷︷ ︸
p times

. . . 〈↑ 〈↑ . . . 〈↑︸ ︷︷ ︸
p times

α 〉 . . .〉〉︸ ︷︷ ︸
p times︸ ︷︷ ︸

p times

〉
(p ≥ 1).

It is easy to see that for any p ≥ 1, Ep is a DNA expression, with |Ep| = 3+p · (3p+ |α|) =

3+3p2+p · |α| and S(Ep) =
( p times︷ ︸︸ ︷
αα . . . α

−
)
. Because |Ep| is quadratic in p, p is linear in

√
|Ep|.

When we call the recursive function ComputeSem for Ep, the maximum nesting level of
the recursion becomes p+1. This implies that the space we need to store the parameters
of subsequent recursive calls is linear in p, and thus linear in

√
|Ep|.

Moreover, |S(Ep)| = p · |α|, which implies that the space we need to store the result
of ComputeSem is linear in p, and thus linear in

√
|Ep|.

We can therefore conclude:

Theorem 4.22 Let E be an arbitrary DNA expression. In the worst case, the space
required by the function ComputeSem for E is linear in |E|.
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4.5 A context-free grammar for D

As we have established in Lemma 3.3, the language F of formal DNA molecules is regular.
This is not the case with the language D of all DNA expressions. This is intuitively clear
from the fact that every DNA expression contains matching brackets 〈 and 〉, and that
these brackets may be deeply nested. We use this intuition in a formal proof.

Lemma 4.23 The language D of DNA expressions is not regular.

Proof: Let α be an arbitrary N -word. Then E1 = 〈l α〉 is a DNA expression, and

S(E1) =
(

α
c(α)

)
. By definition, also E2 = 〈l 〈l α〉〉 is a DNA expression, with the same

semantics. It is easy to see that for arbitrary p ≥ 1,

Ep = 〈l 〈l . . . 〈l︸ ︷︷ ︸
p times

α 〉 . . .〉〉︸ ︷︷ ︸
p times

is a DNA expression, with S(Ep) =
(

α
c(α)

)
. By the pumping lemma for regular languages

(Proposition 2.7), a language requiring brackets to match and containing such DNA ex-
pressions is not regular.

The language D is, however, context-free, because it can be generated by a context-free
grammar. We will give such a grammar, here. It is a 4-tuple G1 = (V1,Σ1, P1, S1), which
is based on three types of non-terminal symbols: E (which denotes a DNA expression),
U (a sequence of one or more arguments of an ↑-expression) and L (a sequence of one or
more arguments of a ↓-expression).

The crucial issue in the construction of a context-free grammar generating D, is that
we must somehow incorporate the requirement that consecutive arguments of an operator
↑ or ↓ fit together by upper strands or lower strands, respectively. For this, the non-
terminal symbols E, U and L have two subscripts. The first subscript denotes whether or
not one of the strands of the (sub)molecule represented by the non-terminal has to cover
the other strand to the left. If it is +, then the upper strand must cover the lower strand
to the left; if it is −, then the lower strand must cover the upper strand to the left; if it
is ⋆, then it does not matter if either strand strictly covers the other strand to the left.
The second subscript has an analogous meaning, with respect to covering to the right.
For example, the symbol U+,− denotes a sequence of arguments of ↑, for which the upper
strand (of the first argument) must cover the lower strand to the left, and the lower strand
(of the last argument) must cover the upper strand to the right.

In addition to the above, G1 has one more non-terminal symbol: α, which represents
an arbitrary N -word. We thus have the following set of non-terminal symbols:

{Ex,y, Ux,y, Lx,y | x, y ∈ {⋆,+,−}} ∪ {α}.
The axiom is S1 = E⋆,⋆, which denotes a DNA expression without restrictions on the two
strands. The alphabet Σ1 of terminal symbols is equal to ΣD: Σ1 = {A,C,G,T, ↑, ↓, l,
〈 , 〉}.

Before we present the productions in G1 (i.e., the elements of P1) we discuss why we
have exactly those productions.

We first consider the productions for (rewriting) a non-terminal symbol Ex,y with
x, y ∈ {⋆,+,−}, which represents a DNA expression.

By Lemma 4.13(2), for any l-expression E, we have L(S(E)), R(S(E)) ∈ A±. Hence,
the upper strand of E covers the lower strand to both the left and the right, and vice
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versa. This implies that, regardless of the subscripts x and y, we may rewrite Ex,y into
any l-expression. Therefore, we have productions Ex,y −→ 〈l α〉 and Ex,y −→ 〈l E⋆,⋆〉.
Indeed, the non-terminal α occurring in the former production represents an arbitrary
N -word, and the non-terminal E⋆,⋆ occurring as argument of l in the latter production
represents an arbitrary DNA expression, without restrictions on the strands.

By Lemma 4.13(3), for an ↑-expression E, the values of the functions L and R depend
(solely) on the values for the first and the last argument of E, respectively. Therefore, if
we want to rewrite Ex,y into an ↑-expression, then the subscripts x and y simply carry
over to the non-terminal U representing the arguments of the ↑-expression. We thus have
a production Ex,y −→ 〈↑ Ux,y〉. Analogously, we have Ex,y −→ 〈↓ Lx,y〉.

Next, consider a non-terminal symbol Ux,y for some subscripts x, y ∈ {⋆,+,−}. This
non-terminal must be rewritten into a sequence of n ≥ 1 arguments for an occurrence
of ↑. We do this in a right-linear, recursive way: we rewrite Ux,y into a non-terminal α
or E (with some subscripts) representing the first argument, possibly followed by another
non-terminal U (with some subscripts), representing the second and later arguments.

If n ≥ 2, so that we indeed need a new non-terminal symbol U for the second and
later arguments, then the subscripts in the right-hand side of the production reflect the
requirement that the arguments of ↑ fit together by upper strands. In particular, if the
first argument is a DNA expression, then the second subscript of the non-terminal symbol
E representing it must be +. Further, the first subscript of the new non-terminal symbol
U must be +.

Example 4.24 The non-terminal symbol U⋆,+ represents a sequence of arguments of ↑
with no restrictions on the left-hand side of the first argument, but for which the upper
strand of the last argument must cover the lower strand on the right. We have four

productions for this symbol: U⋆,+ −→ α (indeed, the upper strand of S+(α) =
(
α
−
)
covers

the lower strand on the right), U⋆,+ −→ E⋆,+, U⋆,+ −→ αU+,+ and U⋆,+ −→ E⋆,+U+,+ (see
the productions in line 11 below).

Example 4.25 The non-terminal symbol U−,⋆ represents a sequence of arguments of ↑ for
which the lower strand of the first argument must cover the upper strand on the left, and
for which there are no restrictions on the right-hand side of the last argument. Because

the lower strand of S+(α) =
(
α
−
)
does not cover the upper strand on the left, the first

argument cannot be an N -word α. Hence, we have only two productions for this symbol:
U−,⋆ −→ E−,⋆ and U−,⋆ −→ E−,+U+,⋆ (see the productions in line 16 below).

There is, of course, an analogous explanation for the productions for a non-terminal Lx,y

with x, y ∈ {⋆,+,−}.
The grammatical structure of an N -word (represented by the non-terminal symbol α)

is similar to that of the sequence of arguments of ↑ or ↓. An N -word is an arbitrary
sequence of r ≥ 1 N -letters. We obtain this sequence from the non-terminal symbol α
by recursively rewriting this symbol into an N -letter, possibly followed by another non-
terminal α.

Thus, the set P1 consists of the following productions:

1. E⋆,⋆ −→ 〈l α〉 | 〈l E⋆,⋆〉 | 〈↑ U⋆,⋆〉 | 〈↓ L⋆,⋆〉
2. E⋆,+ −→ 〈l α〉 | 〈l E⋆,⋆〉 | 〈↑ U⋆,+〉 | 〈↓ L⋆,+〉
3. E⋆,− −→ 〈l α〉 | 〈l E⋆,⋆〉 | 〈↑ U⋆,−〉 | 〈↓ L⋆,−〉
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4. E+,⋆ −→ 〈l α〉 | 〈l E⋆,⋆〉 | 〈↑ U+,⋆〉 | 〈↓ L+,⋆〉
5. E+,+ −→ 〈l α〉 | 〈l E⋆,⋆〉 | 〈↑ U+,+〉 | 〈↓ L+,+〉
6. E+,− −→ 〈l α〉 | 〈l E⋆,⋆〉 | 〈↑ U+,−〉 | 〈↓ L+,−〉
7. E−,⋆ −→ 〈l α〉 | 〈l E⋆,⋆〉 | 〈↑ U−,⋆〉 | 〈↓ L−,⋆〉
8. E−,+ −→ 〈l α〉 | 〈l E⋆,⋆〉 | 〈↑ U−,+〉 | 〈↓ L−,+〉
9. E−,− −→ 〈l α〉 | 〈l E⋆,⋆〉 | 〈↑ U−,−〉 | 〈↓ L−,−〉
10. U⋆,⋆ −→ α | E⋆,⋆ | αU+,⋆ | E⋆,+U+,⋆

11. U⋆,+ −→ α | E⋆,+ | αU+,+ | E⋆,+U+,+

12. U⋆,− −→ E⋆,− | αU+,− | E⋆,+U+,−

13. U+,⋆ −→ α | E+,⋆ | αU+,⋆ | E+,+U+,⋆

14. U+,+ −→ α | E+,+ | αU+,+ | E+,+U+,+

15. U+,− −→ E+,− | αU+,− | E+,+U+,−

16. U−,⋆ −→ E−,⋆ | E−,+U+,⋆

17. U−,+ −→ E−,+ | E−,+U+,+

18. U−,− −→ E−,− | E−,+U+,−

19. L⋆,⋆ −→ α | E⋆,⋆ | αL−,⋆ | E⋆,−L−,⋆

20. L⋆,+ −→ E⋆,+ | αL−,+ | E⋆,−L−,+

21. L⋆,− −→ α | E⋆,− | αL−,− | E⋆,−L−,−

22. L+,⋆ −→ E+,⋆ | E+,−L−,⋆

23. L+,+ −→ E+,+ | E+,−L−,+

24. L+,− −→ E+,− | E+,−L−,−

25. L−,⋆ −→ α | E−,⋆ | αL−,⋆ | E−,−L−,⋆

26. L−,+ −→ E−,+ | αL−,+ | E−,−L−,+

27. L−,− −→ α | E−,− | αL−,− | E−,−L−,−

28. α −→ A | C | G | T | Aα | Cα | Gα | Tα

Note that the first nine lines of the above list can be summarized by

Ex,y −→ 〈l α〉 | 〈l E⋆,⋆〉 | 〈↑ Ux,y〉 | 〈↓ Lx,y〉 (x, y ∈ {⋆,+,−}).
Similarly, sets of two, three or four other lines of productions can be summarized by single
lines. However, the description by separate lines for each of the non-terminal symbols
makes it easier to refer to a particular production, as we do in the example below.

Note also that there is a subtle relation between grammar G1 and the recursive func-
tions CheckExpression and ComputeSem from Figure 4.5 and Figure 4.7. Both functions
return in their parameters L0 and R0 the subsets of A (A+, A− or A±) that the left-hand
side and the right-hand side of S(E) belong to. That is, these values are passed upwards
in the tree of recursive calls of the functions.

In the grammar, the subscripts +, −, ⋆ of the non-terminal symbols E, U and L
indicate the subsets (A+ ∪ A±, A− ∪ A± or the entire set A) that the left-hand side
and the right-hand side of the (sub)molecule represented should belong to. That is, this
information is passed downwards in the derivation tree of a DNA expression.
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Figure 4.8: Two derivation trees in G1 for the DNA expression 〈↑ AT〉 from Ex-
ample 4.26. (a) The derivation tree corresponding to Derivation (4.11). (b) The derivation
tree corresponding to Derivation (4.12).

The context-free grammar G1 is not entirely unambiguous, as can be seen from the
following, simple example:

Example 4.26 Consider the ↑-expression E = 〈↑ AT〉. There exist two leftmost deriva-
tions of E in G1:

E⋆,⋆
1,3
=⇒ 〈↑ U⋆,⋆〉
10,1
=⇒ 〈↑ α〉
28,5
=⇒ 〈↑ Aα〉
28,4
=⇒ 〈↑ AT〉

(4.11)

and

E⋆,⋆
1,3
=⇒ 〈↑ U⋆,⋆〉
10,3
=⇒ 〈↑ αU+,⋆〉
28,1
=⇒ 〈↑ AU+,⋆〉
13,1
=⇒ 〈↑ Aα〉
28,4
=⇒ 〈↑ AT〉

(4.12)

Here, numbers i, j above an arrow =⇒ indicate that we have used production (i, j) for
the corresponding derivation step. In the former derivation, the N -word AT is derived
from a single non-terminal symbol α. In the latter derivation, the two N -letters A and T
are derived from two independent non-terminal symbols α. The corresponding derivation
trees are depicted in Figure 4.8. Indeed, for both trees, the yield is equal to 〈↑ AT〉.

Hence, let αi be a maximal N -word occurrence of length |αi| ≥ 2, with parent operator
↑ or ↓. Then αi can be derived in G1 from r independent, consecutive symbols α, where
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r can take any value satisfying 1 ≤ r ≤ |αi|. Moreover, if 1 < r < |αi|, then there are
multiple ways to partition αi over the r symbols α. As follows from a careful inspection
of the productions in the grammar, this is the only type of ambiguity occurring in G1.

Example 4.27 The DNA expression from Example 4.2 is the result of many different
derivations in G1. A leftmost derivation is

E⋆,⋆
1,4
=⇒ 〈↓ L⋆,⋆〉
19,3
=⇒ 〈↓ αL−,⋆〉
28,4
=⇒ 〈↓ TL−,⋆〉
25,4
=⇒ 〈↓ TE−,−L−,⋆〉
9,3
=⇒ 〈↓ T 〈↑ U−,−〉L−,⋆〉
18,2
=⇒ 〈↓ T 〈↑ E−,+U+,−〉L−,⋆〉
8,1
=⇒ 〈↓ T 〈↑ 〈l α〉U+,−〉L−,⋆〉
28,2
=⇒ 〈↓ T 〈↑ 〈l C〉U+,−〉L−,⋆〉
15,2
=⇒ 〈↓ T 〈↑ 〈l C〉αU+,−〉L−,⋆〉
28,5
=⇒ 〈↓ T 〈↑ 〈l C〉AαU+,−〉L−,⋆〉
28,4
=⇒ 〈↓ T 〈↑ 〈l C〉ATU+,−〉L−,⋆〉
15,1
=⇒ 〈↓ T 〈↑ 〈l C〉ATE+,−〉L−,⋆〉
6,4
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ L+,−〉〉L−,⋆〉
24,2
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ E+,−L−,−〉〉L−,⋆〉
6,1
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l α〉L−,−〉〉L−,⋆〉
28,3
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉L−,−〉〉L−,⋆〉
27,2
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉E−,−〉〉L−,⋆〉
9,1
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l α〉〉〉L−,⋆〉
28,2
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉L−,⋆〉
25,2
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉E−,⋆〉
7,3
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉 〈↑ U−,⋆〉〉
16,2
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉 〈↑ E−,+U+,⋆〉〉
8,1
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉 〈↑ 〈l α〉U+,⋆〉〉
28,1
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉 〈↑ 〈l A〉U+,⋆〉〉
13,2
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉 〈↑ 〈l A〉E+,⋆〉〉
4,1
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉 〈↑ 〈l A〉 〈l α〉〉〉
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Figure 4.9: The derivation tree corresponding to the derivation in G1 from Example 4.27.

28,4
=⇒ 〈↓ T 〈↑ 〈l C〉AT 〈↓ 〈l G〉 〈l C〉〉〉 〈↑ 〈l A〉 〈l T〉〉〉 .

Figure 4.9 contains the corresponding derivation tree. Indeed, the yield of the tree is equal
to the DNA expression from Example 4.2.

Because the definition of G1 closely follows the definition of DNA expressions, we have

Theorem 4.28 L(G1) = LG1
(E⋆,⋆) is the language D of all DNA expressions.

and
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Corollary 4.29 The language D of DNA expressions is context-free.

Theorem 4.28 may be viewed as an alternative definition of DNA expressions: a string
is a DNA expression, if and only if it is an element of L(G1). Unlike Definition 4.1,
this alternative definition does not explicitly refer to the semantics. Therefore, it may be
considered a ‘cleaner’ definition. Note, however, that the semantics is implicitly present
in G1, in the subscripts of the non-terminal symbols E, U and L.

4.6 The structure tree of a DNA expression

In Section 4.5, we have seen that we can represent a DNA expression by the corresponding
derivation tree in a context-free grammar for D. However, already for the small example
DNA expression from Example 4.2, the resulting tree was large (see Figure 4.9).

We now introduce a more concise tree notation for DNA expressions, which, moreover,
does not depend on a particular context-free grammar. The resulting trees are again
ordered, rooted and node-labelled. After a description of the new tree notation, we will
discuss its relation with the derivation trees from Section 4.5.

Let E be an arbitrary DNA expression. For an unambiguous definition of the tree
corresponding to E, it is important to know what exactly are the arguments, and in
particular the N -word-arguments, of operators ↑ and ↓ occurring in E. In line with
Theorem 4.9, we assume that each N -word-argument of each operator occurring in E is a
maximal N -word occurrence. This is not really essential for the trees we want to describe,
but it makes the description ‘cleaner’.

We define the structure tree of E as follows. For each maximal N -word occurrence α
and for each operator occurring in E, we have a node, labelled by this N -word or operator.
Recall that there is a 1–1 correspondence between (occurrences of) DNA subexpressions
and operators in E. Therefore, every node labelled by an operator corresponds to a DNA
subexpression of E.

Of course, a node is something different than the label of that node. Much in the same
way as that the occurrence of an operator in a DNA expression is something different
that that operator itself. However, to keep the text more readable, we will sometimes say
‘N -word’ or ‘operator’ (‘DNA subexpression’) when we actually mean the corresponding
node in the tree. This meaning will be clear from the context then.

In the structure tree we draw edges from operators to their arguments. By definition,
these arguments are N -words and DNA subexpressions of E, and by assumption, the N -
word-arguments are maximal N -word occurrences in E. Indeed, for every such argument,
there is a corresponding node. Hence, the edges are well defined.

Because every maximal N -word occurrence and every proper DNA subexpression of
E has exactly one parent operator, we indeed obtain a tree. The node labelled by the
outermost operator of E is the root of the tree. It corresponds to the entire DNA expres-
sion.

Clearly, the node labelled by an operator is the parent of (the nodes corresponding to)
its arguments. If an operator has two or more arguments, then its children in the structure
tree are arranged from left to right in the same order as the corresponding arguments in
the DNA expression.

The leaves of the tree are labelled by the maximal N -word occurrences α of E, and
the internal nodes by the operators. As an example, in Figure 4.10 we have drawn the
structure tree of the DNA expression from Example 4.2.
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Figure 4.10: The structure tree of the DNA expression from Example 4.2.

We just recalled the correspondence between DNA subexpressions and operators. In
fact, in the structure tree of a DNA expression E, a DNA subexpression of E is stored in
the subtree rooted in its outermost operator.

There is a very close relation between the maximal nesting level of a DNA expression
and the height of the corresponding structure tree:

Lemma 4.30 Let E be a DNA expression, let l be the maximal nesting level of E, and
let t be the structure tree of E. Then the height of t is l + 1.

As we observed in Section 4.2, the maximal nesting level of the DNA expression from
Example 4.2 is 4 (see Figure 4.3). Indeed, the height of the corresponding structure tree
in Figure 4.10 is 4 + 1 = 5.

Proof: Straightforward by induction on the number of operators occurring in E. In the
induction step, we can apply Lemma 2.1(2) and Lemma 4.7(2).

The transformation from DNA expressions to structure trees is injective. This means
that when we are given a ‘syntactically correct’ ordered, rooted, node-labelled tree, we
can perform the inverse transformation. The syntactic demands we impose on the trees
are similar to those for a string over ΣD to be a DNA expression (see Section 4.3):

• internal nodes are labelled by operators and leaves by N -words

• a node labelled by l has only one child

• if a node labelled by ↑ or ↓ has two or more children, then the DNA subexpres-
sions corresponding to these children fit together by upper strands or lower strands,
respectively.

This final requirement is in fact a recursive one, as it presupposes that the subtrees rooted
in the children can be interpreted as DNA expressions.

If this assumption is valid, then the prefitting requirement can be checked in a way
similar to that for DNA expressions. Suppose that the ith child of a node labelled by ↑
corresponds to an N -word or a DNA expression εi, which has to prefit the (i+ 1)st child
by upper strands. Then, e.g., R(S+(εi)) must be an element of A± ∪ A+.

We can check this condition by walking the rightmost path in the subtree rooted in
εi. This path ends in a certain N -word α. If the parent of α is a node labelled by l or ↑,
then R(S+(εi)) certainly belongs to A± ∪A+. If not (hence, if the parent of α is labelled
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by ↓), then the composite symbol R(S+(εi)) cannot be an element of A+, as the lower
part of the symbol is not equal to −. In order for R(S+(εi)) to be in A±, there has to
be a node labelled by l on the path from εi down to α (including εi), and this is easy to
verify.

If (and only if) a tree satisfies the three requirements mentioned, it is a structure tree
and thus represents a DNA expression: the DNA expression of the tree.

In order to obtain this DNA expression, we have to perform a depth first search walk
through the structure tree. In this walk, when entering an internal node X for the first
time, we collect the opening bracket 〈 and the operator of the node. Next, we collect the
argument(s) of the operator by recursively visiting the child(ren) of the node, and finally,
when returning to X, we obtain the closing bracket 〉. Apart from this closing bracket,
the walk can be considered as a preorder walk.

Although the structure tree of a DNA expression is very different from (in particular,
much smaller than) the derivation tree in the context-free grammar from Section 4.5, there
is a natural relation between them. In four steps, removing more and more redundant
nodes, we can transform the derivation tree of a DNA expression into the structure tree:

1. An internal node of a tree can have an arbitrary number n ≥ 1 of children. Hence,
all arguments of a DNA (sub-)expression can be connected directly to that DNA
(sub-)expression. We do not need to recursively break down a sequence of arguments
into one argument, possibly followed by another sequence of arguments. This way,
we get rid of all nodes labelled by U or L with some combination of subscripts.

2. The label of a leaf in the tree may be an N -word of arbitrary length r ≥ 1. We do
not need to recursively break down an N -word-argument into one N -letter, possibly
followed by another N -word. In particular, we get rid of all nodes labelled by α.

3. Occurrences of operators in a DNA expression correspond 1–1 to occurrences of
DNA (sub-)expressions. We do not need two nodes for them: a node X for the
DNA (sub-)expression and a node for the operator, which always is the second child
of X. We can as well remove the second child of X and label X by the operator.
This way, we get rid of all labels E with some combination of subscripts.

4. The scope of an operator is formed by the labels of its descendants in the tree. We
do not need brackets to delimit the scope explicitly, and can therefore remove the
nodes labelled by brackets.

The result of this four-step procedure is exactly the structure tree of a DNA expression
as defined earlier in this section. As an illustration of the procedure, Figure 4.11 shows
the intermediate trees for the DNA expression from Example 4.2.

4.7 Equivalent DNA expressions

Different DNA expressions may correspond to the same DNA molecule. For example, both

〈↑ α〉 and 〈↑ 〈↑ α〉〉 denote the formal DNA molecule
(
α
−
)
. It is also possible that different

DNA expressions denote ‘almost the same’ DNA molecule for a certain interpretation of
‘almost the same’. To express these things formally, we define four binary relations on D.
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Figure 4.11: The derivation tree of the DNA expression from Example 4.2 is transformed
into the structure tree. The original derivation tree is shown in Figure 4.9.
(1) All arguments of a DNA (sub-)expression are connected directly to that DNA (sub-)-
expression. (2) The N -letters constituting an N -word-argument are substituted by the
N -word. (3) The operators move up the tree. They take over the places (the nodes) of
the DNA (sub-)expressions that they govern. (4) Brackets are removed. The resulting
structure tree is the one from Figure 4.10.
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Definition 4.31 Two DNA expressions E1 and E2 are strictly equivalent, or equivalent
for short, if S(E1) = S(E2). We write E1 ≡ E2 then.

Hence two DNA expressions are equivalent if they denote exactly the same DNA molecule.
A somewhat weaker version of this relation is

Definition 4.32 Two DNA expressions E1 and E2 are equivalent modulo nicks, if
ν(S(E1)) = ν(S(E2)). We write E1=▽E2 then.

Intuitively, E1 and E2 are equivalent modulo nicks, if they denote DNA molecules with
the same nucleotides at the same positions; the DNA molecules may, however, have nicks
at different positions. E1 may have nicks not occurring in E2 and/or the other way round.

For example, if S(E1) =
(
A
T

)
▽
(
C
G

)(
A
T

)
△

(
T
A

)(
G
C

)
, and S(E2) =

(
A
T

)(
C
G

)
△

(
A
T

)(
T
A

)(
G
C

)
then

E1=▽E2.
4

We further define a variant of this last relation.

Definition 4.33 A DNA expression E1 is equivalent to a DNA expression E2 pre-modulo
nicks, if there are strings X1, . . . , Xr with r ≥ 1 over A▽△

and symbols c1, . . . , cr−1 ∈ {▽, △}
such that S(E1) = X1c1 . . . cr−1Xr and S(E2) = X1 . . . Xr. We write E1 ▽≡ E2 then.

Hence, if E1 ▽ ≡ E2, then E1=▽E2 with the restriction that the DNA molecule denoted
by E2 does not contain nicks not occurring in the DNA molecule denoted by E1. For

example, if S(E1) =
(
A
T

)
▽
(
C
G

)(
A
T

)
△

(
T
A

)(
G
C

)
, and S(E2) =

(
A
T

)(
C
G

)(
A
T

)
△

(
T
A

)(
G
C

)
then

E1 ▽≡ E2. On the other hand, if S(E1) is as before and S(E2) =
(
A
T

)(
C
G

)
△

(
A
T

)(
T
A

)(
G
C

)
,

then E1 ▽ 6≡ E2.
If E1 ▽≡ E2, we may also write E2 ≡▽ E1 and say that E2 is equivalent post-modulo

nicks to E1. Thus, the relations ▽≡ and ≡▽ are each other’s inverses: ▽≡ = ≡▽
−1.

It is easy to verify that each of the binary relations ≡, =▽ , ▽≡ and ≡▽ is reflexive and

transitive. Further, ≡ and =
▽ are symmetric, so these relations are (indeed) equivalence

relations.
The relations ▽ ≡ and ≡▽ are not symmetric. Hence, in spite of their names, they

are no equivalence relations. At first glance, one might think that ▽ ≡ and ≡▽ are
antisymmetric: ‘if a formal DNA molecule S(E1) has more nicks than another formal DNA
molecule S(E2), then certainly S(E2) does not have more nicks than S(E1)’. However,
if E1 ≡ E2, then both E1 ▽ ≡ E2 and E2 ▽ ≡ E1 (and analogously for ≡▽). Since
equivalent DNA expressions E1 and E2 are not necessarily the same, ▽≡ and ≡▽ are not
antisymmetric. Consequently, they are no partial orders, either. We might, however, say
that they are antisymmetric (and thus partial orders) up to equivalence.

It follows immediately from the definition that E1 ▽ ≡ E2 implies E1=▽E2 and that

E1 ≡▽ E2 implies E1=▽E2, so ▽≡ and ≡▽ are refinements of =▽ . On the other hand, the

equivalence relation ≡ is a refinement both of ▽≡ and of ≡▽ (and thus certainly of =▽).
We can combine the notions of transitivity and refinement. For example, if E1 ≡ E2

and E2 ≡▽ E3, then E1 ≡▽ E3. The following is also clear: if E1 ▽≡ E2 and E1 ≡▽ E2

then E1 ≡ E2. Thus, the equivalence relation ≡ is the intersection of the relations ▽≡
and ≡▽. In other words:

4Actually, this example is not really appropriate. As we will see in Section 5.1, a DNA expression
with the semantics attributed to E1 does not exist. At the level of formal DNA molecules, however, this
example is a good illustration of the notion of equivalence modulo nicks.
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equivalence relation:
reflexive, symmetric, transitive

reflexive, not symmetric,
transitive

equivalence relation:
reflexive, symmetric, transitive

≡

▽≡ ≡▽

=
▽

✓
✓✓✴

❙
❙❙✇

❙
❙❙✇

✓
✓✓✴

≡ = ▽≡ ∩ ≡▽, the largest equivalence
relation contained in both ▽≡ and ≡▽

▽≡ = ≡▽
−1

the smallest equivalence relation
containing both ▽≡ and ≡▽

Figure 4.12: Properties of and relations between four binary relations on D.

Lemma 4.34 The relation ≡ is the largest equivalence relation contained in both ▽ ≡
and ≡▽.

On the other hand, we have

Lemma 4.35 The relation =
▽ is the smallest equivalence relation containing both ▽≡ and

≡▽.

Note that there is indeed a unique smallest equivalence relation containing both ▽≡ and
≡▽, namely the intersection of all equivalence relations containing ▽≡ and ≡▽.

Proof: Let R0 be the smallest equivalence relation containing both ▽≡ and ≡▽. We just

observed that =▽ is an equivalence relation containing ▽≡ and ≡▽. Hence, R0 must be a

subset of =▽ .

Consider two arbitrary DNA expressions E1 and E2 such that E1=▽E2. By definition,

ν(S(E1)) = ν(S(E2)), or, in words, E1 and E2 denote DNA molecules that have the same
nucleotides at the same positions, but may have different nicks.

If we let E3 = 〈↓ 〈↑ E1〉〉, then E3 ∈ D and S(E3) = ν−(ν+(S(E1))) = ν(S(E1)) by
(3.7). Thus, S(E3) = ν(S(E1)) = ν(S(E2)), or, in words, E3 denotes a DNA molecule
with the same nucleotides at the same positions as E1 and E2, but without nicks.

We have E1 ▽≡ E3 and E3 ≡▽ E2, implying E1R0E3 and E3R0E2. The transitivity
of R0 yields that also E1R0E2. Because E1 and E2 were arbitrary DNA expressions with
E1=▽E2, the equivalence relation =

▽ must be a subset of R0.

Thus, we can conclude that R0 is equal to =
▽ .

The results of this section are summarized in Figure 4.12.
Note that, because ▽≡ and ≡▽ are each other’s inverses and symmetry is an inherent

property of equivalence relations, every equivalence relation contained in ▽ ≡ is also
contained in ≡▽, and vice versa. Similarly, every equivalence relation containing ▽≡ also
contains ≡▽, and vice versa. Therefore, we may rephrase the two lemmas above as follows:

Lemma 4.34 The relation ≡ is the largest equivalence relation contained in ▽≡.

Lemma 4.35 The relation =
▽ is the smallest equivalence relation containing ▽≡.

Of course, in the rephrased statements, we may as well replace the relation ▽≡ by ≡▽.



Chapter 5

Basic Results on DNA Expressions

In this chapter, we present some basic results on DNA expressions, which will be used in
later chapters of this thesis. We first discuss which formal DNA molecules can be denoted
by a DNA expression. After that, we consider two ways to decide if a DNA expression is
nick free. Finally, we derive a number of results on equivalence (modulo nicks) between
different DNA expressions.

5.1 Expressible formal DNA molecules

Many formal DNA molecules can be denoted by DNA expressions. We call such formal
DNA molecules expressible. In particular, there exist DNA expressions which denote mo-
lecules with gaps and nicks. An example of this was the DNA expression in Example 4.2,
which denotes the molecule from Figure 4.1(b), with two gaps and a nick.

Unfortunately, there also exist formal DNA molecules that are not expressible. We
will see that the presence of nick letters in a formal DNA molecule determines whether or
not it is expressible. We have a number of results concerning nicks in DNA expressions.

Lemma 5.1 Let E = 〈↑ ε1 . . . εn〉 for some n ≥ 1 and N -words and DNA expressions
ε1, . . . , εn be an ↑-expression. Then

1. the upper strand of E is nick free;

2. the lower strand of E is nick free if and only if

(a) for i = 1, . . . , n, the lower strand of S+(εi) is nick free, and

(b) for i = 1, . . . , n− 1, either R(S+(εi)) ∈ A+ or L(S+(εi+1)) ∈ A+ (or both).

Proof: By definition,

S(E) = ν+(S+(ε1))y1 . . . yn−1ν
+(S+(εn))

with the yi’s from (4.3).

1. Because the function ν+ removes all upper nick letters from its arguments, and yi
is either △ or λ (in particular, yi is not an upper nick letter), the upper strand of
S(E) is nick free.

79
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2. =⇒ Assume that Condition 2(a) is not valid. Hence, for some i with 1 ≤ i ≤ n,
S+(εi) contains a lower nick letter. Then also ν+(S+(εi)) contains a lower nick
letter.

Assume that Condition 2(b) is not valid. Hence, for some i with 1 ≤ i ≤ n−1, both
R(S+(εi)) ∈ A± and L(S+(εi+1)) ∈ A±. Then by definition, yi = △.

In both cases, the lower strand of E is not nick free.

⇐= Assume that Conditions 2(a) and 2(b) hold for the arguments of E. Because
S+(εi) does not contain lower nick letters by Condition 2(a), and the function ν+

certainly does not introduce lower nick letters, the lower strand of ν+(S+(εi)) is
nick free for i = 1, . . . , n. Further, Condition 2(b) ensures that for i = 1, . . . , n− 1,
yi = λ.

As a result, the lower strand of S(E) is nick free.

In an analogous way we prove

Lemma 5.2 Let E = 〈↓ ε1 . . . εn〉 for some n ≥ 1 and N -words and DNA expressions
ε1, . . . , εn be a ↓-expression. Then

1. the lower strand of E is nick free;

2. the upper strand of E is nick free if and only if

(a) for i = 1, . . . , n, the upper strand of S−(εi) is nick free, and

(b) for i = 1, . . . , n− 1, either R(S−(εi)) ∈ A− or L(S−(εi+1)) ∈ A− (or both).

We finally have

Lemma 5.3 Let E = 〈l ε1〉 for some N -word or DNA expression ε1 be an l-expression.
Then

1. the upper strand of E is nick free if and only if either ε1 is an N -word α or ε1 is a
DNA expression with a nick free upper strand;

2. the lower strand of E is nick free if and only if either ε1 is an N -word α or ε1 is a
DNA expression with a nick free lower strand.

Proof: If ε1 is an N -word α, then S(E) =
(

α
c(α)

)
and E is nick free altogether.

If, on the other hand ε1 is a DNA expression E1, then S(E) = κ(S(E1)). As the
function κ does not introduce and does not repair nicks, the upper (or lower) strand of E
is nick free if and only if the upper (lower, respectively) strand of E1 is nick free.

Lemmas 5.1 and 5.2 are useful for proving the following result:

Theorem 5.4 Let E be an arbitrary DNA expression. Then either the upper strand or
the lower strand (or both) of E is nick free.
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ACATG
TGTAC

▽

△

CATG
TAC

▽

ACATG
T TAC

(a) (b) (c)

Figure 5.1: Three different types of DNA molecules. (a) A molecule which cannot be
denoted by a DNA expression, because it has nicks in both strands. (b) A molecule which
can be denoted by a DNA expression, because it only has a nick in the upper strand. (c)
A molecule which can be denoted by a DNA expression, because it is nick free.

Hence, there do not exist DNA expressions denoting molecules with nicks in both strands.

Proof: If E is an ↑-expression (or a ↓-expression), then the claim follows from Lemma 5.1
(Lemma 5.2, respectively).

For l-expressions E = 〈l ε1〉, with ε1 an N -word or a DNA expression, we prove the
claim by induction on the number p of operators occurring in E.

• If p = 1, then E = 〈l α〉 for an N -word α and S(E) =
(

α
c(α)

)
. Clearly, E is nick

free altogether.

• Let p ≥ 1, and suppose that the claim holds for all l-expressions containing p
operators (induction hypothesis). Then consider an arbitrary l-expression E =
〈l ε1〉 with p+ 1 operators.

As p + 1 ≥ 2, ε1 must be a DNA expression E1 containing p operators. If E1 is an
↑-expression or a ↓-expression, then, as we have just seen, at least one of the strands
of E1 is nick free. If, on the other hand, E1 is an l-expression, then we know by the
induction hypothesis that at least one of the strands of E1 is nick free.

Because S(E) = κ(S(E1)) and the function κ does not introduce (nor repair) nicks
in its argument, the claim holds also for E.

Consequently, there is, e.g., no DNA expression for the molecule depicted in Figure 5.1(a).
Given Theorem 5.4, we may wonder if there are other limitations on the DNA molecules

with gaps and nicks that can be expressed in D. Does there exist a DNA expression for
every DNA molecule with nicks in at most one strand? In Chapter 7, we will see that
indeed there is. In particular, in Theorem 7.5 and Theorem 7.24, we describe constructions
of DNA expressions denoting arbitrary nick free formal DNA molecules. In Theorem 7.46,
we do the same for arbitrary formal DNA molecules containing lower nick letters (and no
upper nick letters). By a result analogous to Theorem 7.46, we can also construct DNA
expressions which denote formal DNA molecules containing upper nick letters (and no
lower nick letters). We thus have

Theorem 5.5 A formal DNA molecule X is expressible, if and only if X does not contain
both upper nick letters and lower nick letters.

Hence, some DNA molecules with nicks are expressible, whereas others are not. In Fig-
ure 5.1(b) and (c), we have depicted two DNA molecules that are expressible.

At a later stage, we will study DNA expressions denoting formal DNA molecules
without single-stranded components. We can now give the following, general description
of such molecules:



82 Ch. 5 Basic Results on DNA Expressions

Corollary 5.6 Let X be an expressible formal DNA molecule which does not contain any
single-stranded component. Then there exist N -words α1, . . . , αm for some m ≥ 1, and a
nick letter y ∈ {▽, △}, such that

X =
(

α1

c(α1)

)
y
(

α2

c(α2)

)
y . . . y

(
αm

c(αm)

)
.

Note that if X is nick free, then m = 1, X =
(

α1

c(α1)

)
and the nick letter y occurring in

the claim is irrelevant.

Proof: By Corollary 3.9(2), there exist N -words α1, . . . , αm and nick letters y1, . . . , ym−1

for some m ≥ 1, such that

X =
(

α1

c(α1)

)
y1
(

α2

c(α2)

)
y2 . . . ym−1

(
αm

c(αm)

)
.

By Theorem 5.4, the nick letters occurring in X must be all of the same type: either each
yj is an upper nick letter ▽, or each yj is a lower nick letter △.

Because by definition, the semantics of an l-expression is expressible and does not
contain any single-stranded component, we have in particular

Corollary 5.7 Let E be an l-expression and let X = S(E). Then there exist N -words
α1, . . . , αm for some m ≥ 1, and a nick letter y ∈ {▽, △}, such that

X =
(

α1

c(α1)

)
y
(

α2

c(α2)

)
y . . . y

(
αm

c(αm)

)
.

5.2 Nick free DNA expressions

There is a relatively simple algorithm to decide whether or not a DNA expression E
contains nicks or not. This algorithm does not require the explicit computation of the
semantics of a DNA expression. It consists only of the recursive application of the appro-
priate result from Lemma 5.1, Lemma 5.2 and Lemma 5.3, and, if necessary, Lemma 4.13.
This takes time that is linear in the length |E| of the DNA expression.

For certain DNA expressions, we do not even need this algorithm:

Lemma 5.8 Let E be a DNA expression, and let X = S(E). If each occurrence of ↑ or
↓ in E is alternating, then X is nick free.

Proof: Assume that each occurrence of ↑ or ↓ in E is alternating, i.e., that no occurrence
of ↑ or ↓ in E has consecutive expression-arguments.

Lower nick letters can only be introduced into the semantics of a DNA expression by
an occurrence of the operator ↑. Let 〈↑1 ε1 . . . εn〉 be an arbitrary ↑-subexpression of X,
and for i = 1, . . . , n, let Xi = S+(εi). Consider any i with 1 ≤ i ≤ n−1. By definition, ↑1
introduces a lower nick letter between Xi and Xi+1, if and only if both R(Xi) ∈ A± and
L(Xi+1) ∈ A±. However, by assumption, either εi or εi+1 is an N -word. Without loss of

generality, assume that εi is an N -word αi. Then Xi = S+(αi) =
(
αi

−
)
and R(Xi) 6∈ A±.

Consequently, ↑1 does not introduce any lower nick letter into X.
Analogously, no occurrence of ↓ in E introduces an upper nick letter into the semantics.

We conclude that X is nick free.

Note that the above result cannot be reversed. If an occurrence of ↑ or ↓ in a DNA
expression E is not alternating, then S(E) may be nick free after all.
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Example 5.9 The DNA expression

E = 〈↑ 〈l A〉 〈↓ 〈↑ C 〈l AT〉〉 〈l 〈↓ C〉〉〉〉 (5.1)

(depicted in Figure 5.1(c)), is nick free, even though both the first occurrence of ↑ and
the first occurrence of ↓ have two consecutive expression-arguments. In fact, the ↓-
subexpression

〈↓ 〈↑ C 〈l AT〉〉 〈l 〈↓ C〉〉〉 (5.2)

(depicted in Figure 5.1(b)) is not nick free, but the nick occurring in the upper strand is
removed by the outermost operator ↑ of E. The outermost operator does not introduce
new nicks.

5.3 Some equivalences

There are many general rules concerning equivalence between different DNA expressions.
Some of them follow immediately from the definition of the semantics of a DNA expression.
For example, for every N -word α,

〈l α〉 ≡ 〈l 〈↑ α〉〉 ≡ 〈l 〈↓ c(α)〉〉 . (5.3)

Another example is: for every DNA expression 〈↑ ε1 . . . εn〉, where n ≥ 1 and for i =
1, . . . , n, εi is an N -word or a DNA expression,

〈↑ ε1 . . . εn〉 ≡ 〈↑ E1E2 . . . En〉 , (5.4)

where for i = 1, . . . , n, Ei = Exp+(εi).
Other rules are intuitively clear, but a bit less easy to prove. To demonstrate how such

rules are proved, we state one rule as a lemma here and give its formal proof.

Lemma 5.10 Let 1 ≤ i0 ≤ j0 ≤ n, and let εi for i = 1, . . . , n be an N -word or a DNA
expression. Then

〈↑ ε1 . . . εi0−1 〈↑ εi0 . . . εj0〉 εj0+1 . . . εn〉 ≡ 〈↑ ε1 . . . εn〉 (5.5)

if either the left-hand side or the right-hand side of the equivalence is a DNA expression.

Hence, all effects of the inner occurrence of ↑ in the left-hand side (i.e., creating upper
A-words, removing upper nick letters and joining the arguments) can also be achieved by
the outermost occurrence of ↑.

Proof: For i = 1, . . . , n, let Ei = Exp+(εi), and let Ei0j0 = 〈↑ εi0 . . . εj0〉.
First, we need to prove that if either side of the equivalence in the claim is a DNA

expression, then so is the other. If, e.g., the left-hand side is a DNA expression, then
in particular Ei0j0 = 〈↑ εi0 . . . εj0〉 is a DNA expression. This implies that Ei⊏Ei+1 (i =
i0, . . . , j0 − 1). We further know that Ei⊏Ei+1 for i = 1, . . . , i0 − 2, j0 + 1, . . . , n − 1.
Finally, we have Ei0−1⊏Ei0j0 and Ei0j0⊏Ej0+1.

The last two relations are equivalent to R(S(Ei0−1)), L(S(Ei0j0)) ∈ A± ∪ A+ and to
R(S(Ei0j0)), L(S(Ej0+1)) ∈ A±∪A+, respectively. Now, by Lemma 4.13(3), L(S(Ei0j0)) =
L(S(Ei0)) and R(S(Ei0j0)) = R(S(Ej0)). Hence, L(S(Ei0)), R(S(Ej0)) ∈ A± ∪ A+. We
already knew that R(S(Ei0−1)), L(S(Ej0+1)) ∈ A±∪A+. Thus, Ei0−1⊏Ei0 and Ej0⊏Ej0+1.
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We can conclude that Ei⊏Ei+1 for i = 1, 2, . . . , n − 1, so that 〈↑ ε1 . . . εn〉 is a DNA
expression. The proof in the other direction proceeds along the same lines.

Now, we can concentrate on the claim itself. By definition,

S+(Ei0j0) = S(Ei0j0) = ν+(S+(εi0))yi0 . . . yj0−1ν
+(S+(εj0))

and

S(〈↑ ε1 . . . εi0−1 〈↑ εi0 . . . εj0〉 εj0+1 . . . εn〉) =
ν+(S+(ε1))y1 . . . yi0−2ν

+(S+(εi0−1))yi0−1 · ν+(S+(Ei0j0)) · (5.6)

yj0ν
+(S+(εj0+1))yj0+1 . . . yn−1ν

+(S+(εn)),

where the yi’s are defined by

yi =





△ if Ei⊏Ei+1, i.e., if both R(S(Ei)) ∈ A±

and L(S(Ei+1)) ∈ A±

λ otherwise, i.e., if R(S(Ei)) ∈ A+

or L(S(Ei+1)) ∈ A+ (or both)

. (5.7)

for i = 1, . . . , i0 − 2, i0, . . . , j0 − 1, j0 + 1, . . . , n− 1,

yi0−1 =





△ if Ei0−1⊏Ei0j0 , i.e., if both R(S(Ei0−1)) ∈ A±

and L(S(Ei0j0)) ∈ A±

λ otherwise, i.e., if R(S(Ei0−1)) ∈ A+

or L(S(Ei0j0)) ∈ A+ (or both)

yj0 =





△ if Ei0j0⊏Ej0+1, i.e., if both R(S(Ei0j0)) ∈ A±

and L(S(Ej0+1)) ∈ A±

λ otherwise, i.e., if R(S(Ei0j0)) ∈ A+

or L(S(Ej0+1)) ∈ A+ (or both)

We already observed that L(S(Ei0j0)) = L(S(Ei0)) and R(S(Ei0j0)) = R(S(Ej0)). But
then the definitions of yi0−1 and yj0 fit precisely into the general framework of defini-
tion (5.7). Hence, definition (5.7) is valid for i = 1, . . . , n− 1.

Now we will elaborate on the term ν+(S+(Ei0j0)) occurring in (5.6). Because ν+ is a
homomorphism,

ν+(S+(Ei0j0)) = ν+(ν+(S+(εi0))yi0 . . . yj0−1ν
+(S+(εj0))) =

(5.8)
ν+(ν+(S+(εi0)))ν

+(yi0) . . . ν
+(yj0−1)ν

+(ν+(S+(εj0)))

For every i, yi is either △ or λ. Consequently, ν+(yi) = yi for every i, and in particular for
i = i0, . . . j0 − 1. Combining this with Property (3.6), we can rewrite the result of (5.8)
into

ν+(S+(εi0))yi0 . . . yj0−1ν
+(S+(εj0))

We can substitute this into (5.6), which yields

S(〈↑ ε1 . . . εi0−1 〈↑ εi0 . . . εj0〉 εj0+1 . . . εn〉) =
ν+(S+(ε1))y1 . . . yi0−2ν

+(S+(εi0−1))yi0−1 ν+(S+(εi0))yi0 . . . yj0−1ν
+(S+(εj0)) ·

yj0ν
+(S+(εj0+1))yj0+1 . . . yn−1ν

+(S+(εn))
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with yi’s as in (5.7) for i = 1, . . . , n− 1. But this exactly equals S(〈↑ ε1 . . . εn〉).

In fact, (5.4) is a special case of Lemma 5.10. Another special case is

〈↑ 〈↑ ε1 . . . εn〉〉 ≡ 〈↑ ε1 . . . εn〉 (5.9)

if either side of the equivalence is a DNA expression. Under the same condition, we find

〈↑ 〈↑ ε1〉 〈↑ ε2〉〉 ≡ 〈↑ ε1ε2〉 (5.10)

by applying the lemma twice.
For every result on ↑-expressions there exists an analogous result for ↓-expressions (and

vice versa). For example, the analogous version of Lemma 5.10 is

Let 1 ≤ i0 ≤ j0 ≤ n, and let εi for i = 1, . . . , n be an N -word or a DNA
expression. Then

〈↓ ε1 . . . εi0−1 〈↓ εi0 . . . εj0〉 εj0+1 . . . εn〉 ≡ 〈↓ ε1 . . . εn〉

if either the left-hand side or the right-hand side of the equivalence is a DNA
expression.

Often, we will not formulate the analogous result explicitly. When we use a particular res-
ult, we may even refer to the version for ↑-expressions (if that is the one stated explicitly),
while we actually need the version for ↓-expressions.

The analogue of (5.9) for l-expressions is clear from the definition of the operator l
(see Definition 4.1) and from Property (3.6):

〈l 〈l ε〉〉 ≡ 〈l ε〉 (5.11)

for every N -word or DNA expression ε.

We proceed with three results concerning the substitution of (occurrences of) N -words
or DNA subexpressions in a DNA expression by N -words or DNA subexpressions which
are equivalent ((pre/post-)modulo nicks).

Lemma 5.11 Let E be a DNA expression and let Es be (an occurrence of) a DNA subex-

pression in E. Let Es′ be a DNA expression such that Es=
▽Es′.

When we substitute (the occurrence of) Es in E by Es′, the resulting string E ′ is again

a DNA expression, and E=
▽E ′.

Proof: By induction on the number p of operators in E which are not in Es.

• If p = 0, then E = Es, and the claim is trivially valid.

• Let p ≥ 0, and suppose that the claim holds for every DNA expression E and
(occurrence of a) DNA subexpression Es of E such that the number of operators in
E which are not in Es is at most p (induction hypothesis). Now let E be a DNA
expression and let Es be (an occurrence of) a DNA subexpression of E such that
there are p+ 1 operators in E which are not in Es.

Because p+1 ≥ 1, Es is a proper DNA subexpression of E, and Es is the immediate
argument of a DNA subexpression Eσ = 〈|0ε1 . . . εi0−1E

sεi0+1 . . . εn〉 of E, for some
operator |0, i0 and n with 1 ≤ i0 ≤ n, and N -words and DNA expressions ε1, . . . , εn.
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Let us define Eσ ′ = 〈|0ε1 . . . εi0−1E
s′εi0+1 . . . εn〉. If |0 =l, then we must have

i0 = n = 1, and Eσ ′ a valid l-expression. Now, assume that |0 is either ↑ or ↓.
By Condition 2 of Definition 3.2, L(S(Es)), R(S(Es)), L(S(Es′)) and R(S(Es′))
are not nick letters, and thus L(S(Es)) = L(S(Es′)) and R(S(Es)) = R(S(Es′)).
Consequently, the arguments of Eσ ′ fit together just like those of Eσ, so that Eσ ′

is a DNA expression. Now it follows from the definition of the semantics of a DNA
expression that Eσ=

▽Eσ ′.

Substituting Es in E by Es′ produces the same overall string E ′ as substituting Eσ

by Eσ ′. Because the number of operators in E which are not in Eσ is at most p, it
follows by induction that E ′ is a DNA expression satisfying E=

▽E ′.

It is easy to see that this result remains valid if we replace every occurrence of the relation
=
▽ by ≡, ▽≡ or ≡▽.

Lemma 5.12 Let E be a DNA expression and let ε be (an occurrence of) an N -word or
a proper DNA subexpression in E, such that the parent operator of ε is ↑. Let ε′ be an
N -word or a DNA expression satisfying Exp+(ε)=▽Exp

+(ε′).

When we substitute (the occurrence of) ε in E by ε′, the resulting string E ′ is again a

DNA expression, and E=
▽E ′.

Proof: If both ε and ε′ are DNA expressions, then we simply have a special case of
Lemma 5.11.

If both ε and ε′ areN -words, then they must be equal, because in that case, Exp+(ε) =
〈↑ ε〉 and Exp+(ε′) = 〈↑ ε′〉, which are assumed to be equivalent modulo nicks. Then also
E = E ′ and the claim follows immediately.

If ε is an N -word and ε′ is a DNA expression, then Exp+(ε) = 〈↑ ε〉 and Exp+(ε′) = ε′.

By assumption, 〈↑ ε〉=▽ε′. Let Es be the DNA subexpression of E which ε is an imme-

diate argument of: Es = 〈↑ ε1 . . . εi0−1εεi0+1 . . . εn〉 for some i0 and n with 1 ≤ i0 ≤ n
and N -words and DNA expressions ε1, . . . , εi0−1, εi0+1, . . . , εn. Now, by Lemma 5.10,
Es ≡ 〈↑ ε1 . . . εi0−1 〈↑ ε〉 εi0+1 . . . εn〉. Let us use Es′ to denote the right-hand side of this
equivalence.

By Lemma 5.11, we can replace Es in E by Es′ and the overall result E ′′ is a DNA
expression equivalent to E. In E ′′ we can replace 〈↑ ε〉 by the DNA expression ε′, and again

by Lemma 5.11, the resulting overall string E ′ is a DNA expression satisfying E ′′=
▽E ′. By

the transitivity of the relation =
▽ , we also have E=

▽E ′.

For the case that ε is a DNA expression and ε′ is an N -word, the proof is analogous.

When we apply a special case of Lemma 5.12 n times, we obtain

Corollary 5.13 Let n ≥ 1, and let for i = 1, . . . , n, εi and ε′i be an N -word or a DNA
expression, Ei = Exp+(εi) and E ′

i = Exp+(ε′i).
Then

if Ei=▽E
′
i for i = 1, . . . , n, then 〈↑ ε1 . . . εn〉=▽ 〈↑ ε′1 . . . ε

′
n〉

if either of 〈↑ ε1 . . . εn〉 and 〈↑ ε′1 . . . ε
′
n〉 is a DNA expression, i.e. if, e.g. εi⊏εi+1 for

i = 1, . . . , n− 1.
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Both in Lemma 5.12 and in Corollary 5.13, we might also replace every occurrence of the
relation =

▽ by ≡, ▽ ≡ or ≡▽, and the operator ↑ by ↓ (in which case we must use the

function Exp− instead of Exp+) or l (in which case nmust be equal to 1 in Corollary 5.13).

Next, we give a number of results that deal with the exchange of outermost operators
between a DNA expression and its argument(s). Such manipulations will be used to
obtain a DNA expression with a specific structure. Again, we state (and prove) only one
of two possible versions of each of the results. There exist analogous results in which every
occurrence of the operator ↑ is replaced by ↓ and (if applicable) vice versa.

Lemma 5.14 Let E = 〈l 〈↑ ε1 . . . εn〉〉 with n ≥ 1 be an l-expression, such that for i =
1, . . . , n, εi is a DNA expression (i.e., not an N -word). Then E ≡▽ 〈↑ 〈l ε1〉 . . . 〈l εn〉〉.
Note that the right-hand side of the equivalence in the claim is indeed a DNA expres-
sion. By Lemma 4.13(2), L(S(〈l εi〉)), R(S(〈l εi〉)) ∈ A± for i = 1, . . . , n, and thus the
arguments of the operator ↑ in the right-hand side fit together by upper strands.

If, for example, n = 2, and S(ε1) =
(
A
T

)
▽
(
C
G

)
and S(ε2) =

(
A
−
)(

T
A

)
△

(
G
C

)
, then

S(〈l 〈↑ ε1ε2〉〉) =
(
A
T

)(
C
G

)(
A
T

)(
T
A

)
△

(
G
C

)
, while S(〈↑ 〈l ε1〉 〈l ε2〉〉) =

(
A
T

)(
C
G

)
△

(
A
T

)
·(

T
A

)
△

(
G
C

)
.

Proof: By definition,

S(E) = S(〈l 〈↑ ε1 . . . εn〉〉) = κ(S(〈↑ ε1 . . . εn〉)) =
κ(ν+(S+(ε1))y1 . . . yn−1ν

+(S+(εn))) = κ(ν+(S+(ε1)))y1 . . . yn−1κ(ν
+(S+(εn))),

where for i = 1, . . . , n − 1, yi ∈ {△, λ}, and the actual value of yi depends on εi and εi+1

(see (4.3)). Because εi is a DNA expression, S+(εi) = S(εi) for i = 1, . . . , n, and because
of the commutativity of κ and ν+ (see (3.5)), these functions may be interchanged. Hence,
we get:

S(E) = ν+(κ(S(ε1)))y1 . . . yn−1ν
+(κ(S(εn))).

On the other hand,

S(〈↑ 〈l ε1〉 . . . 〈l εn〉〉) = ν+(S+(〈l ε1〉))y′1 . . . y′n−1ν
+(S+(〈l εn〉)) =

ν+(κ(S(ε1)))y′1 . . . y′n−1ν
+(κ(S(εn))),

where, for i = 1, . . . , n−1, y′i ∈ {△, λ}, and the value of y′i is determined by the arguments
〈l εi〉 and 〈l εi+1〉. However, by Lemma 4.13(2), L(S(〈l εi〉)), R(S(〈l εi〉)) ∈ A± for
i = 1, . . . , n, so that every y′i is equal to △.

Consequently, E ≡▽ 〈↑ 〈l ε1〉 . . . 〈l εn〉〉.

Lemma 5.14 cannot always be reversed. For example, if we have a DNA expression
〈↑ 〈l ε1〉 . . . 〈l εn〉〉, we do not a priori know that 〈l 〈↑ ε1 . . . εn〉〉 is a DNA expression,
because the arguments ε1, . . . , εn of ↑ may not fit together by upper strands. Only if they
do, we can say that 〈↑ 〈l ε1〉 . . . 〈l εn〉〉 ▽≡ 〈l 〈↑ ε1 . . . εn〉〉.

For a variant of Lemma 5.14, we do not have to worry about syntactic constraints:

Corollary 5.15 For all N -words α1, . . . , αn with n ≥ 1, we have

〈l α1 . . . αn〉 ≡▽ 〈↑ 〈l α1〉 . . . 〈l αn〉〉 .
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Note that the concatenation of n ≥ 1 N -words αi is itself a (one) N -word, so that the
left-hand side of the claim is indeed a DNA expression.

Proof: We can rewrite 〈l α1 . . . αn〉 as follows:

〈l α1 . . . αn〉 ≡ 〈l 〈↑ α1 . . . αn〉〉 ≡ 〈l 〈↑ 〈↑ α1〉 . . . 〈↑ αn〉〉〉 ≡▽

〈↑ 〈l 〈↑ α1〉〉 . . . 〈l 〈↑ αn〉〉〉 ≡ 〈↑ 〈l α1〉 . . . 〈l αn〉〉

The first and the last equivalence follow from (5.3), the second one from Lemma 5.10 and
the third one from Lemma 5.14.

Theorem 5.16 Let ε1, . . . , εn−1, εn,2, . . . , εn,m with n,m ≥ 1 be N -words and DNA ex-
pressions, and let En,1 be a DNA expression, such that

• S+(εi)⊏S+(εi+1) for i = 1, . . . , n− 2,

• S+(εn−1)⊏S(En,1),

• S(En,1)⊏S−(εn,2) and

• S−(εn,j)⊏S−(εn,j+1) for j = 2, . . . ,m− 1.

Let E = 〈↑ ε1 . . . εn−1 〈↓ En,1εn,2 . . . εn,m〉〉 and E ′ = 〈↓ 〈↑ ε1 . . . εn−1En,1〉 εn,2 . . . εn,m〉.

1. The strings E and E ′ are DNA expressions satisfying E=
▽E ′.

2. Each occurrence of ↑ or ↓ in E is alternating, if and only if each occurrence of ↑ or
↓ in E ′ is alternating. In particular, in this case, both E and E ′ are nick free, and
E ≡ E ′.

Note that the requirement that En,1 be a DNA expression (i.e., not an N -word) is
quite natural. If n ≥ 2 (or m ≥ 2), it simply has to be a DNA expression, in order for
E (or E ′, respectively) to be a DNA expression. If En,1 were an N -word αn,1 here, then
the lower strand of 〈↓ αn,1εn,2 . . . εn,m〉 would strictly cover the upper strand to the left,
and thus εn−1 and 〈↓ αn,1εn,2 . . . εn,m〉 would not fit together by upper strands in E (and
similarly for E ′ if m ≥ 2).

What we actually do in Theorem 5.16, is moving the outermost operator ↓ of the last
argument 〈↓ En,1εn,2 . . . εn,m〉 of the DNA expression E to the left of the DNA expression.
To ensure that the arguments of the two operators ↑ and ↓ still fit together by upper or
lower strands, respectively, i.e., that the resulting string is still a DNA expression, we also
have to shift one of the closing brackets.

For the structure tree of the DNA expression E, this action corresponds to a rotation
to the left on the root of the tree. If we want to transform the structure tree of E ′ back
into the structure tree of E, then we have to perform a rotation to the right on the root
of the tree. This is depicted in Figure 5.2.

As an aside, we wish to mention that tree rotations are a well-known operation in
computer science. Usually, they are performed in binary trees, i.e., trees in which each
node has at most two children, see, e.g., [Cormen et al., 1990, Section 14.2]. In our case,
the two main nodes involved in the rotation (the ones labelled by ↑ and ↓ in Figure 5.2)
may have an arbitrary (positive) number of children. It is, however, important that the
lower node of the two is either the first child or the last child of the other.
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Figure 5.2: Analogue of Theorem 5.16(1) for structure trees of DNA expressions.

α1 α2
α3

α4 α5 α6 α7 α8 α9 α10 α11 α12 α13
α14 α15

α1 α2
α3

α4 α5 α6 α7 α8 α9 α10 α11 α12 α13
α14 α15△ △

S(E): (a)

▽

S(E ′): (b)

Figure 5.3: The two formal DNA molecules that occur in Example 5.17. (a) The molecule
denoted by the DNA expression E from (5.12). (b) The molecule denoted by the DNA
expression E ′ from (5.13).

Example 5.17 Let

E =
〈
↑ 〈l α1〉︸ ︷︷ ︸

ε1

〈↓ 〈l α2〉α3 〈↑ 〈l α4〉〉〉︸ ︷︷ ︸
ε2

α5︸︷︷︸
ε3

〈↓ 〈l α6〉 〈l α7〉〉︸ ︷︷ ︸
ε4

α8︸︷︷︸
ε5

〈↑ 〈l α9〉 〈l α10〉α11〉︸ ︷︷ ︸
ε6

〈
↓ 〈l α12〉︸ ︷︷ ︸

E7,1

〈↓ 〈l α13〉α14〉︸ ︷︷ ︸
ε7,2

α15︸︷︷︸
ε7,3

〉
〉
,

(5.12)

where α1, . . . , α15 are arbitrary N -words. In this case, n = 7 and m = 3. Indeed, the
last argument of the ↑-expression E is a ↓-argument. We have depicted the formal DNA
molecule denoted by E in Figure 5.3(a).

When we apply Theorem 5.16, we obtain

E ′ =
〈
↓
〈
↑ 〈l α1〉 〈↓ 〈l α2〉α3 〈↑ 〈l α4〉〉〉α5 〈↓ 〈l α6〉 〈l α7〉〉
α8 〈↑ 〈l α9〉 〈l α10〉α11〉 〈l α12〉

〉
〈↓ 〈l α13〉α14〉α15

〉
.

(5.13)

We have depicted the formal DNA molecule denoted by E ′ in Figure 5.3(b). It is clear
from the pictures that E and E ′ are equivalent modulo nicks. Both E and E ′ contain
occurrences of ↑ and ↓ with consecutive expression-arguments.

Proof of Theorem 5.16:

1. By Definition 4.1 and Lemma 4.13, E and E ′ are indeed DNA expressions. Now by
definition,

S(E) = ν+(S+(ε1))y1 . . . yn−2ν
+(S+(εn−1))yn−1 ·

ν+(ν−(S(En,1))yn,1ν
−(S−(εn,2))yn,2 . . . yn,m−1ν

−(S−(εn,m)))



90 Ch. 5 Basic Results on DNA Expressions

and

S(E ′) = ν−(ν+(S+(ε1))y1 . . . yn−2ν
+(S+(εn−1))yn−1ν

+(S(En,1))) ·
yn,1ν

−(S−(εn,2))yn,2 . . . yn,m−1ν
−(S−(εn,m)),

where the yi’s are either △ or λ and the yn,j’s are either ▽ or λ (depending on the
formal DNA molecules preceding and succeeding them). It is not hard to see that
each yi in S(E) is equal to the corresponding yi in S(E ′), and that the same property
holds for each yn,j.

When we observe that ν+(▽) = ν−(△) = λ and that, by (3.7), for each X ∈ A∗
▽△

,

ν−(ν+(X)) = ν+(ν−(X)) = ν(X), we can rewrite the expressions for S(E) and
S(E ′) into:

S(E) = ν+(S+(ε1))y1 . . . yn−2ν
+(S+(εn−1))yn−1 ·

ν(S(En,1))ν(S−(εn,2)) . . . ν(S−(εn,m))

and

S(E ′) = ν(S+(ε1)) . . . ν(S+(εn−1))ν(S(En,1)) ·
yn,1ν

−(S−(εn,2))yn,2 . . . yn,m−1ν
−(S−(εn,m)).

Indeed, S(E) and S(E ′) can differ only in the occurrences of nicks. Hence, E=
▽E ′.

2. Assume that each occurrence of ↑ or ↓ in E is alternating, i.e., that for each occur-
rence of ↑ or ↓ in E, the arguments are N -words and DNA expressions, alternately.

Then in particular, the first n− 1 arguments ε1, . . . , εn−1 of the outermost operator
↑ of E are N -words and DNA expressions, alternately. Because the nth argument is
a ↓-expression, εn−1 must be an N -word (provided that n ≥ 2).

Now, let us consider the outermost operator ↓ of the last argument of E. Its lastm−1
arguments εn,2, . . . , εn,m areN -words and DNA expressions, alternately. Because the
first argument of ↓ is the DNA expression En,1, εn,2 must be an N -word (provided
that m ≥ 2).

The above observations imply that in E ′, both the first occurrence of ↑ and the
outermost operator ↓ are alternating.

All other occurrences of ↑ and ↓ in E ′ occur inside an argument εi (with i ≤ n− 1),
inside the argument En,1 or inside an argument εn,j (with j ≥ 2). These argu-
ments already occurred in E. By assumption, the occurrences of ↑ or ↓ in them are
alternating.

By Claim 1, E=
▽E ′. By Lemma 5.8, however, both E and E ′ are nick free. This

implies that E and E ′ are (strictly) equivalent: E ≡ E ′.

On the other hand, assume that each occurrence of ↑ or ↓ in E ′ is alternating. Then
we can prove in an analogous way that this is also true for each occurrence of ↑ or
↓ in E. This implies that both E and E ′ are nick free, and thus that E ≡ E ′.

For a special case we can combine Theorem 5.16(1) with Corollary 5.15:
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Corollary 5.18 Let ε1, . . . , εn−1 with n ≥ 1 be N -words and DNA expressions, and let
αn,1 and αn,2 be N -words, such that

• S+(εi)⊏S+(εi+1) for i = 1, . . . , n− 2 and

• S+(εn−1)⊏S(〈l αn,1〉).

The strings E ′ = 〈↓ 〈↑ ε1 . . . εn−1 〈l αn,1〉〉 〈l αn,2〉〉 and E ′′ = 〈↑ ε1 . . . εn−1 〈l αn,1αn,2〉〉
are DNA expressions satisfying E ′=

▽E ′′.

Proof: By Theorem 5.16(1), E ′ and E = 〈↑ ε1 . . . εn−1 〈↓ 〈l αn,1〉 〈l αn,2〉〉〉 are DNA

expressions for which E ′=
▽E. By Corollary 5.15, the DNA subexpression Es = 〈↓ 〈l αn,1〉

〈l αn,2〉〉 of E satisfies Es
▽ ≡ 〈l αn,1αn,2〉. Consequently, by Lemma 5.11, also E ′′ is a

DNA expression and E ▽≡ E ′′. By transitivity, E ′=
▽E ′′.

By Theorem 5.16, we can manipulate an ↑-expression (or a ↓-expression) that has a
↓-expression (an ↑-expression, respectively) as its first or last argument. We now consider
↑-expressions with ↓-arguments that are not the first or last argument.

Theorem 5.19 Let E = 〈↑ ε1 . . . εn〉 for some n ≥ 1 and N -words and DNA expressions
ε1, . . . , εn be a DNA expression. Let εi1 , . . . , εir for some r ≥ 1 and 2 ≤ i1 < . . . <
ir ≤ n − 1 be ↓-arguments of E that have at least two arguments themselves. Hence, for
j = 1, . . . , r, εij =

〈
↓ εij ,1 . . . εij ,mj

〉
for some mj ≥ 2 and N -words and DNA expressions

εij ,1, . . . , εij ,mj
, and

E = 〈↑ε1 . . . εi1−1 〈↓ εi1,1εi1,2 . . . εi1,m1−1εi1,m1
〉 εi1+1 . . . εir−1

〈↓ εir,1εir,2 . . . εir,mr−1εir,mr
〉 εir+1 . . . εn 〉 .

1. The string

E ′ = 〈↓〈↑ ε1 . . . εi1−1εi1,1〉 εi1,2 . . . εi1,m1−1

〈↑ εi1,m1
εi1+1 . . .〉 . . . 〈↑ . . . εir−1εir,1〉

εir,2 . . . εir,mr−1 〈↑ εir,mr
εir+1 . . . εn〉 〉

is a DNA expression satisfying E=
▽E ′.

2. If each occurrence of ↑ or ↓ in E is alternating, then so is each occurrence of ↑ or
↓ in E ′. In particular, in this case, both E and E ′ are nick free, and E ≡ E ′.

Note that in fact, we have n ≥ 3, because we assume that r ≥ 1 and 2 ≤ i1 ≤ n− 1.
Note also that εi1 , . . . , εir are not necessarily all ↓-arguments εi of E with 2 ≤ i ≤ n−1

and having at least two arguments themselves. There may be others, which we simply
leave unchanged.

Note further that each of the ‘new’ ↑-arguments of E ′, i.e., each of 〈↑ ε1 . . . εi1−1εi1,1〉,〈
↑ εij ,mj

εij+1 . . . εij+1−1εij+1,1

〉
for j = 1, . . . , r − 1, and 〈↑ εir,mr

εir+1 . . . εn〉, has at least
two arguments itself.

In Figure 5.4, we have drawn the structure trees of the DNA expressions E and E ′.
They illustrate the essence of Theorem 5.19: the outermost operator ↑ of E (the label of
the root of the structure tree of E) moves inwards: its function is taken over by r + 1
inner occurrences of ↑ in E ′. On the other hand, the operators ↓ from the ↓-arguments
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Figure 5.4: Analogue of Theorem 5.19 for structure trees of DNA expressions. (a) The
structure tree of E. (b) The structure tree of E ′.

εi1 , . . . , εir of E (the labels of certain children of the root) move outwards: their function
is taken over by the outermost operator ↓ of E ′.

Note that as a result, E ′ contains one operator more than E. The outermost operator
↑ of E and r occurrences of ↓ in E have been replaced by the outermost operator ↓ of E ′

and r + 1 occurrences of ↑.
There is an easy way to deal with ↓-arguments with only one argument. Let εi with

2 ≤ i ≤ n−1 be such a ↓-argument. Because the arguments of the ↑-expression E must fit
together by upper strands, the argument of εi cannot be an N -word. Hence, εi = 〈↓ Ei〉
for a DNA expression Ei. The only effect of ↓ on S(Ei) is that it removes the lower
nick letters occurring in it (if any). Consequently, S(εi) = S(〈↓ Ei〉) ≡▽ S(Ei). Now,
by Lemma 5.11, when we replace εi = 〈↓ Ei〉 in E by Ei, the resulting string is a DNA
expression E ′ satisfying E ≡▽ E ′.

It is interesting to consider two special cases of Theorem 5.19. If a ↓-argument εij of E
has exactly two arguments, hence εij =

〈
↓ εij ,1εij ,2

〉
, then the resulting DNA expression

E ′ has two consecutive ↑-arguments:
〈
↑ . . . εij ,1

〉
and

〈
↑ εij ,2 . . .

〉
. Conversely, if two of the

↓-arguments εij and εik of E are consecutive, say ik = ij + 1, then E ′ has an ↑-argument
with exactly two arguments:

〈
↑ εij ,mj

εik,1
〉
.

Example 5.20 We again consider the ↑-expression E from (5.12). This time, however,
we focus on the first two ↓-arguments:

E =
〈
↑ 〈l α1〉︸ ︷︷ ︸

ε1

〈↓ 〈l α2〉α3 〈↑ 〈l α4〉〉〉︸ ︷︷ ︸
εi1=ε2

α5︸︷︷︸
ε3

〈↓ 〈l α6〉 〈l α7〉〉︸ ︷︷ ︸
εi2=ε4

α8︸︷︷︸
ε5

〈↑ 〈l α9〉 〈l α10〉α11〉︸ ︷︷ ︸
ε6

〈↓ 〈l α12〉 〈↓ 〈l α13〉α14〉α15〉︸ ︷︷ ︸
ε7

〉
,

(5.14)
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α1 α2
α3

α4 α5 α6 α7 α8 α9 α10 α11 α12 α13
α14 α15

α1 α2
α3

α4 α5 α6 α7 α8 α9 α10 α11 α12 α13
α14 α15△ △

S(E): (a)

▽

S(E ′): (b)

Figure 5.5: The two formal DNA molecules that occur in Example 5.20. (a) The molecule
denoted by the DNA expression E from (5.14). (b) The molecule denoted by the DNA
expression E ′ from (5.15).

where α1, . . . , α15 are arbitrary N -words. In this case, n = 7 and r = 2. Indeed, εi1 and
εi2 are ↓-arguments with 2 ≤ i1 = 2 < i2 = 4 ≤ n−1 = 6 that have at least two arguments
themselves. Actually, εi1 and εi2 are all ↓-arguments of E that satisfy these requirements.
E has another ↓-argument, ε7, but that cannot be considered as an εij , because it is the
last argument of E. In fact, we already dealt with ε7, when we considered E for the first
time, in Example 5.17. In Figure 5.5(a), we have again depicted the formal DNA molecule
denoted by E.

When we apply Theorem 5.19, we obtain

E ′ =
〈
↓ 〈↑ 〈l α1〉 〈l α2〉〉 α3 〈↑ 〈↑ 〈l α4〉〉α5 〈l α6〉〉
〈↑ 〈l α7〉α8 〈↑ 〈l α9〉 〈l α10〉α11〉 〈↓ 〈l α12〉 〈↓ 〈l α13〉α14〉α15〉〉

〉
.
(5.15)

Figure 5.5(b) shows the formal DNA molecule denoted by E ′.
It is clear from the pictures that E and E ′ are equivalent modulo nicks (see Claim 1).

Also, the ↓-argument εi2 of E has exactly two arguments. Consequently, the second and
the third ↑-argument of E ′ are consecutive arguments.

Claim 2 is not applicable, because four occurrences of the operators ↑ and ↓ in E have
consecutive expression-arguments.

Proof of Theorem 5.19: Let us consider a ↓-argument εij with 1 ≤ j ≤ r. By
assumption, εij is neither the first argument, nor the last argument of the ↑-expression
E. Hence, it must fit together by upper strands with the preceding argument εij−1 and
the succeeding argument εij+1. This implies that neither the first argument, nor the last
argument of (the ↓-expression) εij can be an N -word. Both εij ,1 and εij ,mj

are DNA
expressions.

1. By induction on r, the number of ↓-arguments that we consider.

• If r = 1, then we consider only one ↓-argument εi1 .

As we have just observed, both the first argument εi1,1 and the last argument
εi1,m1

of εi1 are DNA expressions. We now successively apply Lemma 5.10,
Theorem 5.16(1) (together with Lemma 5.11) and once more Theorem 5.16(1):

E = 〈↑ ε1 . . . εi1−1 〈↓ εi1,1εi1,2 . . . εi1,m1−1εi1,m1
〉 εi1+1 . . . εn〉

≡ 〈↑ ε1 . . . εi1−1 〈↑ 〈↓ εi1,1εi1,2 . . . εi1,m1−1εi1,m1
〉 εi1+1 . . . εn〉 〉

=
▽ 〈↑ ε1 . . . εi1−1 〈↓ εi1,1εi1,2 . . . εi1,m1−1 〈↑ εi1,m1

εi1+1 . . . εn〉〉 〉
=
▽ 〈↓ 〈↑ ε1 . . . εi1−1εi1,1〉 εi1,2 . . . εi1,m1−1 〈↑ εi1,m1

εi1+1 . . . εn〉 〉
= E ′.

Indeed, E ′ is a DNA expression satisfying E=
▽E ′.
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• Let ρ ≥ 1, and suppose that the claim holds for all ↑-expressions E = 〈↑ ε1 . . .
εn〉 and ↓-arguments εi1 , . . . , εir of E, for which 1 ≤ r ≤ ρ, 2 ≤ i1 < . . . < ir ≤
n− 1 and each εij has at least two arguments (induction hypothesis).

Now, assume that r = ρ+ 1. Hence,

E =
〈
↑ ε1 . . . εi1−1 〈↓ εi1,1εi1,2 . . . εi1,m1−1εi1,m1

〉 εi1+1 . . . εiρ−1〈
↓ εiρ,1εiρ,2 . . . εiρ,mρ−1εiρ,mρ

〉
εiρ+1 . . . εiρ+1−1〈

↓ εiρ+1,1εiρ+1,2 . . . εiρ+1,mρ+1−1εiρ+1,mρ+1

〉
εiρ+1+1 . . . εn

〉
.

Recall that the εij ’s occurring in the claim are not necessarily all ↓-arguments
of E. We now simply ignore the first ρ εij ’s. We thus view E as

E =
〈
↑ ε1 . . . εi1−1εi1εi1+1 . . . εiρ−1εiρεiρ+1 . . . εiρ+1−1〈

↓ εiρ+1,1εiρ+1,2 . . . εiρ+1,mρ+1−1εiρ+1,mρ+1

〉
εiρ+1+1 . . . εn

〉
.

We apply the induction hypothesis to E and the ↓-argument εiρ+1
:

E =
▽

〈
↓
〈
↑ ε1 . . . εi1−1εi1εi1+1 . . . εiρ−1εiρεiρ+1 . . . εiρ+1−1εiρ+1,1

〉

εiρ+1,2 . . . εiρ+1,mρ+1−1

〈
↑ εiρ+1,mρ+1

εiρ+1+1 . . . εn
〉 〉

=
〈
↓
〈
↑ ε1 . . . εi1−1 〈↓ εi1,1εi1,2 . . . εi1,m1−1εi1,m1

〉 εi1+1 . . . εiρ−1〈
↓ εiρ,1εiρ,2 . . . εiρ,mρ−1εiρ,mρ

〉
εiρ+1 . . . εiρ+1−1εiρ+1,1

〉

εiρ+1,2 . . . εiρ+1,mρ+1−1

〈
↑ εiρ+1,mρ+1

εiρ+1+1 . . . εn
〉 〉

.

Let us use E1 to denote the first argument of the resulting ↓-expression. E1 is an
↑-expression with (among others) ↓-arguments εi1 , . . . , εiρ with 2 ≤ i1 < . . . <
iρ. Moreover, εiρ is not the last argument of E1, because the last argument of
E1 is εiρ+1,1. By assumption, each of the ↓-arguments εi1 , . . . , εiρ has at least
two arguments.

Hence, we can apply the induction hypothesis to E1 and these ↓-arguments.
When we combine this with Lemma 5.11 and subsequently use Lemma 5.10,
we find

E =
▽

〈
↓
〈
↓ 〈↑ ε1 . . . εi1−1εi1,1〉 εi1,2 . . . εi1,m1−1

〈↑ εi1,m1
εi1+1 . . .〉 . . .

〈
↑ . . . εiρ−1εiρ,1

〉

εiρ,2 . . . εiρ,mρ−1

〈
↑ εiρ,mρ

εiρ+1 . . . εiρ+1−1εiρ+1,1

〉 〉

εiρ+1,2 . . . εiρ+1,mρ+1−1

〈
↑ εiρ+1,mρ+1

εiρ+1+1 . . . εn
〉 〉

≡
〈
↓ 〈↑ ε1 . . . εi1−1εi1,1〉 εi1,2 . . . εi1,m1−1

〈↑ εi1,m1
εi1+1 . . .〉 . . .

〈
↑ . . . εiρ−1εiρ,1

〉

εiρ,2 . . . εiρ,mρ−1

〈
↑ εiρ,mρ

εiρ+1 . . . εiρ+1−1εiρ+1,1

〉

εiρ+1,2 . . . εiρ+1,mρ+1−1

〈
↑ εiρ+1,mρ+1

εiρ+1+1 . . . εn
〉 〉

= E ′.

We conclude again that E ′ is a DNA expression satisfying E=
▽E ′.

2. In the inductive proof of the previous claim, we did not only use Theorem 5.16(1),
but also Lemma 5.10 to rewrite E into E ′. Consequently, in order to prove that each
occurrence of ↑ or ↓ in E ′ is alternating, given that this is the case for E, it would
not suffice to refer to Theorem 5.16(2). We would also need to consider the effects
of Lemma 5.10. Instead of doing that, we give a direct proof, which resembles the
proof of Theorem 5.16(2).

Assume that each occurrence of ↑ or ↓ in E is alternating, i.e., that for each occur-
rence of ↑ or ↓ in E, the arguments are N -words and DNA expressions, alternately.
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We first examine the implications of this for the arguments of the outermost oper-
ator ↑ of E. For j = 1, . . . , r, both εij−1 and εij+1 (the arguments preceding and
succeeding the ↓-argument εij) must be N -words. In particular, for j = 1, . . . , r−1,
there must be at least an N -word εij+1 which separates the ↓-arguments εij and
εij+1

.

Next, we consider a ↓-argument εij with 1 ≤ j ≤ r. As we observed at the beginning
of the proof, both the first argument εij ,1 and the last argument εij ,mj

of εij are DNA
expressions. By assumption, εij has at least two arguments, and the arguments
are N -words and DNA expressions, alternately. Hence, εij has an odd number of
arguments (at least three), and both εij ,2 and εij ,mj−1 are N -words.

We now switch to E ′. The arguments of the outermost operator ↓ of E ′ are an ↑-
expression 〈↑ ε1 . . . εi1−1εi1,1〉, a sequence of arguments εi1,2, . . . , εi1,m1−1 coming from
εi1 , another ↑-expression, again a sequence of arguments coming from an εij , and so
on. By the above, the sequences of arguments coming from an εij are N -words and
DNA expressions alternately. Moreover, they start with the N -word εij ,2 and end
with the N -word εij ,mj−1. Consequently, the arguments of the outermost operator
↓ of E ′ are N -words and DNA expressions, alternately.

Let E ′
1 be the first ↑-argument 〈↑ ε1 . . . εi1−1εi1,1〉 of E ′. The first i1 − 1 arguments

ε1, . . . , εi1−1 of E
′
1 were consecutive arguments of E. Hence, by assumption, they are

N -words and DNA expressions, alternately. Moreover, the last of these arguments,
εi1−1, is an N -word, and εi1,1 is a DNA expression. Consequently, the arguments of
E ′

1 are N -words and DNA expressions, alternately.

Analogously, the arguments of the last ↑-argument 〈↑ εir,mr
εir+1 . . . εn〉 of E ′ are N -

words and DNA expressions, alternately. Finally, for j = 1, . . . , r−1, the arguments
of the ↑-argument

〈
↑ εij ,mj

εij+1 . . . εij+1−1εij+1,1

〉
of E ′ are the DNA expression εij ,mj

,
an alternating sequence of N -words and DNA expressions εij+1, . . . , εij+1−1 (which
starts with the N -word εij+1 and ends with the N -word εij+1−1), and the DNA
expression εij+1,1. Hence, also these arguments are N -words and DNA expressions,
alternately.

All other occurrences of ↑ and ↓ in E ′ occur inside an argument εi (with i 6= ij for
all j’s) or inside an argument εij ,k. These εi’s and εij ,k’s already occurred in E. By
assumption, each occurrence of ↑ or ↓ in them is alternating.

By Claim 1, E=
▽E ′. By Lemma 5.8, however, both E and E ′ are nick free. This

implies that E and E ′ are (strictly) equivalent: E ≡ E ′.

Theorem 5.19 can be reversed. That is, we can also start from E ′ and conclude that E is
a DNA expression satisfying E=

▽E ′ (or even E ≡ E ′):

Theorem 5.21 Let E ′ = 〈↓ ε1 . . . εn〉 for some n ≥ 1 and N -words and DNA expressions
ε1, . . . , εn be a DNA expression. Let εi1 , . . . , εir , εir+1

for some r ≥ 1 and 1 = i1 < . . . <
ir < ir+1 = n be ↑-arguments of E ′ that have at least two arguments themselves. Hence,
for j = 1, . . . , r, r + 1, εij =

〈
↑ εij ,1 . . . εij ,mj

〉
for some mj ≥ 2 and N -words and DNA
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expressions εij ,1, . . . , εij ,mj
, and

E ′ =
〈
↓ 〈↑ ε1,1 . . . ε1,m1−1ε1,m1

〉 ε2 . . . εi2−1 〈↑ εi2,1εi2,2 . . . εi2,m2−1εi2,m2
〉

εi2+1 . . . εir−1 〈↑ εir,1εir,2 . . . εir,mr−1εir,mr
〉

εir+1 . . . εn−1

〈
↑ εn,1εn,2 . . . εn,mr+1

〉 〉
.

1. The string

E =
〈
↑ ε1,1 . . . ε1,m1−1 〈↓ ε1,m1

ε2 . . . εi2−1εi2,1〉 εi2,2 . . . εi2,m2−1

〈↓ εi2,m2
εi2+1 . . .〉 . . . 〈↓ . . . εir−1εir,1〉 εir,2 . . . εir,mr−1

〈↓ εir,mr
εir+1 . . . εn−1εn,1〉 εn,2 . . . εn,mr+1

〉

is a DNA expression satisfying E=
▽E ′.

2. If each occurrence of ↑ or ↓ in E ′ is alternating, then so is each occurrence of ↑ or
↓ in E. In particular, in this case, both E and E ′ are nick free, and E ≡ E ′.

Note that in fact, we have n ≥ 2, because we assume that r ≥ 1 and 1 = i1 < ir+1 = n.

Proof:

1. We could prove this claim by induction, similar to the proof of Theorem 5.19(1).
Instead, we give a proof that makes use of Theorem 5.19(1) itself.

We first observe that both the last argument ε1,m1
of ε1 and the first argument εn,1 of

εn must be DNA expressions. Otherwise, the arguments of E ′ would not fit together
by lower strands. When we apply Theorem 5.16(1) two times (the second time in
combination with Lemma 5.11) and subsequently apply Lemma 5.10, we find

E ′=
▽

〈
↑ ε1,1 . . . ε1,m1−1

〈
↓ ε1,m1

ε2 . . . εi2−1 〈↑ εi2,1εi2,2 . . . εi2,m2−1εi2,m2
〉

εi2+1 . . . εir−1 〈↑ εir,1εir,2 . . . εir,mr−1εir,mr
〉

εir+1 . . . εn−1

〈
↑ εn,1εn,2 . . . εn,mr+1

〉 〉 〉

=
▽

〈
↑ ε1,1 . . . ε1,m1−1

〈
↑ 〈↓ε1,m1

ε2 . . . εi2−1 〈↑ εi2,1εi2,2 . . . εi2,m2−1εi2,m2
〉

εi2+1 . . . εir−1 〈↑ εir,1εir,2 . . . εir,mr−1εir,mr
〉

εir+1 . . . εn−1εn,1 〉 εn,2 . . . εn,mr+1

〉 〉

≡
〈
↑ ε1,1 . . . ε1,m1−1 〈↓ ε1,m1

ε2 . . . εi2−1 〈↑ εi2,1εi2,2 . . . εi2,m2−1εi2,m2
〉

εi2+1 . . . εir−1 〈↑ εir,1εir,2 . . . εir,mr−1εir,mr
〉

εir+1 . . . εn−1εn,1 〉 εn,2 . . . εn,mr+1

〉
.

Let us use E ′′ to denote the resulting DNA expression, and let us use E1 to denote
the ↓-argument

〈↓ε1,m1
ε2 . . . εi2−1 〈↑ εi2,1εi2,2 . . . εi2,m2−1εi2,m2

〉
εi2+1 . . . εir−1 〈↑ εir,1εir,2 . . . εir,mr−1εir,mr

〉
εir+1 . . . εn−1εn,1 〉

of E ′′.

If r = 1, then i2 = ir+1 = n, E1 reduces to 〈↓ ε1,m1
ε2 . . . εn−1εn,1〉, and

E ′′ =
〈
↑ ε1,1 . . . ε1,m1−1 〈↓ ε1,m1

ε2 . . . εn−1εn,1〉 εn,2 . . . εn,mr+1

〉
,
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which equals the string E from the claim. In this case, indeed, E is a DNA expression
satisfying E=

▽E ′.

If, on the other hand, r ≥ 2, then E1 has r−1 ≥ 1 ↑-arguments
〈
↑ εij ,1εij ,2 . . . εij ,mj−1

εij ,mj

〉
(with 2 ≤ j ≤ r), each of which is neither the first argument, nor the

last argument of E1 and has at least two arguments itself. Hence, we can apply
Theorem 5.19(1) (in combination with Lemma 5.11) to E1 and subsequently apply
Lemma 5.10:

E ′=
▽

〈
↑ ε1,1 . . . ε1,m1−1 〈↑〈↓ ε1,m1

ε2 . . . εi2−1εi2,1〉 εi2,2 . . . εi2,m2−1

〈↓ εi2,m2
εi2+1 . . .〉 . . . 〈↓ . . . εir−1εir,1〉 εir,2 . . . εir,mr−1

〈↓ εir,mr
εir+1 . . . εn−1εn,1〉 〉 εn,2 . . . εn,mr+1

〉

≡
〈
↑ ε1,1 . . . ε1,m1−1 〈↓ ε1,m1

ε2 . . . εi2−1εi2,1〉 εi2,2 . . . εi2,m2−1

〈↓ εi2,m2
εi2+1 . . .〉 . . . 〈↓ . . . εir−1εir,1〉 εir,2 . . . εir,mr−1

〈↓ εir,mr
εir+1 . . . εn−1εn,1〉 εn,2 . . . εn,mr+1

〉

= E.

We conclude that also in this case, E is an ↑-expression satisfying E=
▽E ′.

2. The proof of this claim is similar to that of Theorem 5.19(2). For each occurrence
of ↑ or ↓ in E (whether it is the outermost operator ↑, or an operator ↓ governing
a ‘new’ ↓-argument of E, or any other occurrence), we establish that its arguments
are N -words and DNA expressions, alternately, given that this is the case for each
occurrence of ↑ or ↓ in E ′. We leave the details to the reader.

Let E = E(α1, . . . , αk) for some k ≥ 1 and N -words α1, . . . , αk be an arbitrary DNA
expression. We define the N -word αE as the concatenation of the N -words α′

1, . . . , α
′
k,

where

α′
i =

{
αi if the parent operator of αi in E is l or ↑

c(αi) if the parent operator of αi in E is ↓ (i = 1, . . . , k).

For example, if E = 〈l 〈↑ α1 〈l α2〉 〈↓ 〈l α3〉α4〉〉〉, then αE = α1α2α3c(α4). The nota-
tion αE is in particular useful, when E is an l-expression or E is the argument of an
l-expression. This is the case in the final result of this section, which deals with l-
expressions.

Lemma 5.22 Let E = E(α1, . . . , αk) for some k ≥ 1 and N -words α1, . . . , αk be an
l-expression. Then E ▽≡ 〈l αE〉,

Example 5.23 Consider E = 〈l 〈↑ α1 〈l α2〉 〈↓ 〈l α3〉α4〉〉〉, for which αE = α1α2α3c(α4).

We have S(E) =
(

α1α2

c(α1α2)

)
△

(
α3c(α4)
c(α3)α4

)
, whereas S(〈l αE〉) =

(
α1α2α3c(α4)
c(α1α2α3)α4

)
. Indeed,

E ▽≡ 〈l αE〉.

Proof of Lemma 5.22: By induction on the number p of operators occurring in E.

• If p = 1, then apparently l is the only operator in E, and its (only) argument must
be an N -word α1: E = 〈l α1〉. Then with αE = α1, we have E = 〈l αE〉, so that
certainly E ▽≡ 〈l αE〉.
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• If p = 2, then the argument of the outermost operator l of E is a DNA expression
E1: E = 〈l E1〉. E1 contains only one operator and this operator can only have a
maximal N -word occurrence α1 as its argument. There are three possibilities:

– E1 = 〈l α1〉, but then, by (5.11), E = 〈l 〈l α1〉〉 ≡ 〈l α1〉 = 〈l αE〉 with
αE = α1;

– E1 = 〈↑ α1〉, but then, by (5.3), E = 〈l 〈↑ α1〉〉 ≡ 〈l α1〉 = 〈l αE〉 with
αE = α1;

– E1 = 〈↓ α1〉, but then, by (5.3), E = 〈l 〈↓ α1〉〉 ≡ 〈l c(α1)〉 = 〈l αE〉 with
αE = c(α1).

• Let p ≥ 2, and suppose that the claim is valid for all l-expressions containing at
most p operators (induction hypothesis). Now let E be an arbitrary l-expression
with p+ 1 operators. E = 〈l E1〉 for a DNA expression E1.

Again we distinguish three cases:

– E1 is an l-expression 〈l E1,1〉 for a DNA expression E1,1. But then E =
〈l 〈l E1,1〉〉 ≡ 〈l E1,1〉 by equivalence (5.11). Obviously, the resulting DNA ex-
pression contains the same maximal N -word occurrences αi (and in the same
order, with the same parent operators) as E. It contains, however, only p
operators, and thus the claim follows from the induction hypothesis.

– E1 is an ↑-expression, so E = 〈l 〈↑ ε1 . . . εm〉〉 for some m ≥ 1 and N -words
and DNA expressions ε1, . . . , εm. For j = 1, . . . ,m, let

ε′j = Exp+(εj) =

{
〈↑ α〉 if εj is an N -word α
εj if εj is a DNA expression

.

Then by equivalence (5.4) and Lemma 5.11,

E = 〈l 〈↑ ε1 . . . εm〉〉 ≡ 〈l 〈↑ ε′1 . . . ε
′
m〉〉 .

Because every ε′j is a DNA expression, we can apply Lemma 5.14:

〈l 〈↑ ε′1 . . . ε
′
m〉〉 ≡▽ 〈↑ 〈l ε′1〉 . . . 〈l ε′m〉〉 .

Now consider an argument
〈
l ε′j

〉
with 1 ≤ j ≤ m. If εj is an N -word α, then

ε′j = 〈↑ α〉 and
〈
l ε′j

〉
= 〈l 〈↑ α〉〉, which contains 2 ≤ p operators. If, on the

other hand, εj is a DNA expression, then ε′j = εj and
〈
l ε′j

〉
= 〈l εj〉. This

l-expression contains at most p operators.

In both cases, by the induction hypothesis,
〈
l ε′j

〉
▽ ≡

〈
l αε′j

〉
. Now, by

Lemma 5.11 and Corollary 5.15,

〈↑ 〈l ε′1〉 . . . 〈l ε′m〉〉 ▽≡
〈
↑
〈
l αε′1

〉
. . .
〈
l αε′m

〉〉
▽≡

〈
l αε′1

. . . αε′m

〉
.

Indeed, αε′1
. . . αε′m

is the concatenation of all maximal N -word occurrences αi

(or the complement of αi, if its parent operator is ↓) in E: αε′1
. . . αε′m

= αE.

When we combine all equivalences (pre-/post-modulo nicks), we conclude that

E=
▽ 〈l αE〉. Because the DNA expression 〈l αE〉 is nick free, we even have

E ▽≡ 〈l αE〉.
– E1 is a ↓-expression. The proof for this case is completely analogous to that

for the previous case.
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Chapter 6

The Length of a DNA Expression

The complexity of an algorithm is often expressed as a function of the length of its input
(see Section 2.1). Hence, when we want to analyse the complexity of algorithms that
operate on DNA expressions, it is important to know the length of the DNA expressions
at hand. Apart from this application, it is also intrinsically interesting to know how long
a DNA expression denoting a certain formal DNA molecule may be. Therefore, in this
and later chapters, we examine the length of a DNA expression.

We concentrate on lower bounds for the length of a DNA expression denoting a given
(expressible) formal DNA molecule. Obviously, there does not exist an upper bound on
the length of such a DNA expression. Indeed, consider an arbitrary DNA expression E =
〈|0ε1 . . . εn〉, where |0 is an operator, n ≥ 1 and ε1, . . . , εn are the arguments of E. Then
E ′ = 〈|0E〉 = 〈|0 〈|0ε1 . . . εn〉〉 is an equivalent DNA expression, for which |E ′| = |E| + 3.
This way, we can find arbitrarily long, equivalent DNA expressions.

In Section 6.1, we relate the length of a DNA expression to the number of operators
occurring in it. After that, in Section 6.2, we focus on the semantics of a DNA expression,
the formal DNA molecule. In particular, we identify specific (blocks of) components in
a molecule, count these (blocks of) components and analyse the counting functions. We
use the results of this to derive lower bounds for the length of a DNA expression with the
desired semantics, in Section 6.3.

6.1 The operators in a DNA expression

Let X be a string over A▽△
. We use |X|A to denote the number of A-letters occurring

in X. One can easily verify that | · |A is a homomorphism from A∗
▽△

to the non-negative

integers. Obviously, if X is a nick free formal DNA molecule, then |X|A equals the length
of X. It is also easy to see that for an arbitrary formal DNA molecule X, |X|A equals
the length of ν(X). One may wonder why we introduce the new notation |X|A, while we
could as well use the notation |ν(X)|. The reason is that we often know that a certain
formal DNA molecule X is nick free. In that case, it is useless to apply the function ν to
X, whereas the notation |ν(X)| would suggest that we do that.

We make a basic observation.

Lemma 6.1 Let E be a DNA expression denoting a formal DNA molecule X, and let p
be the number of operators occurring in E. Then

|E| = 3 · p+ |X|A.

101
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Note that a DNA expression consists of operators and corresponding brackets on the one
hand, and N -letters on the other hand. Hence, Lemma 6.1 implies that |X|A does not
only count the number of A-letters occurring in the formal DNA molecule X, but also the
number of N -letters occurring in any DNA expression E denoting X.

Proof: By induction on p.

• If p = 1, then E is 〈↑ α1〉, 〈↓ α1〉 or 〈l α1〉 for an N -word α1. The corresponding

formal DNA molecule X is
(
α1

−
)
,
(−
α1

)
or
(

α1

c(α1)

)
, respectively. In each of the cases,

|E| = 3 + |α1| = 3 · p+ |X|A.

• Let p ≥ 1, and suppose that the claim holds for all DNA expressions containing
at most p operators (induction hypothesis). Now assume that E contains p + 1
operators. E is either an ↑-expression, or a ↓-expression or an l-expression.
If E is an ↑-expression, hence E = 〈↑ ε1 . . . εn〉 for some n ≥ 1 and N -words and

DNA expressions ε1, . . . , εn, then by definition,

X = S(E) = ν+(S+(ε1)) y1 ν+(S+(ε2)) y2 . . . yn−1 ν+(S+(εn)),

where the yi’s are △ or λ (see (4.3)). The function ν+ removes all upper nick letters
occurring in its argument, but it does not affect the occurring A-letters. Obviously,
for i = 1, . . . , n− 1, |yi|A = 0. This implies that

|X|A = |ν+(S+(ε1))|A + |y1|A + |ν+(S+(ε2))|A + |y2|A + · · ·+ |yn−1|A
+ |ν+(S+(εn))|A

= |S+(ε1)|A + |S+(ε2)|A + · · ·+ |S+(εn)|A.

Apart from the outermost operator, all operators in E occur in the arguments
ε1, . . . , εn. For i = 1, . . . , n, let pi be the number of operators occurring in εi.
Then

p1 + p2 + · · ·+ pn = p.

If an argument εi is an N -word αi, then S+(εi) =
(
αi

−
)
, pi = 0 and

|εi| = |αi| = 3 · pi + |S+(εi)|A.

If, on the other hand, an argument εi is a DNA expression, then S+(εi) = S(εi),
1 ≤ pi ≤ p and by the induction hypothesis,

|εi| = 3 · pi + |S(εi)|A = 3 · pi + |S+(εi)|A.

When we combine all equations, we obtain

|E| = 3 + |ε1|+ · · ·+ |εn|
= 3 + (3 · p1 + |S+(ε1)|A) + · · ·+ (3 · pn + |S+(εn)|A)
= 3 · (p+ 1) + |X|A.
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If E is a ↓-expression containing p+ 1 operators, then the proof is analogous.

Finally, if E is an l-expression, then E = 〈l E1〉 for a DNA expression E1 con-
taining p ≥ 1 operators. Hence,

X = S(E) = κ(S(E1)).

Because the function κ does not change the number of A-letters occurring in its
argument, we have

|X|A = |κ(S(E1))|A = |S(E1)|A.

We can apply the induction hypothesis to E1:

|E1| = 3 · p+ |S(E1)|A.

We then find

|E| = 3 + |E1| = 3 + 3 · p+ |S(E1)|A = 3 · (p+ 1) + |X|A.

Hence, the claim is also valid for every DNA expression E that contains p + 1
operators.

6.2 Blocks of components of a formal DNA molecule

Obviously, the minimal length of a DNA expression denoting a certain (expressible) formal
DNA molecule X depends on X. We will see that it particularly depends on three simple
counting functions of X. In this section, we study these counting functions. Two of the
functions count certain subsequences (or blocks) of components of X. We first introduce
these subsequences.

By Lemma 3.7, the components of a formal DNA molecule are double components and
non-double components alternately. The non-double components are upper components,
lower components, upper nick letters and lower nick letters. In Section 3.3, we categorized
these components as single-stranded components and nick letters (see Figure 3.2). We now
make a different categorization:

Definition 6.2 Let X be a formal DNA molecule and let x′
1 . . . x

′
k for some k ≥ 1 be the

decomposition of X.

• An ↑-component x′
i of X is an upper component or a lower nick letter occurring in

X.

• A ↓-component x′
i of X is a lower component or an upper nick letter occurring in

X.
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component

�
�
�

❅
❅
❅

double component non-double component

�
�
�

❅
❅
❅

↑-component

✁
✁
✁

❆
❆
❆

↓-component

✁
✁
✁

❆
❆
❆

upper component lower nick letter lower component upper nick letter

Figure 6.1: Relations between different types of components. Components can be divided
into double components and non-double components, non-double components can in turn
be divided into ↑-components and ↓-components, et cetera.

Recall that if X = S(E) for a DNA expression E, then upper components and lower nick
netters occurring in X are the products of an operator ↑. Similarly, lower components and
upper nick letters are produced by an operator ↓. This explains the terms ↑-component and
↓-component. Intuitively, one may regard an ↑-component as a component that ‘breaks’
the lower strand of a molecule. There is, of course, an analogous interpretation of a
↓-component. The new categorization is depicted in Figure 6.1.

We consider sequences of components of X. We make a simple observation, which
follows immediately from the definition of the decomposition of a formal DNA molecule,
Definition 3.5.

Lemma 6.3 Let X be a formal DNA molecule, let x′
1 . . . x

′
k for some k ≥ 1 be the decom-

position of X and let Xs be a formal DNA submolecule of X which is a subsequence of
the components of X: Xs = x′

a0
· . . . · x′

a1
with 1 ≤ a0 ≤ a1 ≤ k.

Then the decomposition of Xs is x′
a0
. . . x′

a1
.

Hence, the components of Xs are simply the components of X that Xs is built up of.
When we ignore the double components, a formal DNA molecule consists of ↑-compo-

nents and ↓-components. A (maximal) series of ↑-components is succeeded by a (maximal)
series of ↓-components, which in turn is succeeded by a (maximal) series of ↑-components,
and so on. We are interested in these maximal series, which we call primitive ↑-blocks
and primitive ↓-blocks , respectively. A formal definition of these blocks also includes the
double components occurring in the formal DNA molecule:

Definition 6.4 Let X be a formal DNA molecule and let x′
1 . . . x

′
k for some k ≥ 1 be the

decomposition of X.
A primitive ↑-block of X is an occurrence (Y1, Y2) of a non-empty substring X1 of X

such that Y1 = x′
1 . . . x

′
a0−1 and Y2 = x′

a1+1 . . . x
′
k for some a0 and a1 with 1 ≤ a0 ≤ a1 ≤ k

(hence X1 = x′
a0
. . . x′

a1
), and

• X1 contains at least one non-double component,
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▽ ▽ ▽ ▽α1 α2 α3 α4 α5
α6

α7 α8 α9 α10 α11 α12 α13 α14 α15
α16 (a)

▽ ▽ ▽ ▽α1 α2 α3 α4 α5
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α7 α8 α9 α10 α11 α12 α13 α14 α15
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Figure 6.2: Primitive ↑-blocks and primitive ↓-blocks. (a) An example formal DNA
molecule X that contains (upper) nick letters. (b) The primitive ↑-blocks of X. Note that
the upper nick letters are not part of these blocks. (c) The primitive ↓-blocks of X.

• each non-double component of X1 is an ↑-component,

• – either a0 = 1 (hence Y1 is empty),

– or a0 ≥ 2 and x′
a0−1 is a ↓-component,

and

• – either a1 = k (hence Y2 is empty),

– or a1 ≤ k − 1 and x′
a1+1 is a ↓-component.

Note that a primitive ↑-block starts with the double component preceding the series of
↑-components (if such a double component exists) and it ends with the double component
succeeding the series of ↑-components (again, if such a double component exists).

A primitive ↑-block of a formal DNA molecule X is formally defined as an occurrence
(Y1, Y2) of a substringX1 ofX satisfying certain conditions. However, when the occurrence
is clear from the context, we will often refer to a primitive ↑-block by the substring X1

itself.
The definition of a primitive ↓-block is completely analogous to that of a primitive

↑-block. We may use the term primitive block to refer to either a primitive ↑-block, or a
primitive ↓-block.

In Figure 6.2, we have indicated the primitive ↑-blocks and the primitive ↓-blocks of a
certain formal DNA molecule containing upper nick letters.

Our first result on primitive blocks, dealing with certain simple types of formal DNA
molecules, follows immediately from the definition.

Lemma 6.5 Let X be a formal DNA molecule.

1. If X =
(

α1

c(α1)

)
for an N -word α1, then X does not have any primitive block.

2. If X has at least one ↑-component, but does not have any ↓-component, then X is a
primitive ↑-block of itself and X does not have any primitive ↓-block.

3. If X has at least one ↓-component, but does not have any ↑-component, then X is a
primitive ↓-block of itself and X does not have any primitive ↑-block.
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Formal DNA molecules of the form
(

α1

c(α1)

)
for an N -word α1 will come back frequently

in the remainder of this chapter and in later chapters. Often, we are not interested in
the actual N -letters occurring in such a molecule (hence in α1), but only in the shape of
the molecule, for example, when we want to except molecules of this type from a certain
statement. In order not to burden the text with unnecessary details, we may speak of
a double-complete formal DNA molecule, when we mean a formal DNA molecule of the

form
(

α1

c(α1)

)
for an N -word α1.

We already mentioned that a primitive ↑-block of a formal DNA molecule X starts
with the double component preceding a series of ↑-components, and ends with the double
component succeeding this series (if these double components exist). We formalize and
extend this observation for a primitive ↑-block which is not equal to X.

Lemma 6.6 Let X be a formal DNA molecule, let x′
1 . . . x

′
k for some k ≥ 1 be the de-

composition of X, and let X1 = x′
a0
. . . x′

a1
for some a0 and a1 with 1 ≤ a0 ≤ a1 ≤ k be a

primitive ↑-block of X.

1. If a0 ≥ 2, then a0 < a1 ≤ k, x′
a0−1 is a ↓-component, x′

a0
is a double component and

x′
a0+1 is an ↑-component of X.

2. If a1 ≤ k − 1, then 1 ≤ a0 < a1, x
′
a1+1 is a ↓-component, x′

a1
is a double component

and x′
a1−1 is an ↑-component of X.

Proof:

1. Assume that a0 ≥ 2. Then, by definition, x′
a0−1 is a ↓-component, and by Lemma 3.7,

x′
a0

is a double component. Because X1 contains at least one ↑-component, we must
have a0 < a1. Hence, x′

a0+1 is part of X1, and by the definition of a primitive ↑-
block, it is a double component or an ↑-component. By Lemma 3.7, it has to be an
↑-component.

2. The proof of this claim is analogous to that of the previous claim.

For the formal DNA molecule from Figure 6.2, the following result is clear from the
picture. We will prove it in general.

Lemma 6.7 Let X be a formal DNA molecule and let x′
1 . . . x

′
k for some k ≥ 1 be the

decomposition of X.

1. The primitive ↑-blocks of X are pairwise disjoint.

2. Each ↑-component of X occurs in a (exactly one) primitive ↑-block.

3. Let X1 = x′
a0
. . . x′

a1
and X2 = x′

a2
. . . x′

a3
with 1 ≤ a0 ≤ a1 < a2 ≤ a3 ≤ k be two

consecutive primitive ↑-blocks of X. Then x′
a1

and x′
a2

are double components of X,
a2 − a1 ≥ 2 and x′

a1
. . . x′

a2
is a primitive ↓-block of X.

4. Let X1 = x′
a0
. . . x′

a1
with 1 ≤ a0 ≤ a1 ≤ k be the first primitive ↑-block of X. If

a0 ≥ 2, then x′
a0

is a double component and x′
1 . . . x

′
a0

is a primitive ↓-block of X.
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5. Let X1 = x′
a0
. . . x′

a1
with 1 ≤ a0 ≤ a1 ≤ k be the last primitive ↑-block of X. If

a1 ≤ k − 1, then x′
a1

is a double component and x′
a1
. . . x′

k is a primitive ↓-block of
X.

6. Let X1 = x′
a0
. . . x′

a1
with 1 ≤ a0 ≤ a1 ≤ k be a primitive ↑-block of X and let

X2 = x′
a2
. . . x′

a3
with 1 ≤ a2 ≤ a3 ≤ k be a primitive ↓-block of X. If X1 and X2

have a non-empty intersection, then

• either 1 ≤ a0 < a1 = a2 < a3 ≤ k and x′
a1
(= x′

a2
) is a double component,

• or 1 ≤ a2 < a3 = a0 < a1 ≤ k and x′
a3
(= x′

a0
) is a double component.

Because of the analogous definitions of primitive ↑-blocks and primitive ↓-blocks, we have
analogous results for primitive ↓-blocks.

By Claim 1, we can unambiguously order the different primitive ↑-blocks of a formal
DNA molecule X, according to their occurrence in X. We can speak of the first, the
second, . . . , the last primitive ↑-block of a formal DNA molecule. Hence, Claims 3–5
make sense.

Claim 2 allows us to speak of the primitive ↑-block of a ↑-component, being the
(unique) primitive ↑-block that the ↑-component is part of. Analogously, we have the
primitive ↓-block of a ↓-component.

Finally, by Claim 6, if a primitive ↑-block and a primitive ↓-block of X have a non-
empty intersection, then they overlap and the intersection consists only of the double
component that one of the blocks ends with and the other one starts with. Therefore, it
should not be confusing to say, e.g., that a primitive ↑-block is succeeded by a primitive ↓-
block. For example, the primitive ↑-block X2 of the formal DNA molecule from Figure 6.2
is succeeded by the primitive ↓-block X ′

2, which in turn is succeeded by the primitive
↑-block X3.

Proof of Lemma 6.7:

1. Let X1 = x′
a0
. . . x′

a1
with 1 ≤ a0 ≤ a1 ≤ k and X2 = x′

a2
. . . x′

a3
with 1 ≤ a2 ≤ a3 ≤ k

be two different primitive ↑-blocks of X. Without loss of generality, assume that
a0 6= a2 (otherwise consider a1 and a3 and mirror the arguments). In particular,
assume that a0 < a2.

Because 1 ≤ a0 < a2, we have a2 ≥ 2 and thus, by definition, x′
a2−1 is a ↓-component.

Further, because a0 ≤ a2 − 1, we must have a1 < a2 − 1, because otherwise (the
primitive ↑-block) X1 would contain the ↓-component x′

a2−1.

Consequently, a0 ≤ a1 < a2 − 1 < a2 ≤ a3, and X1 and X2 are disjoint.

2. Let x′
i0
be an arbitrary ↑-component of X. By Lemma 3.7, each component x′

i with
i ≡ i0 (mod 2) is an ↑-component or a ↓-component and each component x′

i with
i ≡ i0 + 1 (mod 2) is a double component.

Now, let b0 be the smallest index with 1 ≤ b0 ≤ i0 and b0 ≡ i0 (mod 2) such that
each of x′

b0
, x′

b0+2, . . . , x
′
i0−2, x

′
i0
is an ↑-component. Further, let b1 be the largest index

with i0 ≤ b1 ≤ k and b1 ≡ i0 (mod 2) such that each of x′
i0
, x′

i0+2, . . . , x
′
b1−2, x

′
b1

is
an ↑-component. Because x′

i0
itself is an ↑-component, b0 and b1 are well defined.

We subsequently define indices a0 and a1 by

a0 =

{
1 if b0 ≤ 2

b0 − 1 if b0 ≥ 3
and a1 =

{
k if b1 ≥ k − 1

b1 + 1 if b1 ≤ k − 2,
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and let X1 = x′
a0
. . . x′

a1
. It is easy to see that 1 ≤ a0 ≤ b0 ≤ i0 ≤ b1 ≤ a1 ≤ k.

Indeed, X1 contains x′
i0
.

By the definition of b0 and b1 and by the fact that b0 − 1 ≤ a0 ≤ b0 and b1 ≤ a1 ≤
b1 + 1, each of the components x′

a0
, . . . , x′

a1
is either an ↑-component, or a double

component. Further, either a0 = 1, or a0 ≥ 2. In the latter case, a0 = b0 − 1, and
hence x′

a0−1 = x′
b0−2 is a ↓-component. Similarly, either a1 = k, or a1 ≤ k − 1. In

the latter case, a1 = b1 + 1 and x′
a1+1 = x′

b1+2 is a ↓-component. Consequently, X1

is a primitive ↑-block.
Because, by Claim 1, primitive ↑-blocks are pairwise disjoint, the ↑-component x′

i0

does not occur in any other primitive ↑-block of X.

3. In the proof of Claim 1, we have established that a1 < a2 − 1 < a2, hence that
a2 − a1 ≥ 2. By Lemma 6.6, 1 ≤ a0 < a1, a2 < a3 ≤ k, both x′

a1+1 and x′
a2−1 are

↓-components, both x′
a1

and x′
a2

are double components and both x′
a1−1 and x′

a2+1

are ↑-components.

By Claim 2, each ↑-component occurs in a primitive ↑-block ofX. Now, the existence
of an ↑-component between X1 and X2 would contradict the assumption that they
are consecutive. Hence, the sequence x′

a1
. . . x′

a2
only consists of double components

and ↓-components, and at least one of them is a ↓-component.

This implies that x′
a1
. . . x′

a2
satisfies all conditions of a primitive ↓-block.

4. The proof of this claim is similar to that of the previous claim.

We first establish that if a0 ≥ 2, then x′
a0−1 is a ↓-component, x′

a0
is a double

component and x′
a0+1 is an ↑-component. We subsequently prove that x′

1 . . . x
′
a0

does not contain any ↑-component, because otherwise we could find a primitive ↑-
block before the first primitive ↑-block X1. These properties together imply that
x′
1 . . . x

′
a0

is a primitive ↓-block.

5. The proof of this claim is analogous to that of the previous claim.

6. Assume that X1 and X2 have a non-empty intersection. Because both X1 and X2

are built up of (complete) components of X, so is their intersection. Let x′
i0

be a
component ofX that occurs both inX1 andX2. Then a0 ≤ i0 ≤ a1 and a2 ≤ i0 ≤ a3.

By the definition of (the primitive ↑-block) X1, x
′
i0

is not a ↓-component, and by
the definition of (the primitive ↓-block) X2, x

′
i0
is not an ↑-component. Hence, it is

a double component. Because X1 contains at least one ↑-component, either a0 < i0,
or i0 < a1 (or both).

Assume that a0 < i0. Then by Lemma 3.7, x′
i0−1 is an ↑-component. This component

cannot be part of (the primitive ↓-block) X2. Because x′
i0

is part of X2, we must
have a2 = i0. Now, because X2 contains at least one ↓-component, i0 < a3 and x′

i0+1

is a ↓-component. This component, in turn cannot be part of X1, which implies that
a1 = i0. In this case, we have the first subclaim.

If, on the other hand, we assume that i0 < a1, then we obtain the second subclaim.

When we combine Lemma 6.5(1) and Lemma 6.7(2), we find
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Corollary 6.8 A formal DNA molecule does not have any primitive block, if and only if
it is double-complete.

We now consider formal DNA molecules which are not double-complete.

Lemma 6.9 Let X be a formal DNA molecule which is not double-complete.

1. X can be considered as an alternating sequence of (all its) primitive ↑-blocks and (all
its) primitive ↓-blocks. Any two consecutive primitive blocks in this sequence share
(only) a double component of X.

2. (a) The first non-double component of X is an ↑-component, if and only if the
alternating sequence from Claim 1 starts with a primitive ↑-block.

(b) The last non-double component of X is an ↑-component, if and only if the
alternating sequence from Claim 1 ends with a primitive ↑-block.

Note that in Claim 1 we say “X can be considered as an alternating sequence . . . ,” rather
than ‘X is an alternating sequence . . . ’ The reason for this is that consecutive primitive
blocks in this sequence (e.g., a primitive ↑-block and the primitive ↓-block succeeding it)
are not disjoint. As we say in the second part of the claim, they share a double component.
In the alternating sequence, we must, of course, include this double component only once.

It is easily verified that all claims are valid for the formal DNA molecule depicted in
Figure 6.2. For this molecule, the alternating sequence is X ′

0, X1, X
′
1, X2, X

′
2, X3, X

′
3.

Proof:

1. Without loss of generality, assume that X contains at least one ↑-component, and
let X1, . . . , Xr for some r ≥ 0 be all primitive ↑-blocks of X, in the order of their
occurrence in X. By Lemma 6.7(2), r ≥ 1. By Lemma 6.7(1), the primitive ↑-
blocks of X are pairwise disjoint. Now, consider a primitive ↑-block Xj of X with
1 ≤ j ≤ r − 1 (if this exists). By Lemma 6.7(3), there exists a primitive ↓-block
X ′

j of X that starts with the last (double) component of Xj and ends with the first
(double) component of Xj+1.

Assume that neither X1 is a prefix of X, nor Xr is a suffix of X. Then by
Lemma 6.7(4) and (5), both the prefix X ′

0 of X that ends with the first (double)
component of X1 and the suffix X ′

r of X that starts with the last (double) com-
ponent of Xr are primitive ↓-blocks of X. We then have the alternating sequence
X ′

0X1X
′
1 . . . XrX

′
r of all primitive ↑-blocks X1, . . . , Xr and primitive ↓-blocks X ′

0, X
′
1,

. . . , X ′
r which completely cover X. In fact, when we include each double compon-

ent which is shared by a primitive ↑-block and a primitive ↓-block only once, this
sequence is equal to X.

We still have to prove that the alternating sequence includes all primitive ↓-blocks
of X. Suppose that there is a primitive ↓-block X ′

00 of X different from the ones
occurring in the sequence. By (the analogue for primitive ↓-blocks of) Lemma 6.7(1),
it would have an empty intersection with each of X ′

0, X
′
1, . . . , X

′
r. Then, because X

′
00

is a substring of X, it should be contained in a primitive ↑-block Xj for some j
with 1 ≤ j ≤ r. By definition, the primitive ↓-block X ′

00 contains at least one
↓-component. This ↓-component would also be part of the primitive ↑-block Xj ,
which is impossible.

We conclude that in this case, the claim holds. The proofs for the cases that either
X1 is a prefix of X, or Xr is a suffix of X (or both) are analogous.
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2. (a) Assume that the alternating sequence from Claim 1 starts with a primitive
↑-block X0 of X. By definition, a primitive ↑-block contains at least one ↑-
component and does not contain any ↓-component. Hence, the first non-double
component of X is the first non-double component of its prefix X0, which is an
↑-component.

Conversely, if the first non-double component of X is an ↑-component, then
the alternating sequence cannot start with a primitive ↓-block. Hence, it must
start with a primitive ↑-block.

(b) The proof of this subclaim is analogous to that of the previous subclaim.

We now define functions that count the primitive ↑-blocks, the primitive ↓-blocks and
the double components occurring in a formal DNA molecule X.

Definition 6.10 Let X be a formal DNA molecule.

• B↑(X) is the number of primitive ↑-blocks of X.

• B↓(X) is the number of primitive ↓-blocks of X.

• nl(X) is the number of double components of X.

For the formal DNA molecule X from Figure 6.2, we have B↑(X) = 3, B↓(X) = 4 and
nl(X) = 10.

We are interested in the values of the functions B↑, B↓ and nl for formal DNA mo-
lecules X. Sometimes, however, it will be convenient to have the possibility to provide an
argument X = λ. In line with the intuition, we define

B↑(λ) = B↓(λ) = nl(λ) = 0.

In addition to the three new counting functions, we will use #▽(X), #
△
(X), #▽,△(X),

#↑(E), #↓(E), #↑,↓(E) and #l(E). Here, X and E may be arbitrary strings, but often
X will be a formal DNA molecule and E will be a DNA expression.

The following result is immediate from Lemma 3.7:

Lemma 6.11 Let X be a formal DNA molecule and let x′
1 . . . x

′
k for some k ≥ 1 be the

decomposition of X.
If x′

1 is a double component, then nl(X) = ⌈k
2
⌉. If x′

1 is not a double component, then
nl(X) = ⌊k

2
⌋.

The different counting functions on formal DNA molecules can be related to each other:

Lemma 6.12 Let X be a formal DNA molecule.

1. B↑(X) ≤ B↓(X) + 1.

2. B↓(X) ≤ B↑(X) + 1.

3. If X does not contain any single-stranded component, then nl(X) = #▽,△(X) + 1.

4. If X contains at least one nick letter, then nl(X) ≥ #▽,△(X) + 1.
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5. nl(X) ≥ #▽,△(X).

Proof:

1, 2. If X is double-complete, then by Lemma 6.5(1), X does not have any primitive
block. Hence, Claims 1 and 2 are trivially valid.

If X is not double-complete, then by Lemma 6.9(1), the primitive ↑-blocks and prim-
itive ↓-blocks occur in X alternately. Hence, the difference between their numbers
of occurrences can be at most 1. Again, Claims 1 and 2 follow immediately.

3. This claim follows immediately from Corollary 3.9(2).

4. Let x′
1 . . . x

′
k for some k ≥ 1 be the decomposition of X. By the definition of a

formal DNA molecule, every nick letter occurring in X is preceded and succeeded
by a double component. Hence, for each component x′

i of X that is a nick letter,
i ≥ 2 and x′

i−1 is a double component. Further, if x′
i0
is the last nick letter occurring

in X, then i0 ≤ k − 1 and also x′
i0+1 is a double component. Obviously, all these

double components are different, and thus nl(X) ≥ #▽,△(X) + 1.

5. If X is nick free (hence #▽,△(X) = 0), then the claim holds because nl(X) ≥ 0. If
X is not nick free, then the claim follows from Claim 4.

In the next result, we consider nick free formal DNA molecules. In such formal DNA
molecules, each non-double component is a single-stranded component (see Figure 3.2),
each ↑-component is an upper component and each ↓-component is a lower component
(see Figure 6.1). In fact, all claims below can directly be generalized to formal DNA
molecules that may contain nick letters. However, because we will use the claims only in
the nick free case, we give the nick free formulation.

Lemma 6.13 Let X be a nick free formal DNA molecule.

1. (a) B↑(X) = 0 if and only if X does not contain any upper component.

(b) B↓(X) = 0 if and only if X does not contain any lower component.

2. X is not double-complete, if and only if X contains at least one single-stranded
component.

3. Assume that X is not double-complete.

(a) If both the first single-stranded component and the last single-stranded compon-
ent of X are upper components, then B↑(X) = B↓(X) + 1.

(b) If the first single-stranded component of X is a lower component and the last
single-stranded component of X is an upper component, then B↑(X) = B↓(X).

(c) If the first single-stranded component of X is an upper component and the last
single-stranded component of X is a lower component, then B↑(X) = B↓(X).

(d) If both the first single-stranded component and the last single-stranded compon-
ent of X are lower components, then B↑(X) = B↓(X)− 1.



112 Ch. 6 The Length of a DNA Expression

Proof:

1. (a) By the definition of a primitive ↑-block, if X does not have any upper com-
ponent, then B↑(X) = 0. Conversely, by Lemma 6.7(2), if B↑(X) = 0, then X
cannot have an upper component.

(b) The proof of this subclaim is analogous to that of the previous subclaim.

2. This claim is immediate from Corollary 3.8(1).

3. All four subclaims follow immediately from Lemma 6.9.

When a formal DNA molecule is denoted by a DNA expression, the values of the
functions B↑, B↓ and nl for the full molecule can be related to the values for its constitu-
ents. In order to establish these relations, we will systematically analyse the effects of the
operators ↑, ↓ and l on the values of these counting functions.

Some of the relations we obtain, are not directly useful for the ultimate goal of this
chapter, the determination of lower bounds on the length of a DNA expression. For the
sake of completeness, we give these relations anyway.

In the definition of the semantics of an ↑-expression, a ↓-expression and an l-expression,
there is an important role for the functions ν+, ν− and κ, respectively (see Definition 4.1).
We first consider the effects of ν+ on the values of the counting functions. Of course, the
effects of ν− are analogous. We will subsequently examine the effects of κ.

The function ν+ removes all upper nick letters occurring in its argument. The removal
of even a single upper nick letter may affect the counting numbers.

Lemma 6.14 Let X be a formal DNA molecule containing at least one upper nick letter,
and let X ′ be the string that results from X by removing one upper nick letter. Then X ′

is a formal DNA molecule and

1. B↑(X
′) ≤ B↑(X),

2. B↑(X
′) ≥ B↑(X)− 1,

3. B↓(X
′) ≤ B↓(X),

4. B↓(X
′) ≥ B↓(X)− 1 and

5. nl(X
′) = nl(X)− 1.

Proof: Because X is not double-complete, by Lemma 6.9(1), it can be considered as an
alternating sequence of all its primitive ↑-blocks and all its primitive ↓-blocks.

Let x′
1 . . . x

′
k for some k ≥ 1 be the decomposition of X and let x′

i0
with 1 ≤ i0 ≤ k be

the upper nick letter that is removed. Hence, X ′ = x′
1 . . . x

′
i0−1x

′
i0+1 . . . x

′
k.

By the definition of a formal DNA molecule (Definition 3.2), nick letters may occur
only between two double components. Consequently, 2 ≤ i0 ≤ k − 1 and both x′

i0−1 and
x′
i0+1 are double components. When x′

i0
is removed, the two double components become

adjacent and thus form one larger double component x′
i0−1x

′
i0+1. Indeed, the resulting

string X ′ satisfies all conditions of a formal DNA molecule.
Because two double components merge into one and the other double components are

not affected by the removal of x′
i0
, nl(X

′) = nl(X)− 1, which is Claim 5.
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α1 α2 α3 α4
α5

α6 α7 α1 α2 α3 α4
α5

α6 α7
▽

a1 i0 a2

︷ ︸︸ ︷ ︷ ︸︸ ︷

︸ ︷︷ ︸
X1

︷ ︸︸ ︷ ︷ ︸︸ ︷

︸ ︷︷ ︸
X′

1

−→
(a)

α1 α2 α3 α4 α5 α6 α7 α1 α2 α3 α4 α5 α6 α7
▽

a1 i0 a2

︷ ︸︸ ︷ ︷ ︸︸ ︷

︸ ︷︷ ︸
X1

︷ ︸︸ ︷
−→

(b)

α1 α2 α3 α4 α5 α6
α7

α1 α2 α3 α4 α5 α6
α7

▽

a1 i0 a2

︷ ︸︸ ︷

︸ ︷︷ ︸
X1

︸ ︷︷ ︸

︷ ︸︸ ︷

︸ ︷︷ ︸
−→

(c)

Figure 6.3: The effect on primitive blocks (indicated by the braces) of removing an
upper nick letter in three different cases. (a) The upper nick letter removed is the first,
but not the only ↓-component of its primitive ↓-block X1. The last (double) component of
the preceding primitive ↑-block is replaced by a larger double component. (b) The upper
nick letter removed is the only ↓-component of its primitive ↓-block X1. The primitive
↑-block preceding X1 and the one succeeding X1 merge into one. (c) The upper nick letter
removed is the only ↓-component of its primitive ↓-block X1. X1 is not preceded by a
primitive ↑-block. The first (double) component of the primitive ↑-block succeeding X1 is
replaced by a larger double component.

The upper nick letter x′
i0
is a ↓-component. By Lemma 6.7(2), there is (exactly) one

primitive ↓-block X1 of X containing x′
i0
, say X1 = x′

a1
. . . x′

i0−1x
′
i0
x′
i0+1 . . . x

′
a2

for some a1
and a2 with 1 ≤ a1 ≤ i0 ≤ a2 ≤ k. Because 2 ≤ i0 ≤ k − 1 and both x′

i0−1 and x′
i0+1 are

double components, it follows from the definition of a primitive ↓-block that a1 ≤ i0 − 1
and i0 + 1 ≤ a2.

Now, there are two possibilities: either X1 contains ↓-components other than x′
i0
, or

it does not.

• In the former case, either a1 < i0 − 1 or i0 + 1 < a2 (or both). When x′
i0

is
removed from X1, the result X ′

1 = x′
a1
. . . x′

i0−1x
′
i0+1 . . . x

′
a2

still contains at least
one ↓-component. It is easily verified that it also satisfies the other conditions of a
primitive ↓-block of X ′. Hence, the primitive ↓-block X1 has been replaced by the
primitive ↓-block X ′

1.

If x′
i0

was the first ↓-component of X1 (hence, a1 = i0 − 1) and X1 was preceded
in X by a primitive ↑-block, then the last component of this primitive ↑-block was
the double component x′

i0−1 and has now become the double component x′
i0−1x

′
i0+1.

This effect is depicted in Figure 6.3(a). Analogously, the first component of the
primitive ↑-block succeeding X1 may have changed. None of the other primitive
↑-blocks and primitive ↓-blocks of X is affected by the removal of x′

i0
. Hence, in this

case, B↑(X
′) = B↑(X) and B↓(X

′) = B↓(X).

• Now, consider the case that the upper nick letter x′
i0
is the only ↓-component of X1.

Then X1 only consists of the double component x′
i0−1, the upper nick letter xi0 and

the double component x′
i0+1: a1 = i0 − 1 and a2 = i0 + 1. When we remove x′

i0
, we
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α1 α2 α3 α4 α5
α6

α7 α8 α9 α10 α11 α12 α13 α14 α15
α16

︷ ︸︸ ︷ ︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸

Figure 6.4: The result of applying ν+ to the formal DNA molecule X from Figure 6.2.
The primitive ↑-blocks and primitive ↓-blocks of ν+(X) are also indicated.

lose the primitive ↓-block X1. By Lemma 6.7(3), the other primitive ↓-blocks of X
(if any) are separated from X1 by at least one ↑-component. They are not affected
by the removal of x′

i0
, hence B↓(X

′) = B↓(X)− 1.

For the effect on B↑(X), we distinguish a number of subcases. If X1 is both preceded
and succeeded in X by a primitive ↑-block (hence a1 ≥ 2 and a2 ≤ k−1), then these
two blocks merge into one when the upper nick letter x′

i0
separating them is removed

(see Figure 6.3(b)). The other primitive ↑-blocks of X (if any) are not affected. In
this case, B↑(X

′) = B↑(X)− 1.

If, on the other hand, X1 is the first primitive block of X and is succeeded in X
by a primitive ↑-block (a1 = 1 and a2 ≤ k − 1), then the effect of the removal
of x′

i0
is smaller: the first component of the succeeding primitive ↑-block, which

used to be the double component x′
a2
, is replaced by the double component x′

a1
x′
a2

(see Figure 6.3(c)). The number of primitive ↑-blocks remains the same: B↑(X
′) =

B↑(X). This is also the case if X1 is preceded but not succeeded in X by a primitive
↑-block (a1 ≥ 2 and a2 = k) and if X1 is the only primitive block of X (a1 = 1
and a2 = k). Note that in the last case, k = 3, B↑(X

′) = B↑(X) = 0, B↓(X) = 1,
B↓(X

′) = 0 and the resulting formal DNA molecule X ′ consists only of the double
component x′

1x
′
3.

In all cases we considered, B↑(X
′) and B↓(X

′) satisfy the inequalities in Claims 1–4.

We now examine the effects of removing all upper nick letters, by means of the function
ν+. We first consider an example.

Example 6.15 In Figure 6.4, we have depicted ν+(X) for the formal DNA molecule X
from Figure 6.2. As we have established before,

B↑(X) = 3, B↓(X) = 4 and nl(X) = 10.

After the removal of the #▽(X) = 4 upper nick letters, the numbers are

B↑(ν
+(X)) = 2, B↓(ν

+(X)) = 2 and nl(ν
+(X)) = 6.

We use Lemma 6.14 to determine (upper bounds and lower bounds on) the effects of the
function ν+ on the counting numbers for arbitrary formal DNA molecules.

Lemma 6.16 Let X be a formal DNA molecule. Then ν+(X) is a formal DNA molecule
and

1. B↑(ν
+(X)) ≤ B↑(X),
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2. B↑(ν
+(X)) ≥ B↑(X)−#▽(X),

3. B↓(ν
+(X)) ≤ B↓(X),

4. B↓(ν
+(X)) ≥ B↓(X)−#▽(X) and

5. nl(ν
+(X)) = nl(X)−#▽(X).

Proof: Already at the definition of the function ν+, we observed that for each formal
DNA molecule X, also ν+(X) is a formal DNA molecule.

When we apply ν+ to X, we remove all upper nick letters occurring in X at once.
We may, however, also remove the upper nick letters one by one. In whatever order we
remove the upper nick letters, the final result is the same: ν+(X). At each of the #▽(X)
removals, we can apply Lemma 6.14. Now, each of the claims follows from the repeated
application of the corresponding claim from Lemma 6.14.

By the above result (and the analogue for ν−(X)), we can derive invariants for the
functions ν+, ν− and ν: the function nl(·)−#▽(·) is an invariant for the function ν+, the
function nl(·)−#

△
(·) is an invariant for the function ν−, and the function nl(·)−#▽,△(·)

is an invariant for the function ν:

Corollary 6.17 Let X be a formal DNA molecule.

1. nl(ν
+(X))−#▽(ν

+(X)) = nl(X)−#▽(X)

2. nl(ν
−(X))−#

△
(ν−(X)) = nl(X)−#

△
(X)

3. nl(ν(X))−#▽,△(ν(X)) = nl(X)−#▽,△(X)

Proof: By the definition of the function ν+, #▽(ν
+(X)) = 0 and #

△
(ν+(X)) = #

△
(X).

Now, Claim 1 follows immediately from Lemma 6.16(5) Then by analogy, we also have
Claim 2. Finally, Claim 3 follows from the other two, because the function ν is the
composition of ν+ and ν−:

nl(ν(X))−#▽,△(ν(X))

= nl(ν
+(ν−(X)))−#▽(ν

+(ν−(X)))−#
△
(ν+(ν−(X)))

= nl(ν
−(X))−#▽(ν

−(X))−#
△
(ν−(X))

= nl(X)−#▽(X)−#
△
(X)

= nl(X)−#▽,△(X).

Instead of ν+ or ν−, which remove nick letters from their arguments, we may apply
κ to a formal DNA molecule. This function complements all single-stranded components
of its argument, i.e., it substitutes them by the corresponding double A-words1. In some
sense, we can also regard this as ‘removing’ non-double components.

We will formulate inequalities for the values of the three counting functions after the
application of κ. As we did with the removal of nick letters, we first examine the effects
of the complementation of one single-stranded component, in particular of a lower com-
ponent. For the complementation of an upper component, we have, of course, analogous
(in fact: equal) inequalities.

1We do not say double components , because in general the corresponding double A-words are not
components of the resulting formal DNA molecule.
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Lemma 6.18 Let X be a formal DNA molecule containing at least one lower component,
and let X ′ be the string that results from X by complementing one lower component of X.
Then X ′ is a formal DNA molecule and

1. B↑(X
′) ≤ B↑(X),

2. B↑(X
′) ≥ B↑(X)− 1,

3. B↓(X
′) ≤ B↓(X),

4. B↓(X
′) ≥ B↓(X)− 1.

5. nl(X
′) ≤ nl(X) + 1 and

6. nl(X
′) ≥ nl(X)− 1.

Proof: Let
( −
c(α1)

)
for an N -word α1 be the lower component that is complemented.

The main difference between Claims 1–4 of this result and Lemma 6.14(1)–(4) is that

the ↓-component
( −
c(α1)

)
which is ‘removed’ here is not necessarily preceded and succeeded

in X by a double component. It may also be the first and/or the last component of X.
This does, however, not change the structure of the proof. We distinguish the same cases
and in each of the cases we have the same effect on B↑(X) and B↓(X) as in the proof

of Lemma 6.14. For example, let X1 be the primitive ↓-block of
( −
c(α1)

)
. If the lower

component
( −
c(α1)

)
is preceded in X by a double component

(
α0

c(α0)

)
and succeeded in X

by a double component
(

α2

c(α2)

)
, then we obtain one double component

(
α0α1α2

c(α0α1α2)

)
when

we replace
( −
c(α1)

)
by the corresponding double A-word. This may or may not affect

B↑(X) and B↓(X), depending on whether or not X1 contains other ↓-components, and on
whether or not X1 is preceded and/or succeeded in X by a primitive ↑-block.

We turn to Claims 5 and 6, where we consider nl(X
′). If

( −
c(α1)

)
is the only component

of X, hence if X =
( −
c(α1)

)
, then X ′ =

(
α1

c(α1)

)
, nl(X) = 0 and nl(X

′) = 1.

Now, assume that
( −
c(α1)

)
is not the only component of X. If it is the first component,

then by Lemma 3.7, it is succeeded in X by a double component. This double component

is extended to the left by
(

α1

c(α1)

)
when we complement our lower component. Because

the other double components of X are not affected, the number of double components

remains the same: nl(X
′) = nl(X). Analogously, if

( −
c(α1)

)
is the last component of

X, then nl(X
′) = nl(X). Finally, if

( −
c(α1)

)
is neither the first component, nor the last

component of X, then it is both preceded and succeeded in X by a double component.

These two double components merge into one when we complement
( −
c(α1)

)
. Hence, we

lose one double component: nl(X
′) = nl(X)− 1.

We can thus conclude that

nl(X
′) = nl(X) + bf + bl − 1, (6.1)

where

bf =

{
1 if

( −
c(α1)

)
is the first component of X

0 otherwise
and
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bl =

{
1 if

( −
c(α1)

)
is the last component of X

0 otherwise.

Indeed, nl(X
′) satisfies the inequalities in Claims 5 and 6.

When we apply the function κ to a formal DNA molecule X, all single-stranded com-
ponents of X are complemented. The new values for the counting functions can be related
to the old ones, as follows:

Lemma 6.19 Let X be a formal DNA molecule, and let r ≥ 0 be the number of single-
stranded components of X. Then κ(X) is a formal DNA molecule and

1. B↑(κ(X)) ≤ B↑(X),

2. B↑(κ(X)) ≥ B↑(X)− r,

3. B↓(κ(X)) ≤ B↓(X),

4. B↓(κ(X)) ≥ B↓(X)− r,

5. nl(κ(X)) ≤ nl(X) + 2− r,

6. nl(κ(X)) ≤ nl(X) + 1 and

7. nl(κ(X)) ≥ nl(X)− r.

One might think that Claim 6 does not add much to Claim 5. Only for the case that r = 0,
it is (slightly) stronger than Claim 5. Sometimes, however, it is useful to have an upper
bound on nl(κ(X)) that does not depend on the number of single-stranded components
of X.

Proof: Already at the definition of the function κ, we observed that for each formal DNA
molecule X, also κ(X) is a formal DNA molecule.

When we complement the r single-stranded components of X one by one, we obtain
κ(X) (cf. the proof of Lemma 6.16). At each of these steps, we can apply Lemma 6.18 (or
the analogue for upper components). Now, each of Claims 1–4 is the result of the repeated
application of the corresponding claim from Lemma 6.18. Likewise, Claim 7 follows from
Lemma 6.18(6).

5. When we complement one single-stranded component of X, this does not affect the
position of the remaining r − 1 single-stranded components. That is, let x′

i0
be one

of these remaining single-stranded components. Then x′
i0
is the first component of

X, if and only if it is the first component of the resulting formal DNA molecule X ′.
Analogously, x′

i0
is the last component of X, if and only if it is the last component

of X ′.

Hence, when we successively complement all single-stranded components of X, there
will be at most one for which the variable bf from (6.1) is 1, and there will be at
most one for which the variable bl is 1. Then the total contribution of all variables
bf and bl is at most 2, which proves the claim.
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X:
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c(α8)
α9 α10 α11 α12 α13 α14 α15 α16 α17

▽ ▽

△ △ △

▽ ▽ ▽

︸ ︷︷ ︸

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷

︸ ︷︷ ︸ (a)

κ(X):
α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15 α16 α17

▽ ▽

△ △ △

▽ ▽ ▽

︸ ︷︷ ︸

︷ ︸︸ ︷

︸ ︷︷ ︸ (b)

Figure 6.5: The formal DNA molecule from Example 6.20, which achieves the lower
bounds from Lemma 6.19(2) and (4). (a) The original formal DNA molecule X, with four
single-stranded components, B↑(X) = 5 and B↓(X) = 6. (b) κ(X), with B↑(κ(X)) = 1
and B↓(κ(X)) = 2.

6. We may regard this claim as a corollary to the previous claim, when we separately
observe that it holds trivially for the case that X does not have any single-stranded
component (i.e., that κ(X) = X). We may also prove it as follows:

The function κ neither introduces, nor removes nick letters. In particular, it does
not change the number of nick letters in the formal DNA molecule X: #▽,△(κ(X)) =

#▽,△(X). When we combine this with Lemma 6.12(3) and (5), we obtain

nl(κ(X)) = #▽,△(κ(X)) + 1 = #▽,△(X) + 1 ≤ nl(X) + 1.

As an aside, we investigate which formal DNA molecules achieve the lower bounds
for B↑(κ(X)) and B↓(κ(X)) from Lemma 6.19(2) and (4). Intuitively, whenever we com-
plement an upper component in such a molecule, the corresponding primitive ↑-block
disappears and there are a preceding and a succeeding primitive ↓-block that merge into
one. The complementation of a lower component has analogous effects.

We first consider an example.

Example 6.20 The formal DNA molecule depicted in Figure 6.5 has r = 4 single-
stranded components. After application of the function κ, both the number of primitive
↑-blocks and the number of primitive ↓-blocks have decreased by 4. Note that in the
original molecule each upper component is ‘enclosed’ by two upper nick letters, and the
(only) lower component is ‘enclosed’ by two lower nick letters.

In two steps, we will derive a formal characterization of (arbitrary) formal DNA molecules
that achieve the two lower bounds. Some of the arguments we use in the proofs, in fact
also underlay Lemma 6.18(1)–(4). Because we did not give a detailed proof of those
claims, it does not suffice here to simply refer to their proof. Therefore, we work out the
argumentation completely.

Lemma 6.21 Let X be a formal DNA molecule. If X contains

• either a lower component that is not the only ↓-component of its primitive ↓-block,

• or an upper component that is not the only ↑-component of its primitive ↑-block
(or both), then X achieves neither of the lower bounds from Lemma 6.19(2) and Lemma
6.19(4).
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X:
α1 α2 α3

c(α4)
α5 α6

△ △

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷

(a)
κ(X):

α1 α2 α3 α4 α5 α6

△ △

︷ ︸︸ ︷

(b)

Figure 6.6: The formal DNA molecule from Example 6.22, which does not achieve the
lower bounds from Lemma 6.19(2) and (4), see Lemma 6.21. (a) The original formal
DNA molecule X, with two single-stranded components, B↑(X) = 2 and B↓(X) = 1. The
upper component is not the only ↑-component of its primitive ↑-block. (b) κ(X), with
B↑(κ(X)) = 1 and B↓(κ(X)) = 0.

Example 6.22 Consider the formal DNA molecule X depicted in Figure 6.6(a), which
has r = 2 single-stranded components: an upper component and a lower component.
The upper component is not the only ↑-component in its primitive ↑-block. Indeed,
B↑(κ(X)) = 1 > 2− 2 = B↑(X)− r and B↓(κ(X)) = 0 > 1− 2 = B↓(X)− r.

Proof of Lemma 6.21: Let x′
1 . . . x

′
k for some k ≥ 1 be the decomposition of X. Assume

that x′
i0
with 1 ≤ i0 ≤ k is a lower component of X which is not the only ↓-component of

its primitive ↓-block X1.
Let X ′ be the formal DNA molecule that results when we complement x′

i0
, and let X ′

1

be the substring of X ′ that corresponds to X1. By Lemma 3.7, we must have k ≥ 3 and x′
i0

is preceded and/or succeeded inX by a double component. By the definition of a primitive
↓-block, these components are parts of X1. Consequently, when we complement x′

i0
, the

resulting (extended) double component is part of X ′
1. Because the other components of

X are not affected by the complementation, X ′
1 is a sequence of components of X ′.

Because x′
i0

is not the only ↓-component of X1, there is at least one ↓-component
left in X ′

1. It is easy to verify that X ′
1 also satisfies the other conditions of a primitive

↓-block. Hence, one primitive ↓-block (X1) has been replaced by another (X ′
1). Moreover,

as in the proof of Lemma 6.14, the other primitive blocks of X (if any) are not affected,
possibly apart from an extension of a double component. In particular, the number of
primitive ↑-blocks and the number of primitive ↓-blocks are unchanged: B↑(X

′) = B↑(X)
and B↓(X

′) = B↓(X).
Let us use r to denote the number of single-stranded components of X. Clearly, r ≥ 1,

the number of single-stranded components of X ′ is r − 1 and κ(X) = κ(X ′). When we
apply Lemma 6.19(2) and (4) to X ′, we obtain:

B↑(κ(X)) = B↑(κ(X
′)) ≥ B↑(X

′)− (r − 1) = B↑(X)− (r − 1) and

B↓(κ(X)) = B↓(κ(X
′)) ≥ B↓(X

′)− (r − 1) = B↓(X)− (r − 1).

Hence, X achieves neither of the lower bounds from Lemma 6.19(2) and (4).
The proof for the case that X contains an upper component that is not the only

↑-component of its primitive ↑-block, is analogous.

Lemma 6.23 Let X be a formal DNA molecule and let x′
1 . . . x

′
k for some k ≥ 1 be the

decomposition of X.

1. X achieves the lower bound from Lemma 6.19(2), if and only if

(a) for each lower component x′
i0
of X, 3 ≤ i0 ≤ k− 2 and both x′

i0−2 and x′
i0+2 are

lower nick letters, and
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X:
α1 α2 α3 α4

c(α5)
α6 α7

▽

△ △

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷

(a)
κ(X):

α1 α2 α3 α4 α5 α6 α7
▽

△ △︸ ︷︷ ︸

︷ ︸︸ ︷

(b)

Figure 6.7: The formal DNA molecule from Example 6.24, which achieves the lower
bound from Lemma 6.19(2), but does not achieve the lower bound from Lemma 6.19(4).
(a) The original formal DNA molecule X, with two single-stranded components, B↑(X) =
3 and B↓(X) = 2. The upper component is not enclosed by two upper nick letters. (b)
κ(X), with B↑(κ(X)) = 1 and B↓(κ(X)) = 1.

(b) for each upper component x′
i0
of X,

• if i0 ≥ 3, then x′
i0−2 is an upper nick letter, and

• if i0 ≤ k − 2, then x′
i0+2 is an upper nick letter.

2. X achieves the lower bound from Lemma 6.19(4), if and only if

(a) for each upper component x′
i0

of X, 3 ≤ i0 ≤ k − 2 and both x′
i0−2 and x′

i0+2

are upper nick letters, and

(b) for each lower component x′
i0
of X,

• if i0 ≥ 3, then x′
i0−2 is a lower nick letter, and

• if i0 ≤ k − 2, then x′
i0+2 is a lower nick letter.

3. X achieves the lower bounds from both Lemma 6.19(2) and Lemma 6.19(4), if and
only if

(a) for each lower component x′
i0
of X, 3 ≤ i0 ≤ k− 2 and both x′

i0−2 and x′
i0+2 are

lower nick letters, and

(b) for each upper component x′
i0

of X, 3 ≤ i0 ≤ k − 2 and both x′
i0−2 and x′

i0+2

are upper nick letters.

Note that, if x′
i0

with i0 ≥ 3 is a single-stranded component and x′
i0−2 is a nick letter,

then in fact i0 ≥ 4, because (the formal DNA molecule) X cannot start with a nick letter.
Analogously, if x′

i0
with i0 ≤ k − 2 is a single-stranded component and x′

i0+2 is a nick
letter, then in fact i0 ≤ k − 3.

Example 6.24 The formal DNA molecule X depicted in Figure 6.7(a) has r = 2 single-
stranded components: an upper component and a lower component. The lower component
is enclosed by two lower nick letters, but the upper component is not preceded by an upper
nick letter. Figure 6.7(b) shows κ(X). We have B↑(κ(X)) = 1 = 3− 2 = B↑(X)− r and
B↓(κ(X)) = 1 > 2− 2 = B↓(X)− r.

Proof: Recall that if X is not double-complete, then by Lemma 6.9(1), X can be con-
sidered as an alternating sequence of all its primitive ↑-blocks and all its primitive ↓-blocks.

1. =⇒ Assume that X does not satisfy Condition 1a or Condition 1b (or both). There
is at least one single-stranded component that is responsible for the violation of the
condition concerned. Let r ≥ 1 be the number of single-stranded components of X.

First, we assume that X does not satisfy Condition 1a. Then X has a lower com-
ponent x′

i0
, such that
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• either i0 ≤ 2,

• or i0 ≥ k − 1,

• or 3 ≤ i0 ≤ k − 2 and either x′
i0−2 or x′

i0+2 (or both) is not a lower nick letter.

Let X1 be the primitive ↓-block of x′
i0
. We consider several cases:

• If x′
i0

is not the only ↓-component of X1, then by Lemma 6.21, X does not
achieve the lower bound from Lemma 6.19(2).

• If B↑(X) = 0, i.e., if X does not have any primitive ↑-block, then B↑(X)− r ≤
−1 and X certainly does not achieve the lower bound from Lemma 6.19(2).

• Now assume that x′
i0
is the only ↓-component of X1 and that B↑(X) > 0. Let

X ′ be the formal DNA molecule that we obtain from X when we complement
x′
i0
. Clearly, the number of single-stranded components of X ′ is r − 1, and

κ(X) = κ(X ′).

If i0 ≤ 2, then x′
i0
is the first non-double component of X. Because, by defin-

ition, each primitive ↑-block contains at least one ↑-component, the primit-
ive ↓-block X1 is not preceded in X by a primitive ↑-block. By assumption,
B↑(X) > 0. Hence, X1 must be succeeded by a primitive ↑-block X2, which
starts with the double component x′

i0+1. When we complement the lower com-
ponent x′

i0
, we lose the primitive ↓-block X1, and the first (double) component

of the primitive ↑-block X2 is simply extended to the left. The number of
primitive ↑-blocks remains the same: B↑(X

′) = B↑(X). Now, when we apply
Lemma 6.19(2) to X ′, we find:

B↑(κ(X)) = B↑(κ(X
′)) ≥ B↑(X

′)− (r − 1) = B↑(X)− (r − 1).

In this case, X does not achieve the lower bound from Lemma 6.19(2).

If i0 ≥ k − 1, then in a completely analogous way, we come to the same
conclusion.

Finally, we assume that 3 ≤ i0 ≤ k − 2. Then either x′
i0−2 or x′

i0+2 (or both) is
not a lower nick letter. Without loss of generality, assume that the component
x′
i0−2 is not a lower nick letter. By Lemma 3.7, both x′

i0−1 and x′
i0+1 are

double components of X. Because x′
i0

is the only ↓-component of X1, X1 =
x′
i0−1x

′
i0
x′
i0+1, and both x′

i0−2 and x′
i0+2 are ↑-components. Now, x′

i0−2 must be
an upper component, which is part of a primitive ↑-block X0, ending with the
double component x′

i0−1. X1 is succeeded in X by a primitive ↑-block X2, which
starts with the double component x′

i0+1. The existence of the upper component
x′
i0−2 implies that r ≥ 2.

When we complement the lower component x′
i0
, we obtain an extended double

component x′
i0−1κ(x

′
i0
)x′

i0+1. Thus, we lose the primitive ↓-block X1, and the
two primitive ↑-blocks X0 and X2 form one ‘large’ primitive ↑-block X ′

02 of the
resulting formal DNA molecule X ′. Hence, B↑(X

′) = B↑(X) − 1. We now
consider the upper component x′

i0−2 of X ′. Its primitive ↑-block X ′
02 in X ′

contains at least one more ↑-component, viz x′
i0+2. By Lemma 6.21, X ′ does

not achieve the lower bound from Lemma 6.19(2):

B↑(κ(X
′)) ≥ B↑(X

′)− (r − 1) + 1.
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Consequently,

B↑(κ(X)) = B↑(κ(X
′)) ≥ B↑(X

′)− (r − 1) + 1 = B↑(X)− (r − 1).

We conclude that also in this case, X does not achieve the lower bound from
Lemma 6.19(2).

Now, we assume that X does satisfy Condition 1a and hence does not satisfy Con-
dition 1b. Then X has an upper component x′

i0
, such that either i0 ≥ 3 and x′

i0−2 is
not an upper nick letter, or i0 ≤ k−2 and x′

i0+2 is not an upper nick letter. Without
loss of generality, we assume that i0 ≥ 3 and x′

i0−2 is not an upper nick letter. Let
X1 be the primitive ↑-block that x′

i0
is part of.

Because X satisfies Condition 1a and x′
i0

is not a lower nick letter, x′
i0−2 cannot

be a lower component. Hence, it must be either an upper component or a lower
nick letter. In both cases, it is an ↑-component of X, which implies that x′

i0
is not

the only ↑-component of X1. Again by Lemma 6.21, X does not achieve the lower
bound from Lemma 6.19(2).

⇐= By induction on the number r of single-stranded components of X.

• If r = 0, then X trivially satisfies Conditions 1a and 1b from the claim. On
the other hand, in this case, the function κ has no effect on X: κ(X) = X.
Hence, X also trivially achieves the lower bound from Lemma 6.19(2):

B↑(κ(X)) = B↑(X) = B↑(X)− r.

• Let r ≥ 0, and suppose that the lower bound is achieved by each formal DNA
molecule satisfying Conditions 1a and 1b and containing r single-stranded com-
ponents (induction hypothesis). Now let X be a formal DNA molecule that
satisfies the two conditions and contains r + 1 single-stranded components.

Let x′
i0
with 1 ≤ i0 ≤ k be an arbitrary single-stranded component of X, and

let X ′ be the formal DNA molecule that results after complementing x′
i0
. We

prove that B↑(X
′) = B↑(X)− 1.

First, we assume that x′
i0

is a lower component. By Condition 1a, 3 ≤ i0 ≤
k − 2 and x′

i0−2 and x′
i0+2 are lower nick letters, i.e., ↑-components. As before,

both x′
i0−1 and x′

i0+1 are double components of X, and the primitive ↓-block
containing x′

i0
is X1 = x′

i0−1x
′
i0
x′
i0+1.

In X ′, the primitive ↓-block X1 has been replaced by the double component
x′
i0−1κ(x

′
i0
)x′

i0+1. Further, the two primitive ↑-blocks containing the lower nick
letters x′

i0−2 and x′
i0+2, respectively, have merged into one. Consequently, in

this case, B↑(X
′) = B↑(X)− 1.

Now, we assume that x′
i0

is an upper component. Let X1 be the primitive
↑-block of x′

i0
. By Condition 1b, either i0 ≤ 2, or i0 ≥ 3 and x′

i0−2 is an upper
nick letter. In both cases, x′

i0
is the first ↑-component of X1. In an analogous

way, we can find that x′
i0

is the last, and thus the only ↑-component of X1.
Besides x′

i0
, X1 may only contain one or two double components.

When we complement x′
i0
, the primitive ↑-block X1 turns into a double com-

ponent of X ′. Other primitive ↑-blocks of X are not affected by the comple-
mentation. Also in this case, B↑(X

′) = B↑(X)− 1.
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Before we can apply the induction hypothesis to X ′, we must verify that it sat-
isfies Conditions 1a and 1b. For that purpose, we examine the single-stranded
components of X ′. Obviously, these are the single-stranded components of X
different from x′

i0
. We no longer assume that x′

i0
is a lower component of X or

that it is an upper component of X. It may be either of the two.

Let x′
i1

with 3 ≤ i1 ≤ k − 2 and i1 6= i0 be an arbitrary lower component of
X different from x′

i0
. By assumption, x′

i1−2 and x′
i1+2 are lower nick letters.

Neither these lower nick letters, nor the double components x′
i1−1 and x′

i1+1

or the lower component x′
i1

itself are affected by the complementation of x′
i0
.

They occur in X ′ like they do in X. Hence, X ′ satisfies Condition 1a.

Now, let x′
i1
with 1 ≤ i1 ≤ k and i1 6= i0 be an arbitrary upper component of

X different from x′
i0
. This upper component also occurs in X ′. If i1 ≥ 3, then

x′
i1−1 is a double component and by assumption, x′

i1−2 is an upper nick letter.
These components are not affected when we complement x′

i0
. Analogously, if

i1 ≤ k−2, then the double component x′
i1+1 and the upper nick letter x′

i1+2 are
not affected. Obviously, the complementation does not introduce components
before x′

1 (relevant if i1 ≤ 2) or after x′
k (relevant if i1 ≥ k − 1). Hence, X ′

satisfies Condition 1b, just like X.

Because X ′ has r single-stranded components, we can apply the induction
hypothesis to it. When we observe that κ(X) = κ(X ′), we find

B↑(κ(X)) = B↑(κ(X
′)) = B↑(X

′)− r = B↑(X)− (r + 1).

We conclude that X achieves the lower bound from Lemma 6.19(2).

2. The proof of this claim is analogous to that of the previous claim.

3. The condition on the lower components from Claim 1 implies the condition on the
lower components from Claim 2, and conversely for the conditions on the upper
components. Hence, Conditions 1a, 1b, 2a and 2b (together) are equivalent to
Conditions 1a and 2a (together), which are equal to Conditions 3a and 3b. Now,
the claim follows immediately from the other two claims.

We can now conclude that many formal DNA molecules that achieve either of the
lower bounds from Lemma 6.19(2) and (4) are not expressible:

Corollary 6.25 Let X be a formal DNA molecule containing at least one upper com-
ponent and at least one lower component. If X achieves either the lower bound from
Lemma 6.19(2), or the one from Lemma 6.19(4) (or both), then X is not expressible.

Proof: Let x′
1 . . . x

′
k for some k ≥ 1 be the decomposition of X. Assume that X

achieves the lower bound from Lemma 6.19(2). Then X satisfies the two conditions in
Lemma 6.23(1).

Because X contains at least one lower component, by Condition 1a, it also contains
at least two lower nick letters. Let x′

i0
with 1 ≤ i0 ≤ k be an upper component of X. By

Lemma 3.7, double components and non-double components alternate in X. Because X
also contains a lower component (and two lower nick letters), we must have either i0 ≥ 3
or i0 ≤ k− 2 (or both). Then by Condition 1b, X contains at least one upper nick letter.
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By Theorem 5.4, formal DNA molecules containing nick letters in both strands are not
expressible.

The proof for the case that X achieves the lower bound from Lemma 6.19(4) is ana-
logous.

This concludes the aside that we started after the proof of Lemma 6.19, i.e., the analysis
of formal DNA molecules that achieve the lower bounds from Lemma 6.19(2) and (4).

6.3 Lower bounds for the length of a DNA expression

In the previous section, we have analysed the values of the counting functions B↑, B↓ and
nl for arbitrary formal DNA molecules. We now study these values for molecules denoted
by DNA expressions. The results are useful to determine lower bounds for the length of
a DNA expression.

We first examine ↑-expressions with (exactly) two arguments. Using induction, we
will later extend the results to ↑-expressions with an arbitrary number of arguments. Of
course, we can find analogous results for ↓-expressions.

Recall that the effect of the operator ↑ is threefold: (1) it produces upper A-words
corresponding to arguments that are N -words, (2) it removes nick letters from the upper
strands of its arguments, and (3) it connects the upper strands of consecutive arguments.
When we examine the effect of ↑ on the values of the counting functions, we must take
into account the contributions of each of these three aspects.

The values of the counting functions for upper A-words are independent of the A-
word at hand and follow immediately from the definitions. In Lemma 6.16, we already
considered the effects on the counting numbers of removing the upper nick letters from a
(single) formal DNA molecule. Now, we will in particular study the effects of connecting
the upper strands of the formal DNA molecules corresponding to the (two) arguments of
an ↑-expression.

Lemma 6.26 Let E = 〈↑ ε1ε2〉 be an ↑-expression, where ε1 and ε2 are N -words or DNA
expressions. Further, let X1 = S+(ε1), X2 = S+(ε2) and

X = S(E) = ν+(X1)y1ν
+(X2),

where y1 = △ if both R(X1) ∈ A± and L(X2) ∈ A±, and y1 = λ otherwise (as in
Definition 4.1).

1. B↑(X) ≤ B↑(ν
+(X1)) + B↑(ν

+(X2)) + |y1|.

2. B↑(X) ≥ B↑(ν
+(X1)) + B↑(ν

+(X2))− 1.

3. B↓(X) = B↓(ν
+(X1)) + B↓(ν

+(X2)).

4. nl(X) = nl(ν
+(X1)) + nl(ν

+(X2)).

Note that |y1| = 1 if y1 = △, and |y1| = 0 if y1 = λ.

Proof: We first make a remark on the ↓-components of the formal DNA molecules we
consider. Because the function ν+ removes the upper nick letters from its argument, each
↓-component of ν+(X1) and ν+(X2) (and thus of X) is in fact a lower component. For the
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consistency of the terminology, we will, however, use the term ↓-component throughout
the proof.

Recall again that if a formal DNA molecule is not double-complete, then by
Lemma 6.9(1), it can be considered as an alternating sequence of all its primitive ↑-blocks
and all its primitive ↓-blocks.

X is simply the concatenation of ν+(X1) and ν+(X2), possibly separated by a lower
nick letter y1. Clearly, none of the primitive ↑-blocks, primitive ↓-blocks and double
components present in ν+(X1) or ν

+(X2) is split up by this concatenation. We may have
some effects, however, on the blocks and components at the border between ν+(X1) and
ν+(X2).

By definition, X1 and X2 fit together by upper strands. Hence, both R(X1) ∈ A±∪A+

and L(X2) ∈ A±∪A+. Because, by Lemma 3.11, R(ν+(X1)) = R(X1), the last component
of ν+(X1) is either a double component or an upper component. Analogously, the first
component of ν+(X2) is either a double component or an upper component.

Now assume that ν+(X1) is not double-complete and ends with a primitive ↓-block.
Then by Lemma 6.9(2b), the last non-double component of ν+(X1) is a ↓-component.
This implies that the last component of ν+(X1) cannot be an upper component; it must
be a double component.

Analogously, if ν+(X2) is not double-complete and starts with a primitive ↓-block,
then the first component of ν+(X2) is a double component.

1, 2. We distinguish three cases:

• If ν+(X1) does not end with a primitive ↑-block, then either ν+(X1) is double-
complete, or it ends with a primitive ↓-block. In both cases, the last component
of ν+(X1) is a double component x′

1. If, in addition, ν+(X2) does not start with a
primitive ↑-block, then, analogously, its first component is a double component x′

2.
Consequently, R(X1) ∈ A± and L(X2) ∈ A± and y1 = △. This lower nick letter is
part of a primitive ↑-block X12 of X, which also contains the double components x′

1

(from ν+(X1)) and x′
2 (from ν+(X2)).

Each ↑-component of ν+(X1) (if any) is separated from y1 in X by at least one
↓-component. Otherwise, the last non-double component of ν+(X1) would be an
↑-component and, by Lemma 6.9(2b), ν+(X1) would end with a primitive ↑-block.
Analogously, each ↑-component of ν+(X2) (if any) is separated from y1 in X by at
least one ↓-component. Consequently, all primitive ↑-blocks of ν+(X1) and ν+(X2)
are also primitive ↑-blocks of X, and X12 = x′

1y1x
′
2 is an additional primitive ↑-block:

B↑(X) = B↑(ν
+(X1)) + B↑(ν

+(X2)) + 1.

• If ν+(X1) does not end with a primitive ↑-block, then, as before, its last component
is a double component x′

1. Either this component is the only component of ν+(X1)
(if ν+(X1) is double-complete), or it is preceded in ν+(X1) by a ↓-component (if
ν+(X1) ends with a primitive ↓-block). Now, if ν+(X2) is not double-complete and
starts with a primitive ↑-block, then in X, this primitive ↑-block is extended to the
left by x′

1 and possibly a lower nick letter y1. Whether y1 = △ or y1 = λ depends
on the first component of ν+(X2). It is, however, not important for the number
of primitive ↑-blocks. The primitive ↑-blocks of ν+(X1) and the other primitive
↑-blocks of ν+(X2) simply reappear as primitive ↑-blocks of X. Hence,

B↑(X) = B↑(ν
+(X1)) + B↑(ν

+(X2)).
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end ν+(X1) start ν+(X2) y1 B↑(X)

double-complete double-complete △ B↑(ν
+(X1)) +B↑(ν

+(X2)) + 1 = 1
double-complete prim. ↓-block △ B↑(ν

+(X1)) +B↑(ν
+(X2)) + 1 = B↑(ν

+(X2)) + 1
double-complete prim. ↑-block △ / λ B↑(ν

+(X1)) +B↑(ν
+(X2)) = B↑(ν

+(X2))
prim. ↓-block double-complete △ B↑(ν

+(X1)) +B↑(ν
+(X2)) + 1 = B↑(ν

+(X1)) + 1
prim. ↓-block prim. ↓-block △ B↑(ν

+(X1)) +B↑(ν
+(X2)) + 1

prim. ↓-block prim. ↑-block △ / λ B↑(ν
+(X1)) +B↑(ν

+(X2))
prim. ↑-block double-complete △ / λ B↑(ν

+(X1)) +B↑(ν
+(X2)) = B↑(ν

+(X1))
prim. ↑-block prim. ↓-block △ / λ B↑(ν

+(X1)) +B↑(ν
+(X2))

prim. ↑-block prim. ↑-block △ / λ B↑(ν
+(X1)) +B↑(ν

+(X2))− 1

Table 6.1: Number of primitive ↑-blocks of a formal DNA molecule X = S(〈↑ ε1ε2〉) =
ν+(X1)y1ν

+(X2) for all possible combinations of ν+(X1) and ν+(X2). The formal DNA
molecule ν+(X1) either is double-complete, or ends with a primitive ↓-block or a primitive
↑-block. Similarly, ν+(X2) either is double-complete, or starts with a primitive ↓-block or
a primitive ↑-block (see the proof of Lemma 6.26(1) and (2)).

We obtain, of course, the same equality, if ν+(X1) ends with a primitive ↑-block and
ν+(X2) does not start with a primitive ↑-block.
• If both ν+(X1) ends with a primitive ↑-block and ν+(X2) starts with a primitive
↑-block, then these two primitive ↑-blocks form one primitive ↑-block in X. Again,
it does not matter if y1 = △ or y1 = λ. A lower nick letter, which is an ↑-component,
would fit perfectly into the combined primitive ↑-block. The other primitive ↑-blocks
of ν+(X1) and ν+(X2) are not affected. In this case, we lose one primitive ↑-block:

B↑(X) = B↑(ν
+(X1)) + B↑(ν

+(X2))− 1.

We have summarized the possibilities in Table 6.1. In all cases, B↑(X) satisfies the
inequalities in Claims 1 and 2.

3. In principle, the concatenation of two formal DNA molecules may cause a decrease
of the total number of primitive ↓-blocks. When we concatenate a formal DNA
molecule ending with a primitive ↓-block and a formal DNA molecule starting with
a primitive ↓-block, these two primitive ↓-blocks merge into one.

However, if both ν+(X1) ends with a primitive ↓-block X11 and ν+(X2) starts with
a primitive ↓-block X21, then both the last double component of ν+(X1) and the
first double component of ν+(X2) are double components. Hence, R(X1) ∈ A± and
L(X2) ∈ A±. Then the primitive ↓-blocks X11 and X21 are separated in X by the
lower nick letter y1, which is an ↑-component. They do not merge into one and there
is a 1–1 correspondence between the primitive ↓-blocks of ν+(X1) and ν+(X2) and
the (same) primitive ↓-blocks of X:

B↓(X) = B↓(ν
+(X1)) + B↓(ν

+(X2)).

It is easily verified that this 1–1 correspondence certainly exists, if either ν+(X1)
does not end with a primitive ↓-block, or ν+(X2) does not start with a primitive
↓-block (or both).
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4. If both the last component of ν+(X1) and the first component of ν+(X2) are double
components, then R(X1) ∈ A± and L(X2) ∈ A±. By definition, the two double
components are separated in X by the lower nick letter y1. Hence, there is a 1–
1 correspondence between the double components of ν+(X1) and ν+(X2) and the
(same) double components of X:

nl(X) = nl(ν
+(X1)) + nl(ν

+(X2)).

It is easily verified that this 1–1 correspondence certainly exists, if either the last
component of ν+(X1), or the first component of ν+(X2) (or both) is not a double
component.

We now consider arbitrary DNA expressions.

Lemma 6.27 Let E be a DNA expression, and let X = S(E).

1. If E = 〈↑ ε1 . . . εn〉, where n ≥ 1 and the arguments ε1, . . . , εn are N -words and
DNA expressions, then let, for i = 1, . . . , n, Xi = S+(εi).

B↑(X) ≤ B↑(X1) + · · ·+ B↑(Xn) + #
△
(X)−#

△
(X1)− · · · −#

△
(Xn), (6.2)

B↑(X) ≥ B↑(X1) + · · ·+ B↑(Xn)− (n− 1)−#▽(X1)− · · · −#▽(Xn), (6.3)

B↓(X) ≤ B↓(X1) + · · ·+ B↓(Xn), (6.4)

B↓(X) ≥ B↓(X1) + · · ·+ B↓(Xn)−#▽(X1)− · · · −#▽(Xn) and (6.5)

nl(X) = nl(X1) + · · ·+ nl(Xn)−#▽(X1)− · · · −#▽(Xn). (6.6)

2. If E = 〈↓ ε1 . . . εn〉, where n ≥ 1 and the arguments ε1, . . . , εn are N -words and
DNA expressions, then let, for i = 1, . . . , n, Xi = S−(εi).

B↓(X) ≤ B↓(X1) + · · ·+ B↓(Xn) + #▽(X)−#▽(X1)− · · · −#▽(Xn),

B↓(X) ≥ B↓(X1) + · · ·+ B↓(Xn)− (n− 1)−#
△
(X1)− · · · −#

△
(Xn),

B↑(X) ≤ B↑(X1) + · · ·+ B↑(Xn),

B↑(X) ≥ B↑(X1) + · · ·+ B↑(Xn)−#
△
(X1)− · · · −#

△
(Xn) and

nl(X) = nl(X1) + · · ·+ nl(Xn)−#
△
(X1)− · · · −#

△
(Xn).

3. If E = 〈l E1〉 for a DNA expression E1, then let X1 = S(E1) and let r ≥ 0 be the
number of single-stranded components of X1.

B↑(X) ≤ B↑(X1), (6.7)

B↑(X) ≥ B↑(X1)− r, (6.8)

B↓(X) ≤ B↓(X1), (6.9)

B↓(X) ≥ B↓(X1)− r, (6.10)

nl(X) ≤ nl(X1) + 2− r, (6.11)

nl(X) ≤ nl(X1) + 1 and (6.12)

nl(X) ≥ nl(X1)− r. (6.13)
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▽
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▽

︸ ︷︷ ︸

︷ ︸︸ ︷

△

︷ ︸︸ ︷

△ △ △

︷ ︸︸ ︷

︸ ︷︷ ︸
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Figure 6.8: Pictorial representation of the ↑-expression E from Example 6.28, for which
the values of the three counting functions are calculated. The primitive ↑-blocks and the
primitive ↓-blocks of the formal DNA molecules involved are also indicated.

Example 6.28 As an illustration of Claim 1, consider

E = 〈↑ 〈↓ 〈l α1〉 〈↑ 〈l α2〉α3 〈l α4〉〉α5 〈l α6〉〉 〈↓ 〈l α7〉α8 〈l α9〉〉
〈↓ 〈l α10〉α11 〈l α12〉 〈↑ 〈l α13〉α14〉〉 〈↑ α15 〈l α16〉 〈l α17〉〉 〉 .

Here n = 4, the arguments ε1, . . . , ε4 have been indicated using additional white space,
and

X1 =
(

α1

c(α1)

)
▽
(

α2

c(α2)

)(
α3

−
)(

α4

c(α4)

)(−
α5

)(
α6

c(α6)

)
,

X2 =
(

α7

c(α7)

)(−
α8

)(
α9

c(α9)

)
,

X3 =
(

α10

c(α10)

)( −
α11

)(
α12

c(α12)

)
▽
(

α13

c(α13)

)(
α14

−
)
, and

X4 =
(
α15

−
)(

α16

c(α16)

)
△

(
α17

c(α17)

)
.

Then

X = S(E) =
(

α1α2

c(α1α2)

)(
α3

−
)(

α4

c(α4)

)(−
α5

)(
α6

c(α6)

)
△

(
α7

c(α7)

)(−
α8

)
·(

α9

c(α9)

)
△

(
α10

c(α10)

)( −
α11

)(
α12α13

c(α12α13)

)(
α14α15

−
)(

α16

c(α16)

)
△

(
α17

c(α17)

)

and

B↑(X) = 4 < (1 + 0 + 1 + 1) + 3− (0 + 0 + 0 + 1),

B↑(X) = 4 > (1 + 0 + 1 + 1)− 3− (1 + 0 + 1 + 0),

B↓(X) = 3 < 2 + 1 + 1 + 0,

B↓(X) = 3 > (2 + 1 + 1 + 0)− (1 + 0 + 1 + 0),

nl(X) = 9 = (4 + 2 + 3 + 2)− (1 + 0 + 1 + 0).

This example is depicted in Figure 6.8.

Note that for ↑-expressions as described in Claim 1, the inequality

B↑(X) ≤ B↑(X1) + · · ·+ B↑(Xn)

does not hold in general. Lower nick letters added between the arguments of ↑ may intro-
duce new primitive ↑-blocks. Indeed, for the ↑-expression we considered above, B↑(X) = 4,
whereas B↑(X1) + B↑(X2) + B↑(X3) + B↑(X4) = 3. The difference #

△
(X) − #

△
(X1) −

· · · −#
△
(Xn) in inequality (6.2) accounts for the lower nick letters added.

Note also that in Claim 3, we do not consider l-expressions of the form 〈l α1〉 for an
N -word α1. For such l-expressions, however, the values of B↑, B↓ and nl are trivial: if
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X = S(〈l α1〉) =
(

α1

c(α1)

)
, then B↑(X) = B↓(X) = 0 and nl(X) = 1.

Proof of Lemma 6.27:

1. Let E be an ↑-expression as described in the claim. We prove the five equations by
induction on n.

• If n = 1, then E = 〈↑ ε1〉 for an N -word or a DNA expression ε1 and the five
equations we have to prove reduce to:

B↑(X) ≤ B↑(X1) + #
△
(X)−#

△
(X1),

B↑(X) ≥ B↑(X1)− 0−#▽(X1),

B↓(X) ≤ B↓(X1),

B↓(X) ≥ B↓(X1)−#▽(X1) and

nl(X) = nl(X1)−#▽(X1).

If ε1 is an N -word α1, then E = 〈↑ α1〉 and by definition, X = X1 =
(
α1

−
)
.

Hence, #▽(X1) = 0 and the five equations are trivially valid, with B↑(X) = 1,
#

△
(X) = 0, B↓(X) = 0 and nl(X) = 0.

If, on the other hand, ε1 is a DNA expression E1, then E = 〈↑ E1〉 and by
definition, X = ν+(X1). Because the function ν+ neither introduces nor re-
moves lower nick letters (hence, #

△
(X) = #

△
(X1)), the five equations are just

special cases of the ones in Lemma 6.16. Whereas, in Lemma 6.16, we con-
sidered an arbitrary formal DNA molecule X, we have an expressible formal
DNA molecule X1 here.

• Let n ≥ 1 and suppose that equations (6.2)–(6.6) hold for all ↑-expressions with
n arguments (induction hypothesis). Now let E be an arbitrary ↑-expression
with n+1 arguments: E = 〈↑ ε1 . . . εnεn+1〉 for N -words and DNA expressions
ε1, . . . , εn, εn+1.

By Lemma 5.10,

E ≡ 〈↑ 〈↑ ε1 . . . εn〉 εn+1〉 ,
i.e., X = S(E) = S(〈↑ 〈↑ ε1 . . . εn〉 εn+1〉). Let X ′ = S(〈↑ ε1 . . . εn〉). By
definition,

X = ν+(X ′)y1ν
+(Xn+1),

where y1 = △ if R(X ′), L(Xn+1) ∈ A± and y1 = λ otherwise. By Lemma 5.1(1),
the semantics of an ↑-expression does not contain upper nick letters. Hence
ν+(X ′) = X ′. Because the function ν+ neither introduces, nor removes lower
nick letters,

#
△
(X) = #

△
(X ′) + |y1|+#

△
(Xn+1),

which can be rewritten as

|y1| = #
△
(X)−#

△
(X ′)−#

△
(Xn+1).

We can now make the following derivation:

B↑(X) ≤ B↑(ν
+(X ′)) + B↑(ν

+(Xn+1)) + |y1|
= B↑(X

′) + B↑(ν
+(Xn+1)) + #

△
(X)−#

△
(X ′)−#

△
(Xn+1)
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≤ B↑(X
′) + B↑(Xn+1) + #

△
(X)−#

△
(X ′)−#

△
(Xn+1)

≤ B↑(X1) + · · ·+ B↑(Xn) + #
△
(X ′)−#

△
(X1)− · · · −#

△
(Xn)

+ B↑(Xn+1) + #
△
(X)−#

△
(X ′)−#

△
(Xn+1)

= B↑(X1) + · · ·+ B↑(Xn) + B↑(Xn+1)

+ #
△
(X)−#

△
(X1)− · · · −#

△
(Xn)−#

△
(Xn+1).

Here, the three inequalities follow from Lemma 6.26(1), Lemma 6.16(1) and the
induction hypothesis (in particular, inequality (6.2) for X ′ = S(〈↑ ε1 . . . εn〉)),
respectively. We have thus obtained inequality (6.2) for X = S(E).

In a similar way, using the other claims from Lemma 6.26 and Lemma 6.16 and
the other equations from the induction hypothesis, we find inequality (6.3) for
X = S(E):

B↑(X) ≥ B↑(ν
+(X ′)) + B↑(ν

+(Xn+1))− 1

= B↑(X
′) + B↑(ν

+(Xn+1))− 1

≥ B↑(X
′) + B↑(Xn+1)−#▽(Xn+1)− 1

≥ B↑(X1) + · · ·+ B↑(Xn)− (n− 1)−#▽(X1)− · · · −#▽(Xn)

+ B↑(Xn+1)−#▽(Xn+1)− 1

= B↑(X1) + · · ·+ B↑(Xn) +B↑(Xn+1)− n

−#▽(X1)− · · · −#▽(Xn)−#▽(Xn+1),

inequality (6.4) for X = S(E):

B↓(X) = B↓(ν
+(X ′)) + B↓(ν

+(Xn+1))

= B↓(X
′) + B↓(ν

+(Xn+1))

≤ B↓(X
′) + B↓(Xn+1)

≤ B↓(X1) + · · ·+ B↓(Xn) +B↓(Xn+1),

inequality (6.5) for X = S(E):

B↓(X) = B↓(ν
+(X ′)) + B↓(ν

+(Xn+1))

= B↓(X
′) + B↓(ν

+(Xn+1))

≥ B↓(X
′) + B↓(Xn+1)−#▽(Xn+1)

≥ B↓(X1) + · · ·+ B↓(Xn)−#▽(X1)− · · · −#▽(Xn)

+ B↓(Xn+1)−#▽(Xn+1)

= B↓(X1) + · · ·+ B↓(Xn) +B↓(Xn+1)

−#▽(X1)− · · · −#▽(Xn)−#▽(Xn+1),

and equality (6.6) for X = S(E):

nl(X) = nl(ν
+(X ′)) + nl(ν

+(Xn+1))

= nl(X
′) + nl(ν

+(Xn+1))

= nl(X
′) + nl(Xn+1)−#▽(Xn+1)

= nl(X1) + · · ·+ nl(Xn)−#▽(X1)− · · · −#▽(Xn)

+ nl(Xn+1)−#▽(Xn+1)

= nl(X1) + · · ·+ nl(Xn) + nl(Xn+1)

−#▽(X1)− · · · −#▽(Xn)−#▽(Xn+1).
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We conclude that the five equations are also valid for the ↑-expression E with
n+ 1 arguments.

2. The proof of this claim is analogous to that of the previous claim.

3. Let E be an l-expression 〈l E1〉 for a DNA expression E1, let X1 = S(E1) and let
r ≥ 0 be the number of single-stranded components ofX1. By definition,X = κ(X1).
Now, all equations are just special cases of the ones in Lemma 6.19.

In the proof of Lemma 6.27(1), we observed that if n = 1 and ε1 is a DNA expression
E1, equations (6.2)–(6.6) are in fact special cases of the claims from Lemma 6.16. Likewise,
the proof of Lemma 6.27(3) consisted mainly of the observation that equations (6.7)–(6.13)
are special cases of the claims from Lemma 6.19.

For expressible formal DNA molecules X, we can also walk the other direction. We
can consider the claims from Lemma 6.16 as special cases of equations (6.2)–(6.6) from
Lemma 6.27(1). If we take n = 1 and let ε1 be a DNA expression denoting X, then
Lemma 6.16 follows from the observation that ν+(X) = ν+(S(ε1)) = S(〈↑ ε1〉).

Similarly, if X is an expressible formal DNA molecule and E1 is a DNA expression
denoting X, then Lemma 6.19 follows from Lemma 6.27(3) and the observation that
κ(X) = κ(S(E1)) = S(〈l E1〉).

By inequalities (6.7) and (6.9) from Lemma 6.27(3), the values of the functions B↑ and
B↓ do not increase when we apply the operator l to a DNA expression E1. There exists,
however, a much stronger result concerning B↑ and B↓ for l-expressions:

Lemma 6.29 Let E be an l-expression, and let X = S(E). Then B↑(X) + B↓(X) ≤ 1.

Proof: Let E = 〈l ε1〉, where ε1 is an N -word or a DNA expression. By the definition of
the semantics of an l-expression, X = κ(S+(ε1)).

Hence, X neither contains upper components, nor lower components. Each ↑-compo-
nent of X has to be a lower nick letter and each ↓-component of X has to be an upper
nick letter. By Theorem 5.4, X does not both contain lower nick letters and upper nick
letters. This implies that X either does not contain any ↑-component or does not contain
any ↓-component (or both). Then by definition, B↑(X) = 0, or B↓(X) = 0 (or both).
Now, the claim follows from Lemma 6.12(1) and (2).

After all this introductory work, we are ready to calculate lower bounds for the number
of occurrences of the operators ↑ and ↓ and for the number of occurrences of the operator
l in a DNA expression.

Theorem 6.30 Let E be a DNA expression, and let X = S(E).

1. If E is an ↑-expression, then

#↑,↓(E) ≥ 1 +B↓(X) and

#l(E) ≥ nl(X).

2. If E is a ↓-expression, then

#↑,↓(E) ≥ 1 +B↑(X) and

#l(E) ≥ nl(X).
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3. If E is an l-expression, then

#↑,↓(E) ≥ B↑(X), (6.14)

#↑,↓(E) ≥ B↓(X) and (6.15)

#l(E) ≥ nl(X).

Proof: By induction on the number p of operators occurring in E.

• If p = 1, then E is 〈↑ α1〉, 〈↓ α1〉 or 〈l α1〉 for an N -word α1.

If E = 〈↑ α1〉, then #↑,↓(E) = 1, #l(E) = 0, X =
(
α1

−
)
and B↓(X) = nl(X) = 0.

Hence, the inequalities in Claim 1 are valid.

If E = 〈↓ α1〉, then Claim 2 is applicable and the inequalities in this claim are
verified analogously.

If E = 〈l α1〉, then #↑,↓(E) = 0, #l(E) = 1, X =
(

α1

c(α1)

)
, B↑(X) = B↓(X) = 0 and

nl(X) = 1. Indeed, these values satisfy the inequalities in Claim 3.

• Let p ≥ 1, and suppose that the lower bounds hold for all DNA expressions con-
taining at most p operators (induction hypothesis). Now let E be an arbitrary
DNA expression that contains p + 1 operators. E is either an ↑-expression, or a
↓-expression or an l-expression. We consider each of these cases separately.

If E is an ↑-expression 〈↑ ε1 . . . εn〉, where n ≥ 1 and ε1, . . . , εn are the arguments
of E, then let for i = 1, . . . , n, Xi = S+(εi). The arguments are N -words, ↑-
expressions, ↓-expressions and l-expressions.
By definition, if an argument εi is an N -word α, then #↑,↓(εi) = #l(εi) = 0,

Xi = S+(εi) =
(
α
−
)
and B↓(Xi) = nl(Xi) = 0. If, on the other hand, an argument

εi is a DNA expression, then Xi = S+(εi) = S(εi). Because such an argument
contains at most p operators, the induction hypothesis provides us with lower bounds
for #↑,↓(εi) and #l(εi). For l-expressions εi, we use lower bound (6.15) for #↑,↓(εi).

We first consider #↑,↓(E):

#↑,↓(E) = 1 +
n∑

i=1

#↑,↓(εi)

= 1 +
∑

N -words εi

#↑,↓(εi) +
∑

↑-expr. εi

#↑,↓(εi)

+
∑

↓-expr. εi

#↑,↓(εi) +
∑

l-expr. εi

#↑,↓(εi)

≥ 1 +
∑

N -words εi

B↓(Xi) +
∑

↑-expr. εi

(1 +B↓(Xi))

+
∑

↓-expr. εi

(1 + B↑(Xi)) +
∑

l-expr. εi

B↓(Xi).

Obviously, the term 1+B↓(Xi) for an ↑-expression εi is greater than B↓(Xi). For the
↓-expressions εi, we use Lemma 6.12(2) to replace the terms 1 +B↑(Xi) by B↓(Xi).
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When subsequently, we apply inequality (6.4) from Lemma 6.27(1), we obtain the
desired lower bound for #↑,↓(E):

#↑,↓(E) ≥ 1 +
n∑

i=1

B↓(Xi) ≥ 1 + B↓(X).

The lower bound for #l(E) is easy to calculate. First, we observe that for each
argument εi, either by definition (if εi is an N -word), or by the induction hypothesis
(if εi is a DNA expression), #l(εi) ≥ nl(Xi). Next, we apply equality (6.6) from
Lemma 6.27(1):

#l(E) =
n∑

i=1

#l(εi) ≥
n∑

i=1

nl(Xi) = nl(X) +
n∑

i=1

#▽(Xi) ≥ nl(X).

If E is a ↓-expression, then the proof is analogous.

If E is an l-expression, then its only argument must be a DNA expression E1:
E = 〈l E1〉. Let X1 = S(E1). Because E1 contains p operators, we can apply the
induction hypothesis to it.

If E1 is an ↑-expression, then we additionally apply inequality (6.9) from Lemma
6.27(3) and Lemma 6.12(1):

#↑,↓(E) = #↑,↓(E1) ≥ 1 + B↓(X1) ≥ 1 + B↓(X) ≥ B↑(X).

Note that by this series of inequalities, we have proved both inequality (6.14) and
inequality (6.15) for the case that E1 is a ↑-expression. Analogously, if E1 is a
↓-expression, then

#↑,↓(E) = #↑,↓(E1) ≥ 1 + B↑(X1) ≥ 1 + B↑(X) ≥ B↓(X).

Finally, if E1 is an l-expression, then X = κ(X1) = X1. Hence, by the induction
hypothesis,

#↑,↓(E) = #↑,↓(E1) ≥ B↑(X1) = B↑(X) and

#↑,↓(E) = #↑,↓(E1) ≥ B↓(X1) = B↓(X).

To calculate a lower bound for #l(E), we do not have to distinguish different cases.
By the induction hypothesis, #l(E1) ≥ nl(X1), regardless of the outermost operator
of E1. Then by inequality (6.12) from Lemma 6.27(3),

#l(E) = 1 + #l(E1) ≥ 1 + nl(X1) ≥ nl(X).

It is only a small step from the number of operators occurring in a DNA expression to
the length of that DNA expression:
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Theorem 6.31 Let E be a DNA expression, and let X = S(E).

1. If E is an ↑-expression, then |E| ≥ 3 + 3 · B↓(X) + 3 · nl(X) + |X|A.
2. If E is a ↓-expression, then |E| ≥ 3 + 3 ·B↑(X) + 3 · nl(X) + |X|A.
3. If E is an l-expression, then

|E| ≥ 3 ·B↑(X) + 3 · nl(X) + |X|A and

|E| ≥ 3 ·B↓(X) + 3 · nl(X) + |X|A. (6.16)

4. If E = 〈l α1〉 for an N -word α1, then |E| = 3 · nl(X) + |X|A.
5. If E = 〈l E1〉 for a DNA expression E1, then |E| ≥ 3 + 3 · nl(X) + |X|A.
6. Unless E = 〈l α1〉 for an N -word α1, |E| ≥ 3 + 3 · nl(X) + |X|A.

Note that the starting point for this result is a DNA expression E. Some formal DNA
molecules X can only be denoted by certain types of DNA expressions. If X contains
single-stranded components, then E cannot be an l-expression. If X contains upper (or
lower) nick letters, then E cannot be an ↑-expression (↓-expression, respectively). Hence,
given a formal DNA moleculeX, some of the claims from this result may not be applicable.

In Theorem 7.42 and Theorem 7.46, we will see that the lower bounds from Claims 1
and 2 are tight. They are achieved by the shortest ↑-expressions and ↓-expressions for
a given formal DNA molecule. As we will observe after the statement of Theorem 7.5,
the lower bounds from Claim 3 are tight for nick free formal DNA molecules, where
B↑(X) = B↓(X) = 0 and nl(X) = 1. However, in Theorem 8.19, we will find that these
two lower bounds are not tight for expressible formal DNA molecules containing nick
letters: there do not exist l-expressions denoting such molecules that achieve these lower
bounds.

Proof: Claims 1–3 follow immediately from Lemma 6.1 and Theorem 6.30.

4. If E = 〈l α1〉 for an N -word α1, then X =
(

α1

c(α1)

)
and nl(X) = 1. Hence, both

sides of the equality in the claim evaluate to 3 + |α1|.
5. Assume that E = 〈l E1〉 for a DNA expression E1, and let X1 = S(E1). By

definition, X = κ(X1) and hence |X|A = |X1|A. We distinguish three cases.

If E1 is an ↑-expression, then by Claim 1 and inequality (6.12) from Lemma 6.27(3),

|E| = 3 + |E1|
≥ 3 + 3 + 3 · B↓(X1) + 3 · nl(X1) + |X1|A
≥ 3 + 3 + 0 + 3 · nl(X1) + |X1|A
≥ 3 + 3 · nl(X) + |X|A.

If E1 is a ↓-expression. then the inequality |E| ≥ 3 + 3 · nl(X) + |X|A is obtained
in an analogous way.

Finally, if E1 is an l-expression, then X = X1. Hence, by Claim 3,

|E| = 3 + |E1| ≥ 3 + 0 + 3 · nl(X1) + |X1|A = 3 + 3 · nl(X) + |X|A.

For each type of DNA expression E1, we obtain the inequality from the claim. Hence,
the claim is valid.
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6. This claim follows immediately from Claims 1, 2 and 5.





Chapter 7

The Construction of Minimal DNA
Expressions

If a formal DNA molecule is expressible, then there exist (infinitely) many DNA expres-
sions denoting it. Theorem 6.31 provides us with lower bounds for the length of such DNA
expressions. We are interested in the shortest DNA expressions for a given molecule, pos-
sibly achieving the applicable lower bound(s).

Definition 7.1 A DNA expression E is minimal if for every DNA expression E ′ with
E ′ ≡ E, |E ′| ≥ |E|.
Hence, when a DNA expression is minimal, we cannot find a shorter DNA expression with
the same semantics.

In principle, there may be different minimal DNA expressions for the same formal
DNA molecule.

Example 7.2 Let X =
(
α1

−
)(

α2

c(α2)

)(−
α3

)
. Then both E = 〈↑ α1 〈↓ 〈l α2〉α3〉〉 and E ′ =

〈↓ 〈↑ α1 〈l α2〉〉α3〉 denote X, and |E| = |E ′|. It is easy to verify that E and E ′ achieve
the lower bounds given in Theorem 6.31(1) and (2) for ↑-expressions and ↓-expressions,
respectively. Hence, there do not exist shorter ↑-expressions or ↓-expressions for X. Be-
cause X contains single-stranded components, it cannot be denoted by an l-expression.
Consequently, E and E ′ are indeed minimal.

The following result is immediately deduced from Lemma 6.1:

Corollary 7.3 A DNA expression E containing p operators is minimal if and only if
every DNA expression E ′ with E ′ ≡ E contains at least p operators.

The next result is so natural that we will not refer to it when we use it. Nevertheless, it
is good to state it explicitly:

Lemma 7.4 A DNA expression E is minimal if and only if each DNA subexpression of
E is minimal.

Proof: Let E be an arbitrary DNA expression.
From right to left, the claim is obvious, because by definition E is a DNA subexpression

of itself.
Now suppose that a DNA subexpression Es of E is not minimal. Then there must

exist a DNA expression Es′ such that Es′ ≡ Es and |Es′| < |Es|. Let us substitute Es in

137
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E by Es′. By Lemma 5.11, the resulting DNA expression E ′ is equivalent to E. Because
|E ′| < |E|, E cannot be minimal.

In this chapter, we describe how to construct minimal DNA expressions for a given
formal DNA molecule. In Section 7.1, we consider nick free formal DNA molecules.
Subsequently, in Section 7.2, we extend the results to formal DNA molecules that contain
nicks.

7.1 Minimal DNA expressions for a nick free formal

DNA molecule

Minimal l-expressions are limited to one simple type of formal DNA molecules:

Theorem 7.5 An l-expression E is minimal if and only if E = 〈l α1〉 for an N -word

α1. In that case, E is the unique minimal DNA expression denoting S(E) =
(

α1

c(α1)

)
.

Note that, if indeed E = 〈l α1〉 for an N -word α1 and we let X = S(E) =
(

α1

c(α1)

)
, then

B↑(X) = B↓(X) = 0, nl(X) = 1 and

|E| = 3 + |α1| = 3 · nl(X) + |X|A.

Hence, E achieves the lower bounds from Theorem 6.31(3). By Corollary 5.7, the only
nick free formal DNA molecules that can be denoted by an l-expression are precisely of

the form
(

α1

c(α1)

)
for an N -word α1. We can therefore say that the lower bounds from

Theorem 6.31(3) are tight for nick free formal DNA molecules.

Intuitively, this result can be understood in the following way: An expression-argument
of l denotes a formal DNA molecule, which may or may not contain single-stranded
components. All single-stranded components are complemented by the operator l. It is
not efficient to first generate single-stranded components by means of the operators ↑ and
↓, and then to complement them by means of l. It certainly is not efficient to apply l
to an argument without single-stranded components, because then the operator has no
effect at all. Consequently, an l-expression 〈l E1〉 for a DNA expression E1 is not likely
to be minimal.

Proof: Let E = 〈l ε1〉 be an l-expression, where ε1 is an N -word or a DNA expression,
and let X = S(E). We consider the two possibilities for ε1 separately.

• If ε1 is an N -word α1, hence E = 〈l α1〉, then X =
(

α1

c(α1)

)
.

Now let E ′ be another, equivalent DNA expression. E ′ is not equal to 〈l α〉 for an
N -word α, because the only N -word α such that S(〈l α〉) =

(
α1

c(α1)

)
is α = α1.

Because nl(X) = 1, Theorem 6.31(6) implies that E ′ is longer than E:

|E ′| ≥ 3 + 3 · 1 + |X|A = 6 + |α1| > 3 + |α1| = |E|.

Thus, E is the unique minimal DNA expression denoting X.
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• If ε1 is a DNA expression E1, hence E = 〈l E1〉, then by definition X = κ(X1) with
X1 = S(E1). By Corollary 5.7, there exist N -words α1, . . . , αm for some m ≥ 1 and
a nick letter y ∈ {▽, △} such that

X =
(

α1

c(α1)

)
y
(

α2

c(α2)

)
y . . . y

(
αm

c(αm)

)
.

If m = 1, hence X =
(

α1

c(α1)

)
is nick free, then E is not minimal, because we have

just observed that the unique minimal DNA expression denoting
(

α1

c(α1)

)
is 〈l α1〉.

If m ≥ 2, then E1 cannot be an l-expression 〈l α〉 for an N -word α, because

otherwise X = S(E) = S(〈l E1〉) = S(〈l 〈l α〉〉) =
(

α
c(α)

)
would be nick free.

Hence, by Theorem 6.31(6),

|E| = 3 + |E1| ≥ 3 + 3 + 3 · nl(X1) + |X1|A. (7.1)

The fact thatX = κ(X1) implies that |X1|A = |X|A and that #▽,△(X1) = #▽,△(X) =

m− 1 ≥ 1. Combining the latter observation with Lemma 6.12(4), we find

nl(X1) ≥ #▽,△(X1) + 1 = m− 1 + 1 = nl(X).

When we substitute everything into (7.1), we obtain:

|E| ≥ 3 + 3 + 3 · nl(X) + |X|A = 6 + 3 ·m+ |X|A.

Now without loss of generality, assume that y = △ and consider the DNA expression
E ′ = 〈↑ 〈l α1〉 〈l α2〉 . . . 〈l αm〉〉. It is easily verified that

S(E ′) =
(

α1

c(α1)

)
△

(
α2

c(α2)

)
△
. . .

△

(
αm

c(αm)

)
= X

and that

|E ′| = 3 + 3 ·m+ |X|A < |E|.

Thus, also in this case, E = 〈l E1〉 is not minimal.

The fact that the only minimal l-expressions are 〈l α1〉 for N -words α1, implies the
following:

Corollary 7.6 Let X be an expressible formal DNA molecule which is not double-complete.
Then each minimal DNA expression denoting X is either an ↑-expression or a ↓-expression.
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Theorem 7.5 describes the (unique) minimal DNA expression denoting a double-
complete formal DNA molecule. This result is quite straightforward. For other nick
free formal DNA molecules, the construction of minimal DNA expressions and the corres-
ponding proof of correctness is more involved.

In Section 6.2, we defined the primitive ↑-blocks and primitive ↓-blocks of a formal
DNA molecule. Here, these notions turn out to be useful, again. For a nick free formal
DNA molecule, however, each ↑-component is an upper component and each ↓-component
is a lower component. To reflect this in our terminology, we will use the term primitive
upper blocks rather than primitive ↑-blocks, and the term primitive lower blocks rather
than primitive ↓-blocks. We will use the new, but equivalent terminology only in the
context of nick free formal DNA molecules.

We will find that, in general, there may be different minimal DNA expressions denoting
the same nick free formal DNAmolecule. Sometimes, there exist minimal DNA expressions
for a formal DNA molecule with different outermost operators, ↑ or ↓, as is the case for
the molecule we have seen in Example 7.2. Moreover, given an outermost operator, there
may be different ways to partition a formal DNA molecule into parts that are (intuitively
speaking) generated by the outermost operator and parts that are generated by other
operators in the DNA expression, at a higher nesting level. Each of these ways may lead
to one or (many) more minimal DNA expressions.

We first consider a very special partitioning of a nick free formal DNA molecule, which
is induced by the primitive lower blocks occurring in it. It is based on an observation that
follows immediately from Lemma 6.7(1):

Corollary 7.7 Let X be a nick free formal DNA molecule and let X1, . . . , Xr0 for some
r0 ≥ 0 be the primitive lower blocks of X in the order of their occurrence in X. Then there
exists a unique sequence of substrings Y0, Y1, . . . , Yr0 of X, such that X = Y0X1Y1 . . . Xr0Yr0.

We will analyse the partitioning Y0, X1, Y1, . . . , Xr0 , Yr0 mentioned in this observation,
and the substrings Y0, Y1, . . . , Yr0 occurring in it. To allow for unambiguous and direct
references to this partitioning and these substrings, we first formally define them. Note
that in Section 6.2, we have already defined and analysed the primitive lower blocks
X1, . . . , Xr0 occurring in the partitioning. We just called them primitive ↓-blocks there.

Definition 7.8 Let X be a nick free formal DNA molecule, let X1, . . . , Xr0 for some
r0 ≥ 0 be the primitive lower blocks of X in the order of their occurrence in X, and let
Y0, . . . , Yr0 be the substrings of X such that X = Y0X1Y1 . . . Xr0Yr0.

• The primitive lower block partitioning of X is the sequence Y0, X1, Y1, . . . , Xr0 , Yr0.

• A maximal upper sequence of X is the occurrence (Y0X1Y1 . . . Xj , Xj+1Yj+1 . . . Xr0Yr0)
of a substring Yj with 0 ≤ j ≤ r0 and Yj 6= λ.

• The maximal upper prefix of X is the occurrence (λ,X1Y1 . . . Xr0Yr0) of Y0.

• The maximal upper suffix of X is the occurrence (Y0X1Y1 . . . Xr0 , λ) of Yr0.

• An internal maximal upper sequence of X is the occurrence (Y0X1Y1 . . . Xj, Xj+1Yj+1

. . . Xr0Yr0) of a substring Yj with 1 ≤ j ≤ r0 − 1.
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Hence, if r0 ≥ 1, then the maximal upper prefix of X is the substring of X preceding
the first primitive lower block and the maximal upper suffix of X is the substring of X
succeeding the last primitive lower block. An internal maximal upper sequence of X is
the substring of X separating two consecutive primitive lower blocks.

For notational convenience, we will in general omit the commas and write Y0X1Y1 . . .
Xr0Yr0 instead of Y0, X1, Y1, . . . , Xr0 , Yr0 to describe the primitive lower block partitioning.

As usual, although formally maximal upper sequences, the maximal upper prefix, the
maximal upper suffix and internal maximal upper sequences of a nick free formal DNA
molecule X are defined as occurrences of substrings of X, we will often refer to them
by the substrings themselves (and in fact, we already did this right after the definition).
Implicitly, however, we keep associating to them a position in X. For example, if both the
maximal upper prefix and the maximal upper suffix of X are equal to λ, then they are not
equal, because the occurrence of the maximal upper prefix is (λ,X) and the occurrence
of the maximal upper suffix is (X, λ).

Also, if for example the maximal upper prefix Y0 of X is empty, then we keep in-
cluding it in the notation for the primitive lower block partitioning. We will not write
X1Y1 . . . Xr0Yr0 , because formally, the primitive lower block partitioning is defined as
Y0, X1, Y1, . . . , Xr0 , Yr0 , with Y0 and a comma preceding the first primitive lower block X1.
Moreover, by the inclusion of Y0, it is always clear which substrings from the primitive
lower block partitioning Y0X1Y1 . . . Xr0Yr0 denote the primitive lower blocks (the second
one, the fourth one, and so on), the maximal upper prefix (the first one), the internal
maximal upper sequences (the third one, the fifth one, and so on) and the maximal upper
suffix (the last one). Of course, we have the same convention for the maximal upper suffix.

Intuitively, a maximal upper sequence Y of X is ‘maximal’ in the sense that it cannot
be extended either to the left or to the right by a ‘block’ or by a ‘block’ . We
will make this intuition more formal in Lemma 7.12(1).

The primitive upper block partitioning of a nick free formal DNA molecule is defined
analogously to the primitive lower block partitioning. Also, a maximal lower sequence, the
maximal lower prefix , the maximal lower suffix and an internal maximal lower sequence
are defined analogously to the upper counterparts.

Most results in the remainder of this section will be stated only for primitive lower
blocks, (internal) maximal upper sequences and the maximal upper prefix and suffix.
Of course, there exist analogous results for primitive upper blocks, (internal) maximal
lower sequences and the maximal lower prefix and suffix. Whenever we need one of these
analogous results, we will simply refer to the other version, i.e., the one that we have
stated.

As an example, in Figure 7.1, we have indicated the primitive lower block partitioning
and the primitive upper block partitioning of a certain nick free formal DNA molecule.
This figure also illustrates the difference between a maximal upper (lower) sequence and
a primitive upper (lower, respectively) block. A maximal upper sequence seems to be
a ‘short version’ of a primitive upper block, We will come back to the relation between
the primitive upper blocks and the maximal upper sequences of a nick free formal DNA
molecule in Lemma 7.13.

By Lemma 6.5(1), if X is double-complete, then it does not have any primitive block.
Hence, by definition, the primitive lower block partitioning is equal to Y0 = X. As,
obviously, X 6= λ, X itself is its only maximal upper sequence. Note that in this case,
the maximal upper sequence does not contain any upper component. This cannot occur
with primitive upper blocks: by definition, each primitive upper block contains at least
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︸ ︷︷ ︸
X1

Y1︷︸︸︷

︸ ︷︷ ︸
X2

Y2︷ ︸︸ ︷

︸ ︷︷ ︸
X3

Y3︷ ︸︸ ︷
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Y4 = λ

(b)

Figure 7.1: Two partitionings of a nick free formal DNA molecule X. (a) The primitive
lower block partitioning of X. X1, X2, X3 are the primitive lower blocks of X, Y0, Y1, Y2, Y3

are the maximal upper sequences, Y0 is the maximal upper prefix and Y3 is the maximal
upper suffix of X. (b) The primitive upper block partitioning of X. Here, X1, X2, X3, X4

are the primitive upper blocks and Y1, Y2, Y3 are the maximal lower sequences of X. Both
the maximal lower prefix Y0 and the maximal lower suffix Y4 are empty.

one upper component. In Lemma 7.12(4), we will see that this is the only case in which
a maximal upper sequence does not contain any upper component. In Lemma 7.11, we
will examine the primitive lower block partitioning for some more types of formal DNA
molecules.

For a nick free formal DNA molecule X, we use nmus(X) to denote the number of
maximal upper sequences of X, and we use nimus(X) to denote the number of internal
maximal upper sequences of X. We will see that there exist close relations between
nmus(X) and B↑(X) on the one hand, and between nimus(X) and B↓(X) on the other
hand. However, some constructions we will encounter are based on (internal) maximal
upper sequences, rather than on primitive blocks. To perform calculations on the results
of these constructions (in Lemma 7.22 and the proof of Lemma 7.23(1) it is useful to also
have the new notations nmus(X) and nimus(X).

We first give the relation between nimus(X) and B↓(X). In Lemma 7.13(3), we will
consider the relation between nmus(X) and B↑(X).

Lemma 7.9 Let X be a nick free formal DNA molecule.

1. If B↓(X) = 0, then nimus(X) = 0.

2. If B↓(X) ≥ 1, then nimus(X) = B↓(X)− 1.

Proof: By definition, an internal maximal upper sequence of X is a substring of X
separating two consecutive primitive lower blocks. If X does not have any primitive lower
block, then it certainly does not have any internal maximal upper sequence: nimus(X) = 0.
If X has B↓(X) ≥ 1 primitive lower blocks, then the number of internal maximal upper
sequences is 1 less.

Some properties of (internal) maximal upper sequences follow easily from the definition.
Nevertheless, it is useful to state them explicitly:

Lemma 7.10 Let X be a nick free formal DNA molecule.

1. Each internal maximal upper sequence is not empty, and thus is a maximal upper
sequence.
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2. The maximal upper sequences of X are pairwise disjoint.

3. X is an alternating sequence of (all) its primitive lower blocks and (all) its maximal
upper sequences.

Claim 1 implies that the term internal maximal upper sequence is proper.
In Lemma 6.9(1), we used the formulation “can be considered as” to express the

relation between a formal DNAmoleculeX that is not double-complete and the alternating
sequence of primitive ↑-blocks and primitive ↓-blocks of X. Any two consecutive primitive
blocks in this sequence share a double component.

Here, we can safely say that a nick free formal DNA molecule is an alternating sequence
of its primitive lower blocks and its maximal upper sequences.

Proof: Let Y0X1Y1 . . . Xr0Yr0 for some r0 ≥ 0 be the primitive lower block partitioning of
X.

1. Let Yj with 1 ≤ j ≤ r0 − 1 be an internal maximal upper sequence. By definition,
Yj is preceded in X by the primitive lower block Xj and succeeded in X by the
primitive lower block Xj+1. By Lemma 6.7(3), Yj contains at least one component
of X. Then by definition, Yj is a maximal upper sequence.

2. Each maximal upper sequence is one of the substrings Yj from the primitive lower
block partitioning of X. Clearly, the substrings Yj are pairwise disjoint; two different
substrings Yj1 and Yj2 are separated by at least a primitive lower block Xj . Then
certainly the maximal upper sequences of X are pairwise disjoint.

3. By definition, X = Y0X1Y1 . . . Xr0Yr0 is an alternating sequence of (all) its primitive
lower blocks X1, . . . , Xr0 and the substrings Y0, Y1, . . . , Yr0 . Because the maximal
upper sequences of X are defined as the non-empty substrings Yj, and because, by
Claim 1, at least Y1, . . . , Yr0−1 are non-empty, X is also an alternating sequence of
(all) its primitive lower blocks and (all) its maximal upper sequences.

Different statements about the maximal upper sequences, maximal upper prefix or
maximal upper suffix of a certain nick free formal DNA molecule may be equivalent. If
one statement is valid, then so is the other.

Lemma 7.11 Let X be a nick free formal DNA molecule and let Y0X1Y1 . . . Xr0Yr0 for
some r0 ≥ 0 be the primitive lower block partitioning of X.

1. The following two statements are equivalent:

(a) X does not contain any maximal upper sequence.

(b) X does not contain any upper component and contains at least one lower com-
ponent.

2. The following seven statements are equivalent:

(a) r0 = 0.

(b) X does not contain any lower component.

(c) Y0 = X.
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(d) Yr0 = X.

(e) The maximal upper prefix of X is equal to the maximal upper suffix of X.

(f) X is a maximal upper sequence of itself.

(g) X is the only maximal upper sequence of itself.

3. If X is not double-complete, then the following four statements are equivalent:

(a) The maximal upper prefix of X is empty.

(b) The maximal lower prefix of X is not empty.

(c) The alternating sequence from Lemma 6.9(1) starts with a primitive lower block.

(d) The first single-stranded component of X is a lower component.

4. If X is not double-complete, then the following four statements are equivalent:

(a) The maximal upper suffix of X is empty.

(b) The maximal lower suffix of X is not empty.

(c) The alternating sequence from Lemma 6.9(1) ends with a primitive lower block.

(d) The last single-stranded component of X is a lower component.

Note that by definition, e.g., saying that the maximal upper prefix of X is empty is
equivalent to saying that it is not a maximal upper sequence. For our example formal
DNA molecule from Figure 7.1, none of the statements in this result is true. For example,
the maximal upper prefix is not empty, whereas the maximal lower prefix is empty.

Proof:

1. By Lemma 7.10(3), X is an alternating sequence of (all) its primitive lower blocks
and (all) its maximal upper sequences. Hence, X does not contain any maximal
upper sequence, if and only if X = X1 is a primitive lower block of itself. By the
definition of a primitive lower block, this is the case, if and only if X does not contain
any upper component and contains at least one lower component.

2. We first observe that Statements 2f and 2g are equivalent, because maximal upper
sequences are not empty and by Lemma 7.10(2), different maximal upper sequences
of X are disjoint.

Next, we prove that each of Statements 2b–2f is equivalent to the ‘central’ State-
ment 2a.

The equivalence of Statements 2b and 2a follows from Lemma 6.13(1b) and the fact
that r0 is the number of primitive lower blocks of X, i.e., that r0 = B↓(X).

We observe that by definition, X = Y0X1Y1 . . . Xr0Yr0 .

Assume that Statement 2a is true, i.e., that r0 = 0. Then by definition, X = Y0 = Yr0

and both the maximal upper prefix and the maximal upper suffix of X are equal to
the occurrence (λ, λ) of Y0 = Yr0 . Hence, Statements 2c, 2d and 2e are true. Because
the formal DNA molecule X = Y0 is not empty, it is, by definition, a maximal upper
sequence. Hence, also Statement 2f is true.
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2c =⇒ 2a and 2d =⇒ 2a: If Y0 = X or Yr0 = X, while by definition, X =
Y0X1Y1 . . . Xr0Yr0 , then r0 must be 0, because the primitive lower blocks X1, . . . , Xr0

are not empty.

2e =⇒ 2a: If the maximal upper prefix and the maximal upper suffix of X are
equal, then the occurrence (λ,X1Y1 . . . Xr0Yr0) of Y0 is equal to the occurrence
(Y0X1Y1 . . . Xr0 , λ) of Yr0 . Again, because primitive lower blocks are not empty,
this is only possible, if r0 = 0.

2f =⇒ 2a: If X is a maximal upper sequence of itself, then by Lemma 7.10(3), it
cannot have any primitive lower block. Hence, r0 = 0.

3. Assume that X is not double-complete.

If the maximal upper prefix Y0 of X is empty, then certainly r0 ≥ 1, because other-
wise, X would be empty. In this case, the primitive lower block X1 is a prefix of X.
Hence, the alternating sequence from Lemma 6.9(1) starts with a primitive lower
block.

If, on the other hand, the alternating sequence from Lemma 6.9(1) starts with a
primitive lower block X1, then X1 is a prefix of X. Hence, by definition, the maximal
upper prefix Y0 of X is empty.

We have thus proved that Statements 3a and 3c are equivalent. In an analogous
way, we can prove that the maximal lower prefix of X is empty, if and only if
the alternating sequence from Lemma 6.9(1) starts with a primitive upper block.
Negating both sides of this equivalence, we find that the maximal lower prefix of X
is not empty, if and only if the alternating sequence from Lemma 6.9(1) starts with
a primitive lower block. Hence, also Statement 3b is equivalent to Statement 3c.

Finally, the equivalence of Statements 3c and 3d follows immediately from Lemma
6.9(2a).

4. The proof of this claim is analogous to that of the previous claim.

The next result deals with the components occurring in and surrounding a maximal upper
sequence.

Lemma 7.12 Let X be a nick free formal DNA molecule and let x′
1 . . . x

′
k be the decom-

position of X.

1. Let Y = x′
b0
. . . x′

b1
with 1 ≤ b0 ≤ b1 ≤ k be a maximal upper sequence of X.

(a) If b0 ≥ 2, then b0 ≥ 3, x′
b0−2 is a lower component of X, x′

b0−1 is a double
component of X and x′

b0
is an upper component of X.

(b) If b1 ≤ k − 1, then b1 ≤ k − 2, x′
b1+2 is a lower component of X, x′

b1+1 is a
double component of X and x′

b1
is an upper component of X.

2. Each maximal upper sequence of X is an alternating sequence of upper components
and double components of X.

3. Each upper component of X occurs in a (exactly one) maximal upper sequence of
X.
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4. (a) If X is double-complete, then the only maximal upper sequence of X is X itself.

(b) If X is not double-complete, then each maximal upper sequence of X contains
at least one upper component.

Claims 1 and 3 can be considered as the maximal upper sequence-versions of Lemma 6.6
and Lemma 6.7(2), respectively. For Claims 2 and 4, there does not exist a corresponding
result for primitive ↑-blocks. Already by definition, a primitive ↑-block does not contain
any ↓-components and contains at least one ↑-component.

By definition, an internal maximal upper sequence ofX is both preceded and succeeded
in X by a primitive lower block. Hence, by Claim 1, each internal maximal upper sequence
both starts with an upper component and ends with an upper component.

Moreover, by the same claim, there do not exist maximal upper sequences that start
with the second component or end with the last but one component of X.

Proof: Let Y0X1Y1 . . . Xr0Yr0 be the primitive lower block partitioning of X. X1, . . . , Xr0

are the primitive lower blocks of X. A maximal upper sequence is a non-empty substring
Yj.

1. By definition, there exists j with 0 ≤ j ≤ r0, such that Y is the substring Yj.

(a) If b0 ≥ 2, then j > 0 and Y is preceded in X by the primitive lower block Xj.
Xj ends with the component x′

b0−1 and b0 − 1 ≤ k − 1. Now, the claim follows
from (the analogue for primitive ↓-blocks of) Lemma 6.6(2).

(b) The proof of this subclaim is analogous to that of the previous subclaim.

2. By definition, a primitive lower block of X is a sequence of components of X.
Then also the substrings Yj preceding, separating and succeeding the primitive lower
blocks are sequences of components of X. This is, of course, in particular true for
every maximal upper sequence of X.

By Lemma 6.7(2), each lower component of X occurs in a primitive lower block of
X. Hence, a maximal upper sequence Yj does not contain any lower component.
Now, the claim follows from Corollary 3.8.

3. By definition, a primitive lower block of X does not contain any upper component.
Hence, each upper component of X must be part of a (non-empty) substring Yj, i.e.,
of a maximal upper sequence. Obviously, there is only one maximal upper sequence
Yj that applies.

4. (a) Shortly after the definition of the primitive lower block partitioning, we already
considered this partitioning for double-complete formal DNA molecules. We
also mentioned that such a molecule is itself its only maximal upper sequence.

(b) Assume that X is not double-complete, and let Y = x′
b0
. . . x′

b1
with 1 ≤ b0 ≤

b1 ≤ k be an arbitrary maximal upper sequence of X.

If b0 ≥ 2, then by Claim 1a, the first component of Y is an upper component.
Analogously, if b1 ≤ k−1, then the last component of Y is an upper component.

Finally, if b0 = 1 and b1 = k, then Y = X, and by Claim 2, X is an alternating
sequence of upper components and double components. Because X is not
double-complete, Y = X contains at least one upper component.
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The example from Figure 7.1 suggested that a maximal upper sequence of a nick free
formal DNA molecule is a ‘short version’ of a primitive upper block. We now formalize this
suggestion and prove that it holds in general for molecules that are not double-complete.

Lemma 7.13 Let X be a nick free formal DNA molecule and let x′
1 . . . x

′
k be the decom-

position of X.

1. Each primitive upper block of X contains exactly one maximal upper sequence of X.

In particular, let X ′
1 = x′

a0
. . . x′

a1
with 1 ≤ a0 ≤ a1 ≤ k be an arbitrary primitive

upper block of X, and let

b0 =

{
1 if a0 = 1

a0 + 1 if a0 ≥ 2
and b1 =

{
k if a1 = k

a1 − 1 if a1 ≤ k − 1.

Then x′
b0
. . . x′

b1
is a maximal upper sequence of X.

2. Assume that X is not double-complete.

Each maximal upper sequence of X is contained in exactly one primitive upper block
of X.

In particular, let Y = x′
b0
. . . x′

b1
with 1 ≤ b0 ≤ b1 ≤ k be an arbitrary maximal upper

sequence of X, and let

a0 =

{
1 if b0 = 1

b0 − 1 if b0 ≥ 3
and a1 =

{
k if b1 = k

b1 + 1 if b1 ≤ k − 2.

Then x′
a0
. . . x′

a1
is a primitive upper block of X.

3. If X is not double-complete, then there is a bijection (induced by inclusion) between
primitive upper blocks of X on the one hand and maximal upper sequences of X on
the other hand. In particular, B↑(X) = nmus(X).

Note that by Lemma 7.12(1), a maximal upper sequence of X cannot start with the second
component or end with the last but one component of X. Hence, Claim 2 covers all pos-
sible maximal upper sequences in a formal DNA molecule that is not double-complete.

Proof: Recall that if X is not double-complete, then by Lemma 6.9(1), X can be con-
sidered as an alternating sequence of all its primitive upper blocks all its primitive lower
blocks.

1. The existence of the primitive upper blockX ′
1 implies thatX is not double-complete.

We distinguish four cases:

• If a0 = 1 and a1 = k, then X ′
1 = X. By the definition of a primitive upper

block, X does not contain any lower component. Hence, by Lemma 7.11(2),
Y0 = X = x′

1 . . . x
′
k is a maximal upper sequence of itself.
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• If a0 = 1 and a1 ≤ k − 1, then by Lemma 6.6(2), 1 = a0 < a1 and x′
a1

is a double component. Further, the alternating sequence of primitive upper
blocks and primitive lower blocks starts with X ′

1 and proceeds with a primitive
lower block X1. X1 is the first primitive lower block of X and starts with the
double component x′

a1
. By definition, the non-empty prefix Y0 = x′

1 . . . x
′
a1−1 is

a maximal upper sequence of X.

• The case that a0 ≥ 2 and a1 = k is symmetric to the previous case. In an
analogous way, we find that the non-empty suffix Y1 = x′

a0+1 . . . x
′
k is a maximal

upper sequence of X.

• If a0 ≥ 2 and a1 ≤ k − 1, then by Lemma 6.6, a0 < a1, both x′
a0

and x′
a1

are double components, and both x′
a0+1 and x′

a1−1 are upper components. In
the alternating sequence, X ′

1 is preceded by a primitive lower block X0 and
succeeded by a primitive lower block X1. X0 ends with the double component
x′
a0

and X1 starts with the double component x′
a1
. By definition, the sequence

of components Y1 = x′
a0+1 . . . x

′
a1−1 separating X0 and X1 is an internal max-

imal upper sequence. In particular, by Lemma 7.10(1), it is a maximal upper
sequence.

In each of the cases, the maximal upper sequence we obtain is equal to x′
b0
. . . x′

b1

for indices b0 and b1 as defined in the claim.

Let us, for simplicity, use Y to denote this maximal upper sequence, in all four cases.
Y is a subsequence of the components in X ′

1. By Lemma 7.10(2), the maximal upper
sequences of X are pairwise disjoint, Hence, if X ′

1 contains another maximal upper
sequence, then that one must be contained in the components of X ′

1 that are not in
Y .

The only components of X ′
1 that may not be in Y are the first component x′

a0
and

the last component x′
a1
. These components then are double components that are

part of primitive lower blocks. By definition, components of a primitive lower block
are not in a maximal upper sequence.

We conclude that X ′
1 does not contain any maximal upper sequence other than Y .

2. We again distinguish four cases:

• If b0 = 1 and b1 = k, then Y = X. By Lemma 7.12(2) and (4b), Y = X
does not contain any lower component, but does contain at least one upper
component. Hence, by Lemma 6.5(2), X = x′

1 . . . x
′
k is a primitive upper block

of itself.

• If b0 = 1 and b1 ≤ k− 2, then by definition, Y is succeeded in X by a primitive
lower block X1. X1 is the first primitive lower block of X. By Lemma 6.7(4),
its first component x′

b1+1 is a double component and the prefix x′
1 . . . x

′
b1+1 of

X is a primitive upper block.

• The case that b0 ≥ 3 and b1 = k is symmetric to the previous case. In an
analogous way, we find that the suffix x′

b0−1 . . . x
′
k is a primitive upper block of

X.

• If b0 ≥ 3 and b1 ≤ k − 2, then by definition, Y is preceded in X by a primitive
lower block X1 and succeeded in X by a primitive lower block X2. X1 and
X2 are consecutive primitive lower blocks of X. Now by Lemma 6.7(3), both
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the last component x′
b0−1 of X1 and the first component x′

b1+1 of X2 are double
components, and x′

b0−1 . . . , x
′
b1+1 is a primitive upper block.

Note that in the last three cases, where the primitive upper block we obtain is
larger than the maximal upper sequence X1, the additional components are double
components.

In each of the four cases, the primitive upper block we obtain is equal to x′
a0
. . . x′

a1

for indices a0 and a1 as defined in the claim. The maximal upper sequence Y cannot
also be contained in another primitive upper block, because, by Lemma 6.7(1),
primitive upper blocks are pairwise disjoint.

3. Assume that X is not double-complete. Consider the relation between primitive
upper blocks and maximal upper sequences of X induced by inclusion. By Claim 1,
this relation is a function from the set of primitive upper blocks into the set of
maximal upper sequences. By Claim 2, this function is both injective and surjective.

By Lemma 7.10(3), a nick free formal DNA molecule is an alternating sequence of all its
primitive lower blocks and all its maximal upper sequences. When we take a subsequence
Xs of these primitive lower blocks and maximal upper sequences, we can, in turn, consider
the primitive lower blocks and maximal upper sequences of Xs:

Lemma 7.14 Let X be a nick free formal DNA molecule, and let Xs be a non-empty
subsequence of consecutive primitive lower blocks and maximal upper sequences of X.

1. The primitive lower blocks of Xs are precisely the primitive lower blocks of X oc-
curring in Xs.

2. The maximal upper sequences of Xs are precisely the maximal upper sequences of X
occurring in Xs.

We cannot extend this result to arbitrary formal DNA submolecules of X. In general, it is
not true that the primitive lower blocks and maximal upper sequences of a submolecule Xs

of X are precisely the primitive lower blocks and maximal upper sequences of X restricted
to Xs.

Example 7.15 LetX =
(
α1

−
)(

α2

c(α2)

)(−
α3

)(
α4

c(α4)

)
forN -words α1, α2, α3, α4, and letXs =(

α1

−
)(

α2

c(α2)

)
. The only primitive lower block of X is X1 =

(
α2

c(α2)

)(−
α3

)(
α4

c(α4)

)
and the only

maximal upper sequence of X is Y0 =
(
α1

−
)
. When we restrict X1 to X

s, we obtain
(

α2

c(α2)

)
,

but this is not a primitive lower block of Xs. In fact, Xs does not have any primitive
lower block. Hence, Xs is a maximal upper sequence of itself. Obviously, this maximal
upper sequence is not equal to Y0 restricted to Xs.

Proof of Lemma 7.14: Because X is nick free and Xs is a non-empty substring of X,
by Lemma 3.4, Xs is a nick free formal DNA molecule. This implies that indeed primitive
lower blocks and maximal upper sequences are defined for Xs.

First, we consider a special case. If X is double-complete, then by Lemma 6.5(1),
it does not have any primitive lower block. Indeed, by Lemma 7.12(4a), X is the only
maximal upper sequence of itself. Hence, Xs, which is a non-empty subsequence of the
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primitive lower blocks and maximal upper sequences of X, must be equal to X. Then the
claims are trivially valid.

Conversely, if Xs is double-complete, then it cannot contain any primitive lower block
of X, because by definition, a primitive lower block contains at least one lower component.
Hence, Xs must be equal to one maximal upper sequence of X. Apparently, X contains a
maximal upper sequence that is double-complete. By Lemma 7.12(4), X must be double-
complete itself, and X must be equal to this double-complete maximal upper sequence.
Again, we conclude that Xs = X and that the claims are trivially valid.

Now, let us assume that X is not double-complete and (thus) that Xs is not double-
complete. Let x′

1 . . . x
′
k for some k ≥ 1 be the decomposition of X. Both primitive lower

blocks (by definition) and maximal upper sequences (by Lemma 7.12(2)) of X are built
up of components of X. Hence, so is Xs: there exist i0 and j0 with 1 ≤ i0 ≤ j0 ≤ k such
that Xs = x′

i0
. . . x′

j0
. By Lemma 6.3, each component of Xs is also a component of X.

1. We first prove that each primitive lower block of Xs is one of the primitive lower
blocks of X occurring in Xs. We subsequently establish the reverse statement.

• Let Xs
1 = x′

a0
. . . x′

a1
with i0 ≤ a0 ≤ a1 ≤ j0 be a primitive lower block of Xs.

By definition, Xs
1 contains at least one lower component and does not contain any

upper component.

If a0 = i0, then the first single-stranded component of Xs is a lower component. By
Lemma 7.12(2) and (4b), a maximal upper sequence of X does not contain any lower
component. but does contain at least one upper component. Hence, Xs (seen as an
alternating subsequence of primitive lower blocks and maximal upper sequences of
X) starts with a primitive lower block. In particular, x′

a0
= x′

i0
is the first component

of a primitive lower block X1 of X.

If a0 ≥ i0 + 1, then by Lemma 6.6(1) a0 < a1 ≤ j0, x
′
a0−1 is an upper component,

x′
a0

is a double component and x′
a0+1 is a lower component of Xs (and thus of X).

By Lemma 6.7(2), x′
a0+1 occurs in a primitive lower block X1 of X. By definition,

(the upper component) x′
a0−1 is not part of X1. Hence, the first component of X1

must be either (the double component) x′
a0

or (the lower component) x′
a0+1. By

Lemma 6.6(1), it must be x′
a0
. Also in this case, x′

a0
is the first component of a

primitive lower block X1 of X.

Analogously, we can prove that x′
a1

is the last component of a primitive lower block
X2 of X.

Now we observe that by definition, different primitive lower blocks of X are separ-
ated by at least one (internal) maximal upper sequence, that each maximal upper
sequence of X contains at least one upper component, and that Xs

1 = x′
a0
. . . x′

a1

does not contain any upper component. Consequently, X1 and X2 must be the same
primitive lower block of X: Xs

1 = X1 = X2 is a primitive lower block of X.

• In a similar way, we can prove that each primitive lower block X1 of X which
occurs in Xs is a primitive lower block of Xs.

First, we establish that the first component of X1 is also the first component of a
primitive lower block Xs

1 of Xs. For this we examine both the case that Xs (seen as
an alternating subsequence of primitive lower blocks and maximal upper sequences
of X) starts with X1 and the case that Xs does not start with X1. Analogously, we
find that the last component of X1 is also the last component of a primitive lower
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X3

Figure 7.2: Three different lower blocks X1, X2, X3 of the formal DNA molecule from
Figure 7.1. The vertical lines inside X1 and X3 indicate the boundaries between the
primitive lower blocks and the maximal upper sequences constituting these lower blocks.

block Xs
2 of Xs. Finally, we prove that Xs

1 and Xs
2 are the same primitive lower

block, because otherwise, they would be separated in Xs by at least one (internal)
maximal upper sequence, and X1 would contain an upper component.

2. The proof of this claim is straightforward, because we can apply the previous claim.

By definition, a maximal upper sequence of Xs is a non-empty substring of Xs that
either precedes the first primitive lower block of Xs, or separates two consecutive
primitive lower blocks of Xs, or succeeds the last primitive lower block of Xs. Hence,
it is a non-empty substring of X that either precedes the first primitive lower block
of X occurring in Xs, or separates two consecutive primitive lower blocks of X
occurring in Xs, or succeeds the last primitive lower block of X occurring in Xs.
This implies that it is a maximal upper sequence of X occurring in Xs.

When we simply reverse the above argumentation, we find that a maximal upper
sequence of X occurring in Xs is also a maximal upper sequence of Xs.

We now define a particular type of subsequence of primitive lower blocks and maximal
upper sequences. This subsequence both starts and ends with a primitive lower block.

Definition 7.16 Let X be a nick free formal DNA molecule and let Y0X1Y1 . . . Xr0Yr0 for
some r0 ≥ 0 be the primitive lower block partitioning of X.

A lower block is an occurrence (Y0X1Y1 . . . Yj1−1, Yj2Xj2+1 . . . Xr0Yr0) of a substring
Xj1Yj1 . . . Xj2 of X for some j1 and j2 with 1 ≤ j1 ≤ j2 ≤ r0.

Often, we will refer to a lower block simply by the substring involved. The actual occur-
rence will be clear from the context, e.g., from the indices j1 and j2. To distinguish a
lower block from a primitive lower block, we will use Xj (for a certain index j) to denote
a lower block, instead of Xj.

Indeed, as the name suggests, a lower block is a generalization of a primitive lower
block. If in the definition j1 = j2, then we have the primitive lower block Xj1 . In general,
however, a lower block may contain more than one primitive lower blocks.

The definition of an upper block of a nick free formal DNA molecule is analogous to
that of a lower block.

In Figure 7.2, we have indicated three different lower blocks X1, X2, X3 of the formal
DNA molecule from Figure 7.1. X1 contains two primitive lower blocks, X2 consists of
only one primitive lower block and X3 contains all three primitive lower blocks. If a nick
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free formal DNA molecule does not have any lower component, then by definition, it does
not have a primitive lower block, let alone a lower block.

We can easily determine the values of B↓(X1) and B↑(X1) for a lower block X1:

Lemma 7.17 Let X be a nick free formal DNA molecule and let X1 be a lower block of
X.

1. X1 contains at least one single-stranded component, and both the first single-stranded
component and the last single-stranded component of X1 are lower components.

2. Consider X1 as an alternating sequence of primitive lower blocks and maximal upper
sequences of X (see Definition 7.16).

(a) B↓(X1) is equal to the number of primitive lower blocks of X occurring in X1.

(b) B↑(X1) = B↓(X1)−1, which is equal to the number of maximal upper sequences
of X occurring in X1.

Proof:

1. By definition, each primitive lower block of X contains at least one lower component
and does not contain any upper component of X. Hence, the first single-stranded
component and the last single-stranded component of a primitive lower block are well
defined, and both of them are lower components. Now, the claim follows immediately
from the definition of a lower block.

2. (a) By Lemma 7.14(1), the primitive lower blocks of X1 are precisely the primitive
lower blocks of X occurring in the alternating sequence mentioned. In particu-
lar, B↓(X1) is equal to the number of primitive lower blocks in this alternating
sequence.

(b) By Claim 1 and Lemma 6.13(3d), B↑(X1) = B↓(X1)−1. By Claim 2a, this is 1
less than the number of primitive lower blocks of X occurring in the alternating
sequence. Because, by definition, the alternating sequence both starts and ends
with a primitive lower block, the number of maximal upper sequences occurring
in it is also 1 less than the number of primitive lower blocks.

We have used the primitive lower blocks of a nick free formal DNA molecule X to
define the primitive lower block partitioning of X. We now use the lower blocks of X to
define a lower block partitioning :

Definition 7.18 Let X be a nick free formal DNA molecule.
A lower block partitioning of X is a sequence Y0, X1, Y1, . . . , Xr, Yr for some r ≥ 0

such that

• X = Y0X1Y1 . . . XrYr, and

• for j = 1, . . . , r, Xj is a lower block of X, and

• for each primitive lower block X1 of X, there is a j with 1 ≤ j ≤ r, such that X1 is
contained in Xj.
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♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣

♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣
Y0︷︸︸︷

︸ ︷︷ ︸
X1

Y1︷︸︸︷

︸ ︷︷ ︸
X2

Y2︷ ︸︸ ︷

︸ ︷︷ ︸
X3

Y3︷ ︸︸ ︷
(a1)

♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣
♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣

♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣
♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣

♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣
♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣

♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣
Y0︷︸︸︷

︸ ︷︷ ︸
X1

Y1︷︸︸︷

︸ ︷︷ ︸
X2

Y2︷ ︸︸ ︷
(a2)

♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣
♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣

♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣
♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣

♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣
♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣

Y0︷︸︸︷

︸ ︷︷ ︸
X1

Y1︷ ︸︸ ︷

︸ ︷︷ ︸
X2

Y2︷ ︸︸ ︷
(a3)

♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣
♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣

♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣
♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣

♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣
♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣

♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣
♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣

Y0︷︸︸︷

︸ ︷︷ ︸
X1

Y1︷ ︸︸ ︷
(a4)

♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣♣ ♣♣♣♣
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Y0 = λ

X1︷ ︸︸ ︷

︸ ︷︷ ︸
Y1

X2︷ ︸︸ ︷

︸︷︷︸
Y2

X3︷ ︸︸ ︷

Y3 = λ

(b)

Figure 7.3: Different partitionings of the formal DNA molecule X from Figure 7.1, for
which B↑(X) = 4 and B↓(X) = 3. (a1) (Once more) the primitive lower block partitioning
of X. (a2),(a3) Two other lower block partitionings of X. (a4) Yet another lower block
partitioning of X: the one defined by one lower block X1 containing all primitive lower
blocks. (b) An upper block partitioning of X, different from the primitive upper block
partitioning.

Hence, a lower block partitioning of X is a partitioning of X based on (disjoint) lower
blocks, which together contain all primitive lower blocks. In other words, the set of
primitive lower blocks has been partitioned into lower blocks.

Usually, we will write Y0X1Y1 . . . XrYr instead of Y0, X1, Y1, . . . , Xr, Yr to describe a
lower block partitioning. We may also use the symbol P to refer to a particular lower
block partitioning.

Of course, an upper block partitioning of a nick free formal DNA molecule is defined
analogously. We will see later that lower block partitionings and upper block partitionings
are crucial for the construction of minimal ↑-expressions and ↓-expressions.

It is easily verified that the primitive lower block partitioning of a nick free formal
DNA molecule is in particular a lower block partitioning. In general, however, a nick
free formal DNA molecule may have more lower block partitionings than just that one. In
Lemma 7.22, we will see how many lower block partitionings there are for a given molecule.
In Figure 7.3, we give four lower block partitionings and an upper block partitioning for
the formal DNA molecule from Figure 7.1.

For certain formal DNA molecules, there exists only one lower block partitioning, with
a very basic structure:
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Lemma 7.19 Let X be a nick free formal DNA molecule. The following four statements
are equivalent:

1. B↓(X) = 0.

2. X does not contain any lower component.

3. Y0 = X is a lower block partitioning of X.

4. Y0 = X is the only lower block partitioning of X.

Note that we have already established the equivalence of Claims 1 and 2 in Lemma 6.13(1b).
We included both statements in the present result to allow for direct transitions between
either of these statements and either of the other statements.

Particular instances of molecules for which the four statements are true, are the double-
complete formal DNA molecules.

Proof: (1) =⇒ (4) Assume that X does not have any primitive lower block. Because
a lower block of a formal DNA molecule contains at least one primitive lower block, X
certainly does not contain any lower block. Hence, if P = Y0X1Y1 . . . XrYr is a lower block
partitioning of X, then r must be 0: P = Y0 = X. This ‘sequence’ is indeed a lower block
partitioning, because it trivially satisfies the third condition of Definition 7.18.

(4) =⇒ (3) This implication is obviously true.
(3) =⇒ (1) Assume that Y0 = X is a lower block partitioning of X. Then by the third

condition of Definition 7.18, X cannot contain any primitive lower block.

Note that if X does not have any upper component and has at least one lower
component, then by Lemma 6.5(3) and Lemma 6.7(1), the only primitive lower block
of X is X1 = X. Hence, by definition, the only lower block partitioning of X is
P = Y0X1Y1 = Y0XY1 with Y0 = Y1 = λ. Even though Y0 and Y1 are empty, we
cannot write P = X in this case. because formally, P is the sequence Y0, X1, Y1 (with two
commas, see also our remark after Definition 7.8).

The definition of a lower block partitioning Y0X1Y1 . . . XrYr is largely based on condi-
tions on the substringsXj occurring in it. Often, however, we are particularly interested in
the substrings Yj occurring in it. When we focus on them, we get the following, equivalent
‘alternative definition’:

Lemma 7.20 Let X be a nick free formal DNA molecule. A sequence P = Y0X1Y1 . . .
XrYr with r ≥ 0 is a lower block partitioning of X, if and only if

• X = Y0X1Y1 . . . XrYr, and

• Y0 is the maximal upper prefix of X and Yr is the maximal upper suffix of X, and

• for j = 1, . . . , r − 1, Yj is an internal maximal upper sequence of X.

Proof: We first consider the case that X does not have any lower component. Then by
Lemma 7.19, the only lower block partitioning of X is Y0 = X. On the other hand, by
Lemma 7.11(2), the maximal upper prefix and the maximal lower suffix of X are equal to
X. Because X 6= λ, the only sequence P satisfying the first two conditions in the claim is
Y0 = X. This ‘sequence’ also trivially satisfies the third condition.



7.1 Minimal DNA expressions for a nick free formal DNA molecule 155

P :

P ′:

Y0X1Y1 . . . Yj−1XjYj . . . XrYr satisfies conditions Lemma 7.20

Y ′
0X1Y

′
1 . . . Y

′
j1−1Xj1Y

′
j1
. . . Xj2Y

′
j2
. . . Xr0Y

′
r0 primitive lower block partitioning

................

................

................

................

Figure 7.4: Corresponding substrings in a sequence P satisfying the conditions of
Lemma 7.20 and the primitive lower block partitioning P ′ (see the proof of Lemma 7.20).

Hence, for this case, the claim holds. We now assume that X has at least one lower
component. By Lemma 6.13(1b), X also has at least one primitive lower block.

=⇒ Assume that P is a lower block partitioning of X.
By definition, each primitive lower block of X is contained in a lower block Xj with

1 ≤ j ≤ r. This is in particular true for the first primitive lower block X1. By definition,
a lower block is an alternating sequence of primitive lower blocks and maximal upper
sequences, starting with a primitive lower block. This implies that the first lower block
X1 in P starts with the first primitive lower block X1. Consequently, Y0 is the maximal
upper prefix of X. Analogously, Yr is the maximal upper suffix of X.

Consider any substring Yj with 1 ≤ j ≤ r − 1 occurring in P . Yj succeeds the lower
block Xj in P and precedes the lower block Xj+1 in P . Xj ends with a primitive lower
block X1 and Xj+1 starts with another primitive lower block X2. Because each primitive
lower block of X is contained in one of the lower blocks occurring in P , X1 and X2 are
consecutive primitive lower blocks of X. By definition, the string Yj separating them is
an internal maximal upper sequence of X.

⇐= Assume that P satisfies the conditions in the claim.
Let P ′ = Y ′

0X1Y
′
1 . . . Xr0Y

′
r0
for some r0 ≥ 0 1 be the primitive lower block partitioning

of X. The strings Y0, Y1, . . . , Yr occurring in P are the maximal upper prefix, (some of
the) internal maximal upper sequences and the maximal upper suffix of X. Hence, for
each Yj, there exists j1 with 0 ≤ j1 ≤ r0 such that Yj equals the substring Y ′

j1
from the

primitive lower block partitioning P ′.
Consider a substring Xj with 1 ≤ j ≤ r occurring in P (see Figure 7.4). Xj is preceded

in P by Yj−1 and succeeded in P by Yj. Let Y
′
j1−1 be the substring in P ′ that is equal to

Yj−1 and let Y ′
j2

be the substring in P ′ that is equal to Yj. Clearly, 0 ≤ j1 − 1 < j2 ≤ r0,

and hence j1 ≤ j2. It is easily verified that Xj = Xj1Y
′
j1
. . . Xj2 satisfies the definition of

a lower block of X.
By definition, a primitive lower block of X neither intersects with the maximal upper

prefix, nor with any internal maximal upper sequence or the maximal upper suffix of X.
Then it certainly does not intersect with any of the strings Y0, Y1, . . . , Yr occurring in P .
Hence, for each primitive lower block Xj0 of X, there must be a j with 1 ≤ j ≤ r, such
that Xj contains Xj0 .

We conclude that P is a lower block partitioning of X.

When we combine the above result with Definition 7.8 and Lemma 7.10(1), we find:

Lemma 7.21 Let X be a nick free formal DNA molecule and let P = Y0X1Y1 . . . XrYr

for some r ≥ 0 be a lower block partitioning of X. For j = 0, 1, . . . , r, Yj is either a

1In fact, r0 ≥ 1, because we assume that X contains at least one primitive lower block.
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maximal upper sequence of X, or the empty string λ. The latter case may occur only for
j = 0 and j = r.

Definition 7.18 and Lemma 7.21 provide us with the following intuitive understand-
ing of a lower block partitioning. A lower block partitioning of a nick free formal DNA
molecule X consists of subsequences Y0, X1, Y1, . . . , Xr, Yr of components of X, where
each subsequence Yj contains at least one upper component, but does not contain lower

components, and each Xj starts with a ‘block’ and ends with a ‘block’ .
Exceptions to this (may) occur if X is double-complete, or if the maximal upper prefix Y0

or the maximal upper suffix Yr of X is empty.

By Lemma 7.20, a lower block partitioning Y0X1Y1 . . . XrYr of a nick free formal DNA
moleculeX is completely determined by the internal maximal upper sequences Y1, . . . , Yr−1

occurring in it. Each internal maximal upper sequence of X may or may not occur.
Because the occurrence of one internal maximal upper sequence is independent of the
occurrence of the others, we have the following result:

Lemma 7.22 Let X be a nick free formal DNA molecule. Then the number of different
lower block partitionings of X is 2nimus(X).

In Figure 7.3, we gave four different lower block partitionings of our example formal DNA
molecule X. For this molecule, we have B↓(X) = 3 and, by Lemma 7.9(2), nimus(X) = 2.
By the above, there do not exist other lower block partitionings of X.

We can relate the values of B↑, B↓ and nl for a nick free formal DNA molecule X to
the values for the substrings of X in a lower block partitioning:

Lemma 7.23 Let X be a nick free formal DNA molecule and let Y0X1Y1 . . . XrYr for
some r ≥ 0 be a lower block partitioning of X.

1. B↑(X) = B↑(Y0) + B↑(X1) + B↑(Y1) + · · ·+ B↑(Xr) +B↑(Yr),
where for j = 0, 1, . . . , r,

B↑(Yj) =

{
0 if Yj is empty or double-complete
1 otherwise.

2. B↓(X) = B↓(X1) + · · ·+ B↓(Xr),
and for j = 0, 1, . . . , r, B↓(Yj) = 0.

3. nl(X) = nl(Y0) + nl(X1) + nl(Y1) + · · ·+ nl(Xr) + nl(Yr).

Note that if B↓(X) = 0, then by Lemma 7.19, the only lower block partitioning of X is
Y0 = X. In that case, r = 0 and the claims are nearly trivial.

Proof: Let us use P to denote the lower block partitioning under consideration.
By definition, each lower blockXj occurring in P is an alternating sequence of primitive

lower blocks and maximal upper sequences of X, containing at least one primitive lower
block. By Lemma 7.21, each substring Yj occurring in P is either a maximal upper
sequence of X or the empty string λ. In both cases, Yj can be considered as an alternating
sequence of primitive lower blocks and maximal upper sequences of X – one which does
not contain any primitive lower block.
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Certain notions are not defined, and certain results are not applicable to an empty
substring Yj. Therefore, in the remainder of the proof, we will often restrict ourselves to
the non-empty substrings Yj. Note that only the maximal upper prefix Y0 of X and the
maximal upper suffix Yr of X may be empty, and that by definition, B↑(λ) = B↓(λ) =
nl(λ) = 0.

1. If X is double-complete, then by Lemma 7.19, the only lower block partitioning of
X is Y0 = X. In this case, the claim is trivially valid.

We now assume that X is not double-complete. By Lemma 7.12(4b), each maximal
upper sequence of X contains at least one upper component, and by Lemma 7.13(3),
B↑(X) = nmus(X).

Each non-empty substring Yj or Xj occurring in P can be considered as an altern-
ating sequence of primitive lower blocks and maximal upper sequences of X. In
particular, the maximal upper sequences of X are distributed over these substrings.
By Lemma 7.14(2), the maximal upper sequences of one such substring are precisely
the maximal upper sequences of X occurring in it. In particular, for each non-empty
substring Yj, nmus(Yj) = 1.

By Lemma 7.17(1), none of the lower blocks Xj is double-complete. Because each
maximal upper sequence of X contains at least one upper component, none of the
non-empty substrings Yj is double-complete, either. Hence, the number of maximal
upper sequences of any of the non-empty substringsXj and Yj is equal to the number
of primitive upper blocks of it.

Consequently,

B↑(X) = nmus(X)

=
∑

non-empty Y ′
j s

nmus(Yj) +
r∑

j=1

nmus(Xj)

=
∑

non-empty Y ′
j s

B↑(Yj) +
r∑

j=1

B↑(Xj)

=
r∑

j=0

B↑(Yj) +
r∑

j=1

B↑(Xj).

2. By the definition of a lower block partitioning, the primitive lower blocks of X are
distributed over the lower blocks X1, . . . , Xr. By Lemma 7.17(2a), for j = 1, . . . , r,
the number of primitive lower blocks of X occurring in Xj is equal to B↓(Xj).
Consequently,

B↓(X) = B↓(X1) + · · ·+ B↓(Xr)

Each non-empty substring Yj is a maximal upper sequence, which, by Lemma 7.12(2),
does not contain any lower component. Hence by definition, whether a substring Yj

is empty or not, B↓(Yj) = 0.
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3. By definition, a primitive lower block of X is a sequence of components of X. By
Lemma 7.12(2), so is a maximal upper sequence of X. Then also each lower block
Xj and each substring Yj occurring in P is a sequence of components of X.

Hence, the components of X are distributed over the non-empty substrings Yj and
Xj. This holds in particular for the double components of X. By Lemma 6.3, the
double components of such a non-empty substring are precisely the double compon-
ents of X occurring in it.

Consequently,

nl(X) =
∑

non-empty Y ′
j s

nl(Yj) +
r∑

j=1

nl(Xj)

=
r∑

j=0

nl(Yj) +
r∑

j=1

nl(Xj).

Recall that Theorem 6.31 gives lower bounds on the length |E| of a DNA expression E
denoting a certain formal DNA molecule X, in terms of B↑(X), B↓(X), nl(X) and |X|A.
We are now ready to construct DNA expressions that achieve these lower bounds for nick
free formal DNA molecules with at least one single-stranded component.

Theorem 7.24 Let X be a nick free formal DNA molecule which contains at least one
single-stranded component, and let x′

1 . . . x
′
k for some k ≥ 1 be the decomposition of X.

1. If B↑(X) ≥ B↓(X), then

• let P = Y0X1Y1 . . . XrYr for some r ≥ 0 be an arbitrary lower block partitioning
of X;

• for j = 1, . . . , r, let Ej be an arbitrary minimal DNA expression denoting Xj;

• for j = 0, 1, . . . , r, let Yj = x′
aj
. . . x′

bj
for some aj ≥ 1 and bj ≤ k;

• for j = 0, 1, . . . , r and for i = aj, . . . , bj, let

εi =

{
αi if x′

i =
(
αi

−
)
for an N -word αi

〈l αi〉 if x′
i =
(

αi

c(αi)

)
for an N -word αi;

and (7.2)

• let

E = 〈↑ εa0 . . . εb0E1εa1 . . . εb1 . . . Erεar . . . εbr〉 . (7.3)

Then

(a) all ingredients needed to construct E (i.e., the lower block partitioning P, the
minimal DNA expressions Ej, the indices aj and bj, and the arguments εi) are
well defined, and

(b) E is a minimal DNA expression denoting X, and

|E| = 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A. (7.4)
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α1 α2
α3

α4
α5

α6 α7 α8
α9

α10 α11 α12 α13 α14
α15

α16 α17 α18

Figure 7.5: The formal DNA molecule from Figure 7.1 with occurring N -words indic-
ated.

2. If B↓(X) ≥ B↑(X), then

• let P = Y0X1Y1 . . . XrYr for some r ≥ 0 be an arbitrary upper block partitioning
of X;

• for j = 1, . . . , r, let Ej be an arbitrary minimal DNA expression denoting Xj;

• for j = 0, 1, . . . , r, let Yj = x′
aj
. . . x′

bj
for some aj ≥ 1 and bj ≤ k;

• for j = 0, 1, . . . , r and for i = aj, . . . , bj, let

εi =

{
αi if x′

i =
(−
αi

)
for an N -word αi

〈l αi〉 if x′
i =
(

αi

c(αi)

)
for an N -word αi;

and

• let

E = 〈↓ εa0 . . . εb0E1εa1 . . . εb1 . . . Erεar . . . εbr〉 . (7.5)

Then

(a) all ingredients needed to construct E (i.e., the upper block partitioning P, the
minimal DNA expressions Ej, the indices aj and bj, and the arguments εi) are
well defined, and

(b) E is a minimal DNA expression denoting X, and

|E| = 3 + 3 ·B↑(X) + 3 · nl(X) + |X|A. (7.6)

Claim 2 is completely analogous to Claim 1. We only consider an upper block partitioning

P , lower components
(−
αi

)
in the definition of the εi’s, and a ↓-expression E = 〈↓ . . .〉,

whose length |E| is expressed in terms of (a.o.) B↑(X).
Note that, if, for example, B↑(X) ≥ B↓(X) and the maximal upper prefix Y0 of X is

empty, then we may choose a0 = 1 and b0 = 0 in Claim 1. If, on the other hand, a substring
Yj is non-empty (which is certainly the case if 1 ≤ j ≤ r − 1), then 1 ≤ aj ≤ bj ≤ k.

Note further that the construction for minimal DNA expressions described in this
result is recursive. The minimal DNA expression specified, which denotes the entire formal
DNA molecule X, may have arguments Ej that are themselves minimal DNA expressions
denoting formal DNA submolecules Xj of X. In the proof, we will see that this recursion
is well defined.

Note finally that if B↑(X) = B↓(X), then both Claim 1 and Claim 2 are applicable,
and we have both a minimal ↑-expression and a minimal ↓-expression denoting X. This
is the case in Example 7.26 below.

Example 7.25 In Figure 7.5, we have specified names for the components of the formal
DNA molecule from (a.o.) Figure 7.1 and Figure 7.3. For this formal DNA molecule X,
we have B↑(X) = 4 and B↓(X) = 3. Hence, by Theorem 7.24(1), we can construct a
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minimal DNA expression denoting X from a lower block partitioning of X. Because X

has two internal maximal upper sequences (
(
α7

−
)
and

(
α11

−
)(

α12

c(α12)

)(
α13

−
)
), there are, by

Lemma 7.22, four different lower block partitionings of X. We will consider two of them,
the ones depicted in Figure 7.3(a3) and (a4).

For the former lower block partitioning, r = 2 and

Y0 =
(
α1

−
)
,

X1 =
(

α2

c(α2)

)(−
α3

)(
α4

c(α4)

)(−
α5

)(
α6

c(α6)

)(
α7

−
)(

α8

c(α8)

)(−
α9

)(
α10

c(α10)

)
,

Y1 =
(
α11

−
)(

α12

c(α12)

)(
α13

−
)
,

X2 =
(

α14

c(α14)

)( −
α15

)(
α16

c(α16)

)
,

Y2 =
(
α17

−
)(

α18

c(α18)

)
.

We have B↓(X1) = 2 > B↑(X1) = 1. When we (recursively) apply Theorem 7.24(2) to

X1 and Theorem 7.24(1) to the primitive upper block
(

α6

c(α6)

)(
α7

−
)(

α8

c(α8)

)
of X1, we find

that a minimal DNA expression denoting X1 is

E1 = 〈↓ 〈l α2〉α3 〈l α4〉α5 〈↑ 〈l α6〉α7 〈l α8〉〉α9 〈l α10〉〉 .

Further, B↓(X2) = 1 > B↑(X2) = 0, and again by Theorem 7.24(2), a minimal DNA
expression denoting X2 is

E2 = 〈↓ 〈l α14〉α15 〈l α16〉〉 .

Now, by Theorem 7.24(1), a minimal DNA expression denoting X is

E = 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉α5 〈↑ 〈l α6〉α7 〈l α8〉〉α9 〈l α10〉〉
α11 〈l α12〉α13 〈↓ 〈l α14〉α15 〈l α16〉〉 α17 〈l α18〉 〉 . (7.7)

Here, we used additional white space to clearly indicate the arguments corresponding to
different substrings Xj and Yj of the lower block partitioning.

According to the lower block partitioning depicted in Figure 7.3(a4), r = 1 and

Y0 =
(
α1

−
)
,

X1 =
(

α2

c(α2)

)(−
α3

)(
α4

c(α4)

)(−
α5

)(
α6

c(α6)

)(
α7

−
)(

α8

c(α8)

)(−
α9

)

·
(

α10

c(α10)

)(
α11

−
)(

α12

c(α12)

)(
α13

−
)(

α14

c(α14)

)( −
α15

)(
α16

c(α16)

)
,

Y1 =
(
α17

−
)(

α18

c(α18)

)
.

We now have B↓(X1) = 3 and B↑(X1) = 2. By Theorem 7.24(2), a minimal DNA expres-
sion E1 denoting X1 can be constructed from an upper block partitioning of X1. Contrary

to the previous case, X1 contains an internal maximal lower sequence,
(−
α9

)
. Hence, there

exist two different upper block partitionings of X1, which yield different minimal DNA
expressions E1. We arbitrarily choose the primitive upper block partitioning, which in-

cludes all maximal lower sequences of X1, in particular
(−
α9

)
. For the primitive upper
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blocks
(

α6

c(α6)

)(
α7

−
)(

α8

c(α8)

)
and

(
α10

c(α10)

)(
α11

−
)(

α12

c(α12)

)(
α13

−
)(

α14

c(α14)

)
of X1, we find a min-

imal DNA-expression with Theorem 7.24(1). The resulting minimal DNA-expression for
X1 is

E1 = 〈↓ 〈l α2〉α3 〈l α4〉α5 〈↑ 〈l α6〉α7 〈l α8〉〉 α9

〈↑ 〈l α10〉α11 〈l α12〉α13 〈l α14〉〉 α15 〈l α16〉 〉

and the corresponding minimal DNA-expression denoting X is

E = 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉α5 〈↑ 〈l α6〉α7 〈l α8〉〉 α9

〈↑ 〈l α10〉α11 〈l α12〉α13 〈l α14〉〉 α15 〈l α16〉 〉 α17 〈l α18〉 〉 .

Indeed, both minimal DNA expressions for X have length

|E| = 39 + |X|A = 3 + 3 · 3 + 3 · 9 + |X|A = 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A.

Example 7.26 Consider the nick free formal DNA molecule

X =
(
α1

−
)(

α2

c(α2)

)(−
α3

)(
α4

c(α4)

)(
α5

−
)(

α6

c(α6)

)(
α7

−
)(

α8

c(α8)

)(−
α9

)(
α10

c(α10)

)
, (7.8)

for which B↑(X) = B↓(X) = 2. By Theorem 7.24, we can construct minimal ↑-expressions
(based on lower block partitionings) and minimal ↓-expressions (based on upper block par-
titionings) for X. By Lemma 7.22 and Lemma 7.9(2), X has two lower block partitionings
and two upper block partitionings. We have depicted them in Figure 7.6. We carry out
the construction for the upper block partitioning Y0X1Y1 from Figure 7.6(d). Here Y0 = λ,

X1 =
(
α1

−
)(

α2

c(α2)

)(−
α3

)(
α4

c(α4)

)(
α5

−
)(

α6

c(α6)

)(
α7

−
)(

α8

c(α8)

)

and Y1 =
(−
α9

)(
α10

c(α10)

)
. By Theorem 7.24(2), the resulting minimal ↓-expression is Ed =

〈↓ E1α9 〈l α10〉〉, where E1 is a minimal DNA expression denoting X1.
AsB↑(X1) = 2 > B↓(X1) = 1, we can (recursively) apply Theorem 7.24(1) to construct

E1. The result is

E1 = 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉α5 〈l α6〉α7 〈l α8〉〉 .

This way, we can construct a minimal DNA expression denoting X for each of the four
partitionings from Figure 7.6:

Ea = 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 α5 〈l α6〉α7 〈↓ 〈l α8〉α9 〈l α10〉〉〉 , (7.9)

Eb = 〈↑ α1 〈↓ 〈l α2〉α3 〈↑ 〈l α4〉α5 〈l α6〉α7 〈l α8〉〉α9 〈l α10〉〉〉 , (7.10)

Ec = 〈↓ 〈↑ α1 〈l α2〉〉 α3 〈↑ 〈l α4〉α5 〈l α6〉α7 〈l α8〉〉 α9 〈l α10〉〉 , (7.11)

Ed = 〈↓ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉α5 〈l α6〉α7 〈l α8〉〉 α9 〈l α10〉〉 . (7.12)

All these minimal DNA expressions have length

|E| = 24 + |X|A = 3 + 3 · 2 + 3 · 5 + |X|A
= 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A = 3 + 3 · B↑(X) + 3 · nl(X) + |X|A.
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α1 α2
α3

α4 α5 α6 α7 α8
α9

α10

α1 α2
α3

α4 α5 α6 α7 α8
α9

α10

α1 α2
α3

α4 α5 α6 α7 α8
α9

α10

α1 α2
α3

α4 α5 α6 α7 α8
α9

α10

Y0︷︸︸︷

︸ ︷︷ ︸
X1

Y1︷ ︸︸ ︷

︸ ︷︷ ︸
X2

Y2 = λ

(a)

Y0︷︸︸︷

︸ ︷︷ ︸
X1

Y1 = λ

(b)

Y0 = λ

X1︷ ︸︸ ︷

︸︷︷︸
Y1

X2︷ ︸︸ ︷

︸ ︷︷ ︸
Y2

(c)

Y0 = λ

X1︷ ︸︸ ︷

︸ ︷︷ ︸
Y1

(d)

Figure 7.6: Partitionings of the formal DNA molecule X from Example 7.26. (a) The
primitive lower block partitioning of X. (b) The second lower block partitioning of X.
(c) The primitive upper block partitioning of X. (d) The second upper block partitioning
of X.

In Example 7.26, each lower block partitioning and each upper block partitioning of X
yielded a single minimal DNA expression. This is not always the case. As we observed
in Example 7.25, there may be more than one minimal DNA expression Ei denoting a
lower block X i occurring in a lower block partitioning. Then we also find more than
one minimal ↑-expression corresponding to the same lower block partitioning. This is the
case if B↓(X i) ≥ 3. Of course, an analogous property holds for minimal ↓-expressions
corresponding to an upper block partitioning. In Section 8.5, we address the number of
minimal DNA expressions denoting a given formal DNA molecule.

Proof of Theorem 7.24: First we prove for Claim 1 that most ingredients needed to
construct E are well defined. Assuming that also the last ingredients are well defined, we
prove that E is indeed a DNA expression denoting X. The proof of the corresponding
part of Claim 2 is completely analogous. Later, we will prove the remaining parts of both
claims.

• Lower block partitionings are defined for every nick free formal DNA molecule.
By Lemma 7.22, there exist 2nimus(X) ≥ 1 lower block partitionings for X. We
may choose any of these. For example, we may let P be the primitive lower block
partitioning.

By Lemma 7.21, Y0 is either a maximal upper sequence of X or the empty string λ,
Y1, . . . , Yr−1 are maximal upper sequences, and Yr is again either a maximal upper
sequence of the empty string λ. If Y0 = λ, then we may take a0 = 1 and b0 = 0.
Analogously, if Yr = λ, then we may take ar = k+1 and br = k. By Lemma 7.12(2),
each maximal upper sequence Yj is an alternating sequence of upper components
and double components of X. Hence, there exist aj and bj with 1 ≤ aj ≤ bj ≤ k
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such that Yj = x′
aj
. . . x′

bj
.

Moreover, for each x′
i with aj ≤ i ≤ bj for some j with 0 ≤ j ≤ r, there exists

an N -word αi, such that x′
i is either (the upper component)

(
αi

−
)
, or (the double

component)
(

αi

c(αi)

)
. Consequently, the arguments εi are well defined.

• Let us, for a moment, assume that the minimal DNA expressions E1, . . . , Er denoting
the lower blocks X1, . . . , Xr, respectively, are also well defined, i.e., that X1, . . . , Xr

are expressible.

Clearly, for each applicable i, S+(εi) = x′
i. Because x

′
i is either an upper component

or a double component of X, consecutive arguments εi and εi+1 fit together by upper
strands.

For j = 1, . . . , r, if Yj−1 = x′
aj−1

. . . x′
bj−1

6= λ (which is certainly the case if j ≥ 2),

then it is a maximal upper sequence. It is succeeded in X by the lower block Xj.

By Lemma 7.12(1b), R(S+(εbj−1
)) = R(x′

bj−1
) = R(Yj−1) = R(

(
αbj−1

−
)
) ∈ A+ and

L(S+(Ej)) = L(Xj) = L(x′
bj−1+1) ∈ A±. Hence, the argument εbj−1

prefits Ej by
upper strands.

Analogously, for j = 1, . . . , r, if Yj = x′
aj
. . . x′

bj
6= λ (which is certainly the case if

j ≤ r − 1), then the argument Ej prefits εaj by upper strands.

Consequently, E is indeed a DNA expression.

• For notational convenience, we assume that both Y0 and Yr are non-empty.2 Then
by Lemma 5.10,

E ≡ E ′ = 〈↑ 〈↑ εa0 . . . εb0〉E1 〈↑ εa1 . . . εb1〉 . . . Er 〈↑ εar . . . εbr〉〉 . (7.13)

For an arbitrary j with 0 ≤ j ≤ r, we consider the argument
〈
↑ εaj . . . εbj

〉
of E ′. We

established before that for i = aj, . . . , bj , S+(εi) = x′
i is either an upper component or

a double component of X. By definition, such components are nick free. Moreover,
the upper components and double components occur in x′

aj
. . . x′

bj
, alternately. In

particular, we do not have two consecutive double components. Hence, the operator
↑ does not introduce (lower) nick letters between its arguments, and

S(
〈
↑ εaj . . . εbj

〉
) = ν+(x′

aj
) . . . ν+(x′

bj
) = x′

aj
. . . x′

bj
= Yj.

We use this to determine S(E ′):

S(E ′)

= ν+(Y0)y1ν
+(X1)y2ν

+(Y1)y3 . . . y2r−1ν
+(Xr)y2rν

+(Yr) (7.14)

= Y0y1X1y2Y1y3 . . . y2r−1Xry2rYr,

where the yi’s are defined as in (4.3). The second equality in (7.14) holds because
each maximal upper sequence Yj and each lower block Xj is nick free.

By Lemma 7.12(1), for j = 1, . . . , r, R(Yj−1) ∈ A+, L(Xj), R(Xj) ∈ A± and L(Yj) ∈
A+. Consequently, all yi’s are empty, and thus

S(E) = S(E ′) = Y0X1Y1 . . . XrYr = X.

2If, for example, Y0 = λ, then the ‘argument’ 〈↑ εa0
. . . εb0〉 = 〈↑〉 in (7.13) would not make sense.
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In order to complete the proof, we must prove that the minimal DNA expressions Ej

occurring in Claims 1 and 2 are well defined, and that E has the specified length (see
(7.4) and (7.6)) and is minimal. We do this simultaneously for both claims, by induction
on the lower of B↑(X) and B↓(X). For the ease of formulation, our induction hypothesis
will be that Claims 1 and 2 are valid for certain formal DNA molecules X, but we will
only prove the parts of the claims we have not yet proved.

• Assume that either B↑(X) = 0, or B↓(X) = 0.

1. We assume that B↑(X) ≥ B↓(X) = 0. By Lemma 7.19, X does not contain any
lower component and the only lower block partitioning of X is P = Y0 = X. Because
P does not contain any lower block Xj, the construction of E in Claim 1 does not
require any minimal DNA expression Ej:

E = 〈↑ ε1 . . . εk〉 ,

where for i = 1, . . . , k, εi is defined by (7.2). For i = 1, . . . , k,

|εi| =





|αi| = |
(
αi

−
)
|A = |x′

i|A
if x′

i =
(
αi

−
)
for an N -word αi

| 〈l αi〉 | = 3 + |αi| = 3 + |
(

αi

c(αi)

)
|A = 3 + |x′

i|A
if x′

i =
(

αi

c(αi)

)
for an N -word αi.

(7.15)

Consequently,

|E| = 3 +
k∑

i=1

|εi|

= 3 + 3 · nl(X) +
k∑

i=1

|x′
i|A

= 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A.

By Theorem 6.31(1), this is the minimal length possible for an ↑-expression denoting
X. In order to conclude that E is a minimal DNA expression for X, we have to
verify that there does not exist a shorter l-expression or ↓-expression for X.

By assumption, X contains at least one single-stranded component, which must
be an upper component. By definition, the semantics of an l-expression does not
contain any single-stranded component. Consequently, there does not exist any
l-expression denoting X, let alone an l-expression shorter than E.

By Lemma 6.13(1a), B↑(X) must be positive, and hence larger than B↓(X). By
Lemma 6.12(1), B↑(X) = 1. Now, let E ′ be an arbitrary ↓-expression denoting X.
Then by Theorem 6.31(2), E ′ is longer than E:

|E ′| ≥ 3 + 3 ·B↑(X) + 3 · nl(X) + |X|A = 6 + 3 · nl(X) + |X|A > |E|.

Hence, only ↑-expressions denoting X may be minimal, and in particular, E is
minimal.
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2. The proof of this claim is analogous to that of the previous claim.

We conclude that both claims are valid, if either B↑(X) = 0 or B↓(X) = 0.

• We now make the induction step. Let p ≥ 0, and suppose that for each nick free formal
DNA molecule X with at least one single-stranded component and either B↑(X) ≤ p, or
B↓(X) ≤ p, Claims 1 and 2 are valid (induction hypothesis). Now, let X be a nick free
formal DNA molecule for which the lower of B↑(X) and B↓(X) is p+ 1.

1. Let us assume that B↑(X) ≥ B↓(X) = p + 1, and let P = Y0X1Y1 . . . XrYr be an
arbitrary lower block partitioning of X. As B↓(X) = p + 1 ≥ 1, Lemma 7.23(2)
implies in particular that r ≥ 1.

For an arbitrary j with 1 ≤ j ≤ r, we consider the lower block Xj. Obviously
B↓(Xj) ≤ B↓(X) = p + 1. Then by Lemma 7.17(2b), B↑(Xj) = B↓(Xj) − 1 ≤ p.
Now, by the induction hypothesis, we can construct a minimal ↓-expression E ′

j

denoting Xj, for which

|E ′
j| = 3+3 ·B↑(Xj)+3 ·nl(Xj)+ |Xj|A = 3 ·B↓(Xj)+3 ·nl(Xj)+ |Xj|A.(7.16)

In particular, Xj is expressible and minimal DNA expressions denoting Xj are
defined. Let Ej be an arbitrary minimal DNA expression denoting Xj. Because Ej

and E ′
j are equivalent and both of them are minimal, |Ej| = |E ′

j|.
We have thus proved that the minimal DNA expressions E1, . . . , Er are well defined,
and we also know their lengths. E1, . . . , Er were the last ingredients we needed to
construct the string

E = 〈↑ εa0 . . . εb0E1εa1 . . . εb1 . . . Erεar . . . εbr〉 ,

as described in the claim. By the first part of the proof, we know that E is a DNA
expression denoting X.

We consider a substring Yj with 0 ≤ j ≤ r and an argument εi with aj ≤ i ≤ bj.

Also now, the length |εi| of εi satisfies (7.15). Because, by Lemma 6.3, the double
components of X occurring in Yj are precisely the double components of Yj,

bj∑

i=aj

|εi| = 3 · nl(Yj) +

b0∑

i=a0

|x′
i|A = 3 · nl(Yj) + |Yj|A. (7.17)

When we combine (7.16) and (7.17) with Lemma 7.23(2) and (3), we can establish
the length of E:

|E| = 3 +
r∑

j=0

bj∑

i=aj

|εi|+
r∑

j=1

|Ej|

= 3 +
r∑

j=0

(
3 · nl(Yj) + |Yj|A

)
+

r∑

j=1

(
3 ·B↓(Xj) + 3 · nl(Xj) + |Xj|A

)

= 3 + 3 ·
r∑

j=1

B↓(Xj) + 3 ·
(

r∑

j=0

nl(Yj) +
r∑

j=1

nl(Xj)

)
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+
r∑

j=0

|Yj|A +
r∑

j=1

|Xj|A

= 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A. (7.18)

By Theorem 6.31(1), this is the minimal length for an ↑-expression denoting X.

As in the base case, we see that there does not exist any l-expression denoting X.
If E ′ is a ↓-expression denoting X, then by Theorem 6.31(2), E ′ cannot be shorter
than E:

|E ′| ≥ 3 + 3 ·B↑(X) + 3 · nl(X) + |X|A
≥ 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A = |E|.

Hence, E is a minimal DNA expression for X with the prescribed length.

We conclude that this claim is also valid for X.

2. The induction step for this claim is analogous to that for the previous claim.

The inductive proof also makes clear that the recursive construction induced by this
result is well defined. If either B↑(X) = 0, or B↓(X) = 0, then we can directly construct a
minimal DNA expression denoting X. If the lower of B↑(X) and B↓(X) is p+1 ≥ 1, then
the construction includes minimal DNA expressions Ej denoting formal DNA submolecules
Xj for which the lower of B↑(Xj) and B↓(Xj) is at most p.

Theorem 7.5 and Theorem 7.24 describe minimal DNA expressions for all nick free
formal DNA molecules. We have thus, in particular, proved that all nick free formal DNA
molecules are expressible (see Theorem 5.5).

For future reference, we prove a property of the arguments of the minimal DNA ex-
pressions we construct according to Theorem 7.24.

Lemma 7.27 Let X be a nick free formal DNA molecule which contains at least one
single-stranded component, and let E be a minimal DNA expression denoting X as de-
scribed in Theorem 7.24 (equation (7.3) or equation (7.5)).

Then the arguments of E are N -words and DNA expressions, alternately. In particu-
lar, each N -word-argument of E is a maximal N -word occurrence in E.

Note that by Theorem 4.3, we can always make sure that the N -word-arguments of
a DNA expression are maximal N -word occurrences, simply by joining consecutive N -
word-arguments into one N -word. The N -word-arguments we mean here, however, are
the N -words εi, as they literally occur in Theorem 7.24.

Proof: Without loss of generality, assume that E has been constructed according to
Theorem 7.24(1). Hence, B↑(X) ≥ B↓(X) and E is an ↑-expression.

Let x′
1 . . . x

′
k for some k ≥ 1 be the decomposition of X. Further, let Y0X1Y1 . . . XrYr

for some r ≥ 0 be the lower block partitioning of X that E is based on, where for
j = 0, 1, . . . , r, Yj = x′

aj
. . . x′

bj
for some aj and bj. Finally, let

E = 〈↑ εa0 . . . εb0E1εa1 . . . εb1 . . . Erεar . . . εbr〉 ,
as specified in Theorem 7.24(1).

We first prove that no N -word-argument of E is succeeded by another N -word-
argument. After that, we prove an analogous property for expression-arguments.



7.1 Minimal DNA expressions for a nick free formal DNA molecule 167

• Consider an arbitrary N -word-argument of E.

For j = 1, . . . , r, Ej is a minimal DNA expression denoting Xj, and in particular Ej

is not an N -word. Hence, the N -word we consider must be equal to εi = αi with

aj ≤ i ≤ bj for some j with 0 ≤ j ≤ r. By construction, x′
i = S+(εi) =

(
αi

−
)
is an

upper component of X, which is part of the maximal upper sequence Yj = x′
aj
. . . x′

bj
.

If i ≤ bj − 1, then by Corollary 3.8(2) x′
i+1 is a double component

(
αi+1

c(αi+1)

)
of X for

an N -word αi+1, which is also part of Yj. Hence, the argument succeeding εi = αi

in E is the l-expression εi+1 = 〈l αi+1〉.
If i = bj and j = r, then i = br and εi is the last argument of E. If i = bj and
j ≤ r − 1, then εi is succeeded by the (minimal) DNA expression Ej+1.

In none of the cases, εi is succeeded in E by an N -word-argument.

• Consider an arbitrary expression-argument ε of E.

By construction, either ε is Ej for some j with 1 ≤ j ≤ r, or it is an l-expression
εi = 〈l αi〉 for an N -word αi with aj ≤ i ≤ bj for some j with 0 ≤ j ≤ r.

In the former case, ε = Ej denotes the lower block Xj of X.

If Yj, the substring succeeding Xj in the lower block partitioning, is empty, then by
Lemma 7.21, we must have j = r. This implies that ε = Er is the last argument of
E.

If, on the other hand, Yj = x′
aj
. . . x′

bj
is not empty, then it is a maximal upper

sequence. By Lemma 7.12(1a), the first component x′
aj

of Yj is an upper component(
αaj

−
)
for an N -word αaj . Hence, the argument succeeding ε = Ej in E is (the

N -word) εaj = αaj .

In the latter case, ε = εi = 〈l αi〉 denotes the double component x′
i =
(

αi

c(αi)

)
of

X, which is part of the maximal upper sequence Yj = x′
aj
. . . x′

bj
.

If i ≤ bj − 1, then x′
i is succeeded in Yj by the upper component

(
αi+1

−
)
for an N -

word αi+1. This upper component corresponds to an N -word-argument εi+1 = αi+1,
which succeeds εi = 〈l αi〉 in E.

If, on the other hand, i = bj, then the maximal upper sequence Yj ends by a double
component. By Lemma 7.12(1b), this is only possible if i = bj = k. This implies
that j = r and that the argument ε = 〈l αi〉 is the last argument of E.

In none of the cases, the DNA expression ε is succeeded in E by another DNA
expression.

By Theorem 7.5 and Theorem 7.24, we cannot only construct a minimal DNA expres-
sion E for a given nick free formal DNA molecule. We can also calculate the length |E| of
this minimal DNA expression without having to explicitly perform the construction. The
length is simply a function of some elementary structural properties of the formal DNA
molecule.

By definition, all minimal DNA expressions denoting a certain formal DNA molecule
have the same length. Hence, when we know the length of a minimal DNA expression
we can construct for a nick free formal DNA molecule, we also know the length of an



168 Ch. 7 The Construction of Minimal DNA Expressions

arbitrary minimal DNA expression denoting the same molecule. Subsequently, we can use
that knowledge to derive other properties of this (arbitrary) minimal DNA expression. In
this section, we restrict ourselves to a few properties. In Section 8.1 and Section 8.3, we
will present more of them.

We can combine the two values for |E| from Theorem 7.24(1) and (2).

Corollary 7.28 Let X be a nick free formal DNA molecule which contains at least one
single-stranded component, and let E be a minimal DNA expression denoting X. Then

|E| = 3 + 3 · p+ 3 · nl(X) + |X|A,

where p is the minimum of B↓(X) and B↑(X).

Once again, E is not necessarily the result of the construction from Theorem 7.24, but it
has the same length as a minimal DNA expression denoting X that is the result of that
construction.

We will see later that sometimes it is sufficient to have an upper bound on the length of
a minimal DNA expression for a nick free formal DNA molecule. We give two such upper
bounds here. They follow from the previous result, except for double-complete molecules.

Corollary 7.29 Let X be a nick free formal DNA molecule and let E be a minimal DNA
expression denoting X.

1. |E| ≤ 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A. (7.19)

2. |E| ≤ 3 + 3 ·B↑(X) + 3 · nl(X) + |X|A.

Proof:

1. If X does not contain any single-stranded component, hence X =
(

α1

c(α1)

)
for an

N -word α1, then by definition B↓(X) = 0, nl(X) = 1 and |X|A = |α1|. By The-
orem 7.5, E = 〈l α1〉 is the unique minimal DNA expression denoting X. Then the
left hand side of (7.19) evaluates to 3 + |α1| and the right hand side evaluates to
6 + |α1|. Indeed, the inequality holds.

If X contains at least one single-stranded component, then the claim follows from
Corollary 7.28, because obviously the minimum p of B↓(X) and B↑(X) satisfies
p ≤ B↓(X).

2. The proof of this claim is analogous to that of the previous claim.

As we mentioned after the statement of Theorem 7.24, if X is a nick free formal DNA
molecule containing at least one single-stranded component and B↑(X) = B↓(X), then
there both exist a minimal ↑-expression and a minimal ↓-expression denoting X.

We now show that if X is nick free and B↑(X) 6= B↓(X), then all minimal DNA
expressions are of the same type: they are either ↑-expressions or ↓-expressions, depending
on which of B↑(X) and B↓(X) is higher.
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Lemma 7.30 Let X be a nick free formal DNA molecule.

1. If B↑(X) > B↓(X), then each minimal DNA expression denoting X is an ↑-expres-
sion.

2. If B↓(X) > B↑(X), then each minimal DNA expression denoting X is a ↓-expression.

Proof:

1. Assume that B↑(X) > B↓(X) and let E be a minimal DNA expression denoting
X. Then by the definition of a primitive upper block, X contains at least one
upper component. Because the semantics of an l-expression does not contain single-
stranded components, E cannot be an l-expression.
By Corollary 7.28,

|E| = 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A.

By Theorem 6.31(2), each ↓-expression E ′ denoting X satisfies

|E ′| ≥ 3 + 3 ·B↑(X) + 3 · nl(X) + |X|A > |E|,

because B↑(X) > B↓(X). Consequently, a ↓-expression E ′ denoting X cannot be
minimal and E has to be an ↑-expression.

2. The proof of this claim is analogous to that of the previous claim.

When we combine this result with Lemma 7.17(2b), we immediately obtain

Corollary 7.31 Let X be a nick free formal DNA molecule.

1. Let Y0X1Y1 . . . XrYr for some r ≥ 0 be an arbitrary lower block partitioning of
X. Then for j = 1, . . . , r, each minimal DNA expression Ej denoting Xj is a
↓-expression.
In particular, if X contains at least one single-stranded component and B↑(X) ≥
B↓(X), then for j = 1, . . . , r, the minimal DNA expression Ej occurring in The-
orem 7.24(1) is a ↓-expression.

2. Let Y0X1Y1 . . . XrYr for some r ≥ 0 be an arbitrary upper block partitioning of
X. Then for j = 1, . . . , r, each minimal DNA expression Ej denoting Xj is an
↑-expression.
In particular, if X contains at least one single-stranded component and B↓(X) ≥
B↑(X), then for j = 1, . . . , r, the minimal DNA expression Ej occurring in The-
orem 7.24(2) is an ↑-expression.

Note that this result is trivially valid ifX is double-complete. In that case, by Lemma 7.19,
the only lower (or upper) block partitioning of X is Y0 = X, for which r = 0.

We can tell exactly when the argument list of the minimal ↑-expression we construct
starts or ends with a ↓-expression.
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Lemma 7.32 Let X be a nick free formal DNA molecule which contains at least one
single-stranded component, let B↑(X) ≥ B↓(X), and let E be a minimal ↑-expression
denoting X as described in Theorem 7.24(1).

1. The first single-stranded component of X is a lower component, if and only if the
first argument of E is a ↓-argument.

2. The last single-stranded component of X is a lower component, if and only if the
last argument of E is a ↓-argument.

Of course, there is an analogous result for the minimal ↓-expressions from Theorem 7.24(2).

Proof:

1. =⇒ Assume that the first single-stranded component of X is a lower component.
Then by Lemma 7.11(3a) and (3d), the maximal upper prefix Y0 of X is empty. By
the construction from Theorem 7.24(1) and Corollary 7.31(1), the first argument of
E is a ↓-argument.

⇐= Assume that the first argument of E is a ↓-argument. In the construction
from Theorem 7.24(1), the arguments corresponding to the maximal upper prefix
Y0 of X are N -word-arguments and l-arguments. Because the first argument of E
is not such an argument, Y0 must be empty. By Lemma 7.11(3a) and (3d), the first
single-stranded component of X is a lower component.

2. The proof of this claim is analogous to that of the previous claim.

We can combine this result with Lemma 6.13(3):

Corollary 7.33 Let X be a nick free formal DNA molecule which contains at least one
single-stranded component, let B↑(X) ≥ B↓(X), and let E be a minimal ↑-expression
denoting X as described in Theorem 7.24(1).

1. B↑(X) > B↓(X), if and only if neither the first argument, nor the last argument of
E is a ↓-argument.

2. B↑(X) = B↓(X), if and only if either the first argument, or the last argument of E
is a ↓-argument (and not both of them).

3. It is impossible that both the first argument and the last argument of E are ↓-
arguments.

Again, there is an analogous result for the minimal ↓-expressions from Theorem 7.24(2).

By Theorem 7.5, we know that for a double-complete formal DNA molecule, there is
exactly one minimal DNA expression. Theorem 7.24, however, only provides us with a
particular construction of minimal DNA expressions for nick free formal DNA molecules
containing single-stranded components. We are still far from a complete description of the
language of all minimal DNA expressions for arbitrary , expressible formal DNA molecules.
Nevertheless, we can already draw one conclusion about this language:
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Lemma 7.34 The language of all minimal DNA expressions is not regular.

Note that by Lemma 4.23, the language D of all DNA expressions (minimal or not) is not
regular, either.

Proof: Let α be an arbitrary N -word and let l ≥ 1. Then consider the nick free formal
DNA molecule

Xl =
((

α
c(α)

)(
α
−
)(

α
c(α)

)(−
α

))l
·
(

α
c(α)

)(
α
−
)(

α
c(α)

)
·
((−

α

)(
α

c(α)

)(
α
−
)(

α
c(α)

))l

It is not hard to prove by induction on l that B↑(Xl) = 2l + 1 and B↓(Xl) = 2l, that

Pl = Y0X1Y1 with Y0 =
(

α
c(α)

)(
α
−
)

X1 =
(

α
c(α)

)(−
α

)
·
((

α
c(α)

)(
α
−
)(

α
c(α)

)(−
α

))l−1

·
(

α
c(α)

)(
α
−
)(

α
c(α)

)
·

((−
α

)(
α

c(α)

)(
α
−
)(

α
c(α)

))l−1

·
(−
α

)(
α

c(α)

)

and Y1 =
(
α
−
)(

α
c(α)

)
is a lower block partitioning of Xl, and that

El =
(
〈↑ 〈l α〉α 〈↓ 〈l α〉α

)l 〈↑ 〈l α〉α 〈l α〉〉
(
α 〈l α〉 〉α 〈l α〉 〉

)l

is a minimal DNA expression denoting Xl based on Pl as described in Theorem 7.24. It
follows from the pumping lemma for regular languages (Proposition 2.7), that a language
requiring brackets to match and containing such DNA expressions is not regular.

7.2 Minimal DNA expressions for a formal DNA mo-

lecule with nick letters

For expressible formal DNA molecules that contain nick letters, it is easy to say what
type of DNA expressions (↑-expressions, ↓-expressions or l-expressions) can be minimal:
the outermost operator is determined by the type of nicks.

Lemma 7.35 Let X be an expressible formal DNA molecule.

1. If X contains at least one lower nick letter △, then each minimal DNA expression
denoting X is an ↑-expression.

2. If X contains at least one upper nick letter ▽, then each minimal DNA expression
denoting X is a ↓-expression.

Proof:

1. Assume that X contains at least one lower nick letter. By Lemma 5.2(1), there
does not exist any ↓-expression denoting X, let alone a minimal ↓-expression. Now
it follows from Corollary 7.6 that each minimal DNA expression denoting X is an
↑-expression.

2. The proof of this claim is analogous to that of the previous claim.
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α1 α2

α3

α4 α5

α6

α7 α8 α9

α10

α11 α12 α13 α14 α15 α16 α17 α18

α19

α20 α21 α22

△ △ △ △

Figure 7.7: A formal DNA molecule containing lower nick letters.

Given an expressible formal DNA molecule with nick letters, it is, of course, not
sufficient to know the type of the minimal DNA expressions denoting it. We want to
construct the minimal DNA expressions themselves. For this, we decompose a formal
DNA molecule into nick free pieces and nick letters, as follows:

Definition 7.36 Let X be a formal DNA molecule. The nick free decomposition of X is
the sequence Z1, y1, Z2, y2, . . . , ym−1, Zm for some m ≥ 1 such that

• X = Z1y1Z2y2 . . . ym−1Zm, and

• for h = 1, . . . ,m, Zh is nick free, and

• for h = 1, . . . ,m− 1, yh ∈ {▽, △}.

To simplify the notation, we will in general skip the commas and write Z1y1Z2y2 . . . ym−1Zm

instead of Z1, y1, Z2, y2, . . . , ym−1, Zm to denote the nick free decomposition of a formal
DNA molecule X.

Obviously, because the substrings Zh in the definition are nick free and the yh’s are
precisely the nick letters occurring in X, the nick free decomposition of a formal DNA
molecule is unambiguously defined.

The definition extends to all formal DNA molecules X, whether they are expressible
or not. If, however, X is expressible, then by Theorem 5.4, all nick letters yh are equal:
either each of them is an upper nick letter, or each of them is a lower nick letter.

Example 7.37 Consider the formal DNA molecule X depicted in Figure 7.7. This mo-
lecule contains four lower nick letters and no upper nick letters. The nick free decompos-
ition of X is Z1△

Z2△
Z3△

Z4△
Z5, where

Z1 =
(
α1

−
)(

α2

c(α2)

)(−
α3

)(
α4

c(α4)

)
,

Z2 =
(

α5

c(α5)

)(−
α6

)(
α7

c(α7)

)(
α8

−
)(

α9

c(α9)

)( −
α10

)(
α11

c(α11)

)
,

Z3 =
(

α12

c(α12)

)(
α13

−
)(

α14

c(α14)

)(
α15

−
)(

α16

c(α16)

)
, (7.20)

Z4 =
(

α17

c(α17)

)
,

Z5 =
(

α18

c(α18)

)( −
α19

)(
α20

c(α20)

)(
α21

−
)(

α22

c(α22)

)
.

We give two properties of the substrings Zh in the nick free decomposition of a formal
DNA molecule X. Although the second one is formulated in a formal way, its intuitive
meaning is simple: each Zh is a subsequence of the components of X. Indeed, in Ex-
ample 7.37, we wrote the Zh’s as sequences of upper components, lower components and
double components.
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Lemma 7.38 Let X be a formal DNA molecule, let x′
1 . . . x

′
k for some k ≥ 1 be the decom-

position of X, and let Z1y1Z2y2 . . . ym−1Zm for some m ≥ 1 be the nick free decomposition
of X.

Then for h = 1, . . . ,m,

1. Zh is a formal DNA submolecule of X and in particular Zh 6= λ.

2. there exist ah and bh with 1 ≤ ah ≤ bh ≤ k such that Z1y1 . . . Zh−1yh−1 = x′
1 . . . x

′
ah−1

and yhZh+1 . . . ym−1Zm = x′
bh+1 . . . x

′
k (hence, Zh = x′

ah
. . . x′

bh
).

Proof: Consider the substring Zh with 1 ≤ h ≤ m.

1. By the definition of a formal DNA molecule, X 6= λ, L(X), R(X) ∈ A and nick
letters do not occur in consecutive positions in X. This implies that Zh 6= λ.
Because Zh is nick free, in particular L(Zh), R(Zh) ∈ A.

Now the claim follows from Lemma 3.4.

2. If h = 1, then Z1y1 . . . Zh−1yh−1 = λ and the value ah = 1 suffices for the first part
of the claim.

If h ≥ 2, then R(Z1y1 . . . Zh−1yh−1) = yh−1 ∈ {▽, △}. Because each nick letter
occurring in X is by definition a component of X, there exists ah ≥ 2 such that
yh−1 = x′

ah−1
3 and Z1y1 . . . Zh−1yh−1 = x′

1 . . . x
′
ah−1.

In an analogous way, we find a value bh ≤ k such that yhZh+1 . . . ym−1Zm =
x′
bh+1 . . . x

′
k.

By Claim 1, Zh = x′
ah
. . . x′

bh
is non-empty. Hence, ah ≤ bh.

From now on, we will only consider nick free decompositions of expressible formal DNA
molecules. We will demonstrate that minimal DNA expressions denoting an expressible
molecule X containing nick letters (e.g., minimal ↑-expressions denoting a molecule with
lower nick letters) can be constructed from some special DNA expressions denoting the nick
free pieces of X. These special DNA expressions are operator-minimal DNA expressions:

Definition 7.39 A DNA expression E is operator-minimal if for every DNA expression
E ′ with the same outermost operator as E and with E ′ ≡ E, |E ′| ≥ |E|.
For example, an ↑-expression E denoting a formal DNA molecule X is operator-minimal,
if there does not exist a shorter ↑-expression denoting X. Obviously, each minimal DNA
expression is also operator-minimal.

Example 7.40 We continue with the formal DNA molecule X from Example 7.37, which
is depicted in Figure 7.7. The second formal DNA submolecule occurring in the nick free
decomposition of X is

Z2 =
(

α5

c(α5)

)(−
α6

)(
α7

c(α7)

)(
α8

−
)(

α9

c(α9)

)( −
α10

)(
α11

c(α11)

)
(7.21)

(see (7.20)). We have B↑(Z2) = 1 and B↓(Z2) = 2.

3In fact, ah ≥ 3, because X cannot start with the nick letter yh−1 = x′
ah−1.
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By Lemma 7.30(2), each minimal DNA expression E2 denoting Z2 is a ↓-expression.
When we apply Theorem 7.24 to Z2, we obtain

E2 = 〈↓ 〈l α5〉α6 〈↑ 〈l α7〉α8 〈l α9〉〉α10 〈l α11〉〉 ,

for which (indeed)

|E2| = 18 + |Z2|A = 3 + 3 · 1 + 3 · 4 + |Z2|A = 3 + 3 · B↑(Z2) + 3 · nl(Z2) + |Z2|A.

Now let E ′
2 be an ↑-expression denoting Z2. By Theorem 6.31(1),

|E ′
2| ≥ 3 + 3 · B↓(Z2) + 3 · nl(Z2) + |Z2|A = 3 + 3 · 2 + 3 · 4 + |Z2|A = 21 + |Z2|A.

In other words, by Lemma 6.1, the ↑-expression E ′
2 contains at least 7 operators, whereas

the ↓-expression E2 contains 6 operators. Indeed, an ↑-expression denoting Z2 will never
be minimal. If, however, |E ′

2| = 21+ |Z2|A, then E ′
2 is operator-minimal. It is not difficult

to construct an operator-minimal ↑-expression denoting Z2. We can simply take

E ′
2 = 〈↑ E2〉 = 〈↑ 〈↓ 〈l α5〉α6 〈↑ 〈l α7〉α8 〈l α9〉〉α10 〈l α11〉〉〉 , (7.22)

because S(E ′
2) = ν+(S(E2)) = S(E2) = Z2. Another operator-minimal ↑-expression

denoting Z2, which is less directly related to E2, is

E ′′
2 = 〈↑ 〈↓ 〈l α5〉α6 〈l α7〉〉α8 〈↓ 〈l α9〉α10 〈l α11〉〉〉 . (7.23)

Lemma 7.4 directly relates the minimality of a DNA expression E to the minimality of
the DNA subexpressions of E. For operator-minimal DNA expressions, we have a weaker
result. Its proof is similar to the second part of the proof of Lemma 7.4:

Lemma 7.41 If a DNA expression E is operator-minimal, then each proper DNA subex-
pression of E is minimal.

This result cannot be reversed. It is not sufficient for a DNA expression to be operator-
minimal that all its proper DNA subexpressions are minimal. For example, the DNA
expression E = 〈↑ 〈↑ α1〉〉 has only one proper DNA subexpression: Es = 〈↑ α1〉. It
follows from Theorem 7.24(1) that Es is minimal, whereas E is clearly not operator-
minimal.

The construction from Theorem 7.24(1) can be reused to construct an operator-
minimal ↑-expression for a nick free formal DNA molecule. Of course, an operator-minimal
↓-expression can be constructed in a completely analogous way (cf. Theorem 7.24(2)).

Theorem 7.42 Let X be a nick free formal DNA molecule and let x′
1 . . . x

′
k for some

k ≥ 1 be the decomposition of X.

• Let P = Y0X1Y1 . . . XrYr for some r ≥ 0 be an arbitrary lower block partitioning of
X;

• for j = 1, . . . , r, let Ej be an arbitrary minimal DNA expression denoting Xj;

• for j = 0, 1, . . . , r, let Yj = x′
aj
. . . x′

bj
for some aj ≥ 1 and bj ≤ k;
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• for j = 0, 1, . . . , r and for i = aj, . . . , bj, let

εi =

{
αi if x′

i =
(
αi

−
)
for an N -word αi

〈l αi〉 if x′
i =
(

αi

c(αi)

)
for an N -word αi;

and

• let

E = 〈↑ εa0 . . . εb0E1εa1 . . . εb1 . . . Erεar . . . εbr〉 . (7.24)

Then

(a) all ingredients needed to construct E (i.e., the lower block partitioning P, the min-
imal DNA expressions Ej, the indices aj and bj, and the arguments εi) are well
defined, and

(b) E is an operator-minimal ↑-expression denoting X, and

|E| = 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A. (7.25)

By Theorem 7.24, we know how to construct minimal DNA expressions Ej denoting the
formal DNA submolecules Xj. Hence, the specification above is complete.

Note that there are two subtle differences between Theorem 7.42 and Theorem 7.24(1).
First, we do not demand the formal DNA molecule X to contain at least one single-

stranded component. There also exists an operator-minimal ↑-expression denoting X =(
α1

c(α1)

)
for an N -word α1. For this formal DNA molecule, there exists exactly one lower

block partitioning, namely P = X. The corresponding operator-minimal ↑-expression is
E = 〈↑ 〈l α1〉〉.

Second, we do not restrict ourselves to formal DNA molecules X with B↑(X) ≥ B↓(X).
There exist operator-minimal ↑-expressions for every nick free formal DNA molecule.
Indeed, we have given operator-minimal ↑-expressions for the formal DNA molecule Z2

from (7.21), for which B↑(Z2) < B↓(Z2).
Note finally that the operator-minimal ↑-expression described in Theorem 7.42 achieves

the lower bound from Theorem 6.31(1). Analogously, operator-minimal ↓-expressions
denoting a nick free formal DNA molecule achieve the lower bound from Theorem 6.31(2).

Example 7.43 Indeed, the two operator-minimal ↑-expressions E ′
2 and E ′′

2 we have given
in Example 7.40, which denote the formal DNA molecule Z2 from (7.21), can be construc-
ted according to the description in Theorem 7.42. Both the maximal upper prefix and
the maximal upper suffix of Z2 are empty, but Z2 does have one internal maximal upper

sequence, viz
(
α8

−
)
. Hence, by Lemma 7.22, there are two lower block partitionings of Z2.

The first one is P ′ = Y ′
0X

′
1Y

′
1 = Y ′

0Z2Y
′
1 , where the (empty) maximal upper prefix and

maximal upper suffix of Z2 are denoted by Y ′
0 and Y ′

1 , respectively. The second one is the

primitive lower block partitioning P ′′ = Y ′′
0 X

′′
1Y

′′
1 X

′′
2Y

′′
2 , where the maximal upper prefix

and maximal upper suffix are denoted by Y ′′
0 and Y ′′

2 , respectively, and

X
′′
1 =

(
α5

c(α5)

)(−
α6

)(
α7

c(α7)

)
,

Y ′′
1 =

(
α8

−
)
,

X
′′
2 =

(
α9

c(α9)

)( −
α10

)(
α11

c(α11)

)
.
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The DNA expression E ′
2 from (7.22) corresponds to P ′ and the DNA expression E ′′

2 from
(7.23) corresponds to P ′′.

Example 7.44 Consider the nick free formal DNA molecule X from Figure 7.5, for which
B↑(X) = 4, B↓(X) = 3 and nl(X) = 9. By Lemma 7.30(1), each minimal DNA expression
for X is an ↑-expression. We use the ‘lower analogue’ of Theorem 7.42 to construct an
operator-minimal ↓-expression denoting X. Let P be the upper block partitioning of X
from Figure 7.3(b): P = Y0X1Y1X2Y2X3Y3, where both the maximal lower prefix Y0 and
the maximal lower suffix Y3 are empty,

X1 =
(
α1

−
)(

α2

c(α2)

)
,

Y1 =
(−
α3

)(
α4

c(α4)

)(−
α5

)
,

X2 =
(

α6

c(α6)

)(
α7

−
)(

α8

c(α8)

)
,

Y2 =
(−
α9

)
,

X3 =
(

α10

c(α10)

)(
α11

−
)(

α12

c(α12)

)(
α13

−
)(

α14

c(α14)

)( −
α15

)(
α16

c(α16)

)(
α17

−
)(

α18

c(α18)

)
.

For the upper block X1, we have B↑(X1) = 1 and B↓(X1) = 0. Hence, by Lemma 7.19,
the only lower block partitioning of X1 is P1 = X1. Now, by Theorem 7.24(1),

E1 = 〈↑ α1 〈l α2〉〉

is a minimal DNA expression denoting X1. Analogously, we find a minimal DNA expres-
sion denoting X2:

E2 = 〈↑ 〈l α6〉α7 〈l α8〉〉 .

Finally, B↑(X3) = 2 and B↓(X3) = 1. When we recursively apply Theorem 7.24(1) to

the upper block X3 and Theorem 7.24(2) to its lower block
(

α14

c(α14)

)( −
α15

)(
α16

c(α16)

)
, we also

obtain a minimal DNA expression denoting X3:

E3 = 〈↑ 〈l α10〉α11 〈l α12〉α13 〈↓ 〈l α14〉α15 〈l α16〉〉α17 〈l α18〉〉 .

The resulting operator-minimal ↓-expression denoting the entire formal DNA molecule X
is

E ′ = 〈↓ E1α3 〈l α4〉α5E2α9E3〉
= 〈↓〈↑ α1 〈l α2〉〉α3 〈l α4〉α5 〈↑ 〈l α6〉α7 〈l α8〉〉α9

〈↑ 〈l α10〉α11 〈l α12〉α13 〈↓ 〈l α14〉α15 〈l α16〉〉α17 〈l α18〉〉 〉 .
(7.26)

We have

|E ′| = 42 + |X|A = 3 + 3 · 4 + 3 · 9 + |X|A = 3 + 3 ·B↑(X) + 3 · nl(X) + |X|A,

which fits in with the analogue for ↓-expressions of (7.25).
Proof of Theorem 7.42: First, we can prove that the lower block partitioning P , the
indices aj and bj and the arguments εi of E are well defined. For this, we refer to the
corresponding part of the proof of Theorem 7.24, because that carries over entirely.

Each lower block Xj occurring in P is a nick free formal DNA molecule which, by
Lemma 7.17(1), contains at least one single-stranded component. By Theorem 7.24, we
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can construct a (minimal) DNA expression denoting Xj. Hence, the minimal DNA ex-
pressions E1, . . . , Er needed to construct E are well defined. Note that in the proof of
Theorem 7.24, we needed induction to prove that the Ej’s occurring there were well
defined. Here, we can simply benefit from the result of that.

For the proof that E is a DNA expression denoting X, we again refer to the corres-
ponding part of the proof of Theorem 7.24.

We finally prove that E has the specified length and (thus) is operator-minimal. Also
in this case, we do not need the inductive set-up we used in the proof of Theorem 7.24.
However, the main ingredients from the induction step in that proof can be reused.

For an arbitrary j with 1 ≤ j ≤ r, we consider the lower blockXj. By Lemma 7.17(2b),
B↑(Xj) = B↓(Xj) − 1. When we apply Theorem 7.24(2), we find that a minimal DNA
expression Ej denoting Xj has length

|Ej| = 3 + 3 ·B↑(Xj) + 3 · nl(Xj) + |Xj|A = 3 ·B↓(Xj) + 3 · nl(Xj) + |Xj|A.

We can then calculate the length of E, in the same way as we did in the proof of The-
orem 7.24 (in particular, see the derivation of (7.18)):

|E| = . . . = 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A.

Because this equals the lower bound on the length of an ↑-expression denoting X from
Theorem 6.31(1), E is operator-minimal.

By a proof that is nearly4 identical to that of Lemma 7.27, we find

Lemma 7.45 Let X be a nick free formal DNA molecule and let E be an operator-minimal
↑-expression denoting X as described in Theorem 7.42 (equation (7.24)).

Then the arguments of E are N -words and DNA expressions, alternately. In particu-
lar, each N -word-argument of E is a maximal N -word occurrence in E.

We use the operator-minimal DNA expressions from Theorem 7.42 to obtain minimal
DNA expressions for expressible formal DNA molecules containing nick letters.

Theorem 7.46 Let X be a formal DNA molecule which contains at least one lower nick
letter △, and does not contain any upper nick letter ▽.

• Let Z1△
Z2△

. . .
△
Zm for some m ≥ 2 be the nick free decomposition of X;

• for h = 1, . . . ,m, let Eh be an operator-minimal ↑-expression denoting Zh, and let
the string Êh be the sequence of the arguments of Eh (hence, if Eh = 〈↑ εh,1 . . . εh,nh

〉
for some nh ≥ 1 and N -words and DNA expressions εh,1, . . . , εh,nh

, then Êh =
εh,1 . . . εh,nh

); and

• let E =
〈
↑ Ê1 . . . Êm

〉
.

Then

(a) all ingredients needed to construct E (i.e., the nick free decomposition and the
operator-minimal ↑-expressions Ej) are well defined, and

4Only the observation that B↑(X) ≥ B↓(X) in the proof of Lemma 7.27 is not valid here. This
observation is, however, not important for the correctness of either of the proofs.
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(b) E is a minimal DNA expression denoting X, and

|E| = 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A. (7.27)

Also in this case, the (minimal) ↑-expression described achieves the lower bound for
↑-expressions from Theorem 6.31(1).

Of course, by an analogous result, we can construct a minimal DNA expression for
an arbitrary formal DNA molecule that contains at least one upper nick letter and does
not contain any lower nick letter. The two analogous results imply in particular that all
formal DNA molecules with nicks in (exactly) one strand are indeed expressible. This
completes the proof of Theorem 5.5.

Example 7.47 In Example 7.37, we have established that the nick free decomposition
for the formal DNA molecule from Figure 7.7 is Z1△

Z2△
Z3△

Z4△
Z5, where Z1, . . . , Z5 are

given in (7.20). Because none of Z1, Z3, Z4, Z5 has an internal maximal upper sequence,
there exists exactly one lower block partitioning for each of them. Hence, for each of them,
Theorem 7.42 specifies one operator-minimal ↑-expression:

E1 = 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉〉 ,
E3 = 〈↑ 〈l α12〉α13 〈l α14〉α15 〈l α16〉〉 ,
E4 = 〈↑ 〈l α17〉〉 ,
E5 = 〈↑ 〈↓ 〈l α18〉α19 〈l α20〉〉α21 〈l α22〉〉 .

The formal DNA submolecule Z2 has one internal maximal upper sequence, giving rise
to two different lower block partitionings. As we observed in Example 7.43, the DNA
expressions E ′

2 and E ′′
2 from (7.22) and (7.23) are the operator-minimal ↑-expressions

corresponding to these lower block partitionings.
To construct a minimal DNA expression denoting the entire formal DNA molecule X,

we may arbitrarily choose either of E ′
2 and E ′′

2 . When we choose E ′′
2 , we obtain

E = 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 〈↓ 〈l α5〉α6 〈l α7〉〉α8 〈↓ 〈l α9〉α10 〈l α11〉〉
〈l α12〉α13 〈l α14〉α15 〈l α16〉 〈l α17〉
〈↓ 〈l α18〉α19 〈l α20〉〉α21 〈l α22〉 〉 .

(7.28)

Indeed,

|E| = 54 + |X|A = 3 + 3 · 4 + 3 · 13 + |X|A = 3 + 3 · B↓(X) + 3 · nl(X) + |X|A.

Note that in the above example, both B↑(Z1) = B↓(Z1) = 1 and B↑(Z5) = B↓(Z5) = 1.
Hence, by Theorem 7.24, E1 and E5 are not only operator-minimal, but also (‘absolutely’)
minimal, and there also exist minimal ↓-expressions denoting Z1 and Z5. In the current
context, however, we must choose the (operator-)minimal ↑-expressions.

Proof of Theorem 7.46: By assumption, X contains at least one lower nick letter △

and does not contain any upper nick letter ▽. Hence, each nick letter yh in the definition
of the nick free decomposition is a lower nick letter. Indeed, the nick free decomposition
of X is Z1△

Z2△
. . .

△
Zm with m ≥ 2.

By definition, each Zh is nick free. Hence, by Theorem 7.42, there indeed exists an
operator-minimal ↑-expression Eh denoting Zh.
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By the definition of a formal DNA molecule, a nick letter may occur only between
two elements of A±. Hence, for h = 1, . . . ,m − 1, R(Zh), L(Zh+1) ∈ A±. Consequently,
the DNA expressions E1, . . . , Em fit together by upper strands (so that 〈↑ E1 . . . Em〉 is a
DNA expression), and

S(〈↑ E1E2 . . . Em〉) = ν+(Z1)△ν
+(Z2)△ . . .

△
ν+(Zm).

Because Z1, . . . , Zm are nick free, this is equal to X. By Lemma 5.10, E =
〈
↑ Ê1 . . . Êm

〉

is also a DNA expression denoting X.
By Theorem 7.42, for h = 1, . . . ,m,

|Eh| = 3 + 3 ·B↓(Zh) + 3 · nl(Zh) + |Zh|A,

and thus

|Êh| = 3 ·B↓(Zh) + 3 · nl(Zh) + |Zh|A. (7.29)

Since each Zh is nick free, we certainly have #▽(Zh) = 0. Now, when we apply equations
(6.4), (6.5) and (6.6) from Lemma 6.27(1) to 〈↑ E1E2 . . . Em〉, we find

B↓(Z1) + · · ·+ B↓(Zm) = B↓(X) and (7.30)

nl(Z1) + · · ·+ nl(Zm) = nl(X). (7.31)

We use (7.29), (7.30) and (7.31) to calculate |E|:

|E| = 3 +
m∑

h=1

|Êh|

= 3 +
m∑

h=1

(3 ·B↓(Zh) + 3 · nl(Zh) + |Zh|A)

= 3 + 3 ·
m∑

h=1

B↓(Zh) + 3 ·
m∑

h=1

nl(Zh) +
m∑

h=1

|Zh|A

= 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A.

By Theorem 6.31(1), this is the minimal length of an ↑-expression denoting X. Then by
Lemma 7.35(1), E is a minimal DNA expression for X.

One may wonder if we really need the concept of operator-minimality in the construc-
tion of minimal DNA expressions for formal DNA molecules containing nick letters.

Let X be a formal DNA molecule, with nick free decomposition Z1△
Z2△

. . .
△
Zm for

some m ≥ 2. Then a minimal DNA expression denoting X might also be constructed by
(1) determining minimal DNA expressions E1, . . . , Em denoting the nick free formal DNA
submolecules Z1, . . . , Zm, respectively, (2) defining the ↑-expression 〈↑ E1 . . . Em〉 with
these minimal DNA expressions as arguments, and (3) removing redundant operators ↑
according to Lemma 5.10, i.e., replacing those DNA expressions Eh that are themselves
↑-expressions by their respective arguments.

In order to make step (3) as effective as possible, we should in step (1) choose for
↑-expressions Eh whenever we can. In particular, if, for some h with 1 ≤ h ≤ m, Zh

contains at least one single-stranded component and B↑(Zh) = B↓(Zh), then Eh should
be an ↑-expression as specified by Theorem 7.24(1) (and not a ↓-expression as specified
by Theorem 7.24(2)).
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Example 7.48 Let us apply the alternative method just described to the formal DNA
molecule X from Figure 7.7. The nick free decomposition of X is Z1△

Z2△
Z3△

Z4△
Z5, where

Z1, . . . , Z5 are given in (7.20).
As we observed in Example 7.40, each minimal DNA expression denoting

Z2 =
(

α5

c(α5)

)(−
α6

)(
α7

c(α7)

)(
α8

−
)(

α9

c(α9)

)( −
α10

)(
α11

c(α11)

)

is a ↓-expression. According to the alternative method, such a ↓-expression appears
unchanged in the resulting minimal DNA expression for X. However, in the minimal
DNA expression E denoting X from (7.28), the arguments corresponding to Z2 are
〈↓ 〈l α5〉α6 〈l α7〉〉, α8 and 〈↓ 〈l α9〉α10 〈l α11〉〉, which is not just one ↓-expression.

Hence, E cannot be obtained by the alternative method, whereas it can be obtained by
the construction from Theorem 7.46, which is based on operator-minimal ↑-expressions.

We can conclude from the above example, that there exist minimal DNA expressions for
molecules with lower nick letters that cannot be obtained by the alternative method. In
Theorem 8.15, we will see that such DNA expressions do not exist for the construction
from Theorem 7.46: each minimal DNA expression denoting a formal DNA molecule with
lower nick letters fits into the description from Theorem 7.46.

For nick free formal DNA molecules X, Corollary 7.29 gave two general upper bounds
on the length of minimal DNA expressions denoting X. The upper bounds can be used,
even when it is unknown if the DNA expression involved is an ↑-expression, a ↓-expression,
or an l-expression.

These upper bounds are not generally valid in the case with nicks. For example, it is
not true in general that a minimal DNA expression E denoting a formal DNA molecule
X with at least one nick letter satisfies

|E| ≤ 3 + 3 · B↑(X) + 3 · nl(X) + |X|A. (7.32)

Example 7.49 Consider the formal DNA molecule

X =
(

α1

c(α1)

)(−
α2

)(
α3

c(α3)

)
△

(
α4

c(α4)

)(−
α5

)(
α6

c(α6)

)
,

where α1, . . . , α6 are arbitrary N -words. For this molecule, B↑(X) = 1, B↓(X) = 2 and
nl(X) = 4. By Theorem 7.46,

E = 〈↑ 〈↓ 〈l α1〉α2 〈l α3〉〉 〈↓ 〈l α4〉α5 〈l α6〉〉〉

is a minimal DNA expression denoting X, and

|E| = 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A = 21 + |X|A
> 3 + 3 ·B↑(X) + 3 · nl(X) + |X|A = 18 + |X|A.

The violation of (7.32) is due to the lower nick letter occurring in X. The fact that
B↓(X) > B↑(X) may suggest that a minimal DNA expression for X should be a ↓-
expression. However, by Lemma 7.35(1), it must be an ↑-expression.
For expressible formal DNA molecules with nick letters, we always have to consider the
type of nick letters that occur. In the case of lower nick letters, each minimal DNA
expression is an ↑-expression, whose length is given by equality (7.27) in Theorem 7.46.
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In the case of upper nick letters, each minimal DNA expression is a ↓-expression, whose
length is given by an analogous equality.

We finally consider the arguments of the minimal DNA expressions we construct by
Theorem 7.46. These are precisely the arguments of the operator-minimal ↑-expressions
E1, . . . , Em denoting the nick free pieces Z1, . . . , Zm. By Theorem 4.3, we may assume
that theN -word-arguments of each Eh are maximal N -word occurrences in Eh. Moreover,
if Eh happens to be constructed according to Theorem 7.42, then this assumption is also
justified by Lemma 7.45.

Lemma 7.50 Let X be an expressible formal DNA molecule which contains at least one
lower nick letter △, and let Z1△

Z2△
. . .

△
Zm for some m ≥ 2 be the nick free decomposi-

tion of X. For h = 1, . . . ,m, let Eh be an operator-minimal ↑-expression denoting Zh,
and assume that each N -word-argument of Eh is a maximal N -word occurrence in Eh.
Finally, let E be the minimal DNA expression denoting X which is based on E1, . . . , Em,
as described in Theorem 7.46.

1. Each N -word-argument of E is a maximal N -word occurrence in E.

2. E has (at least) two consecutive expression-arguments.

Hence, in one respect, the arguments of E resemble the arguments of (operator-)minimal
DNA expressions denoting nick free formal DNA molecules, which we considered in
Lemma 7.27 and Lemma 7.45, in another respect they do not.

Claim 1 rules out the possibility that two or more, originally distinctN -word-arguments
are concatenated by the construction from Theorem 7.46. Each N -word-argument of any
Eh remains a maximal N -word occurrence, when it becomes an argument of E. In par-
ticular, there does not exist an index h with 1 ≤ h ≤ m − 1, such that both the last
argument of Eh and the first argument of Eh+1 are N -words.

Proof: Consider any h with 1 ≤ h ≤ m−1. By definition, the lower nick letter between Zh

and Zh+1 is both preceded and succeeded inX by a doubleA-letter: R(Zh), L(Zh+1) ∈ A±.
This implies that both the last component of Zh and the first component of Zh+1 are double
components.

Eh is an ↑-expression which denotes Zh. If the last argument of Eh were an N -word,
then the last component of Zh would be an upper component. Hence, the last argument
of Eh is a DNA expression. Analogously, the first argument of Eh+1 is a DNA expression.

1. Consider an arbitrary N -word-argument α of E. By the construction from The-
orem 7.46, there exists h with 1 ≤ h ≤ m, such that α is an N -word-argument of
Eh. By assumption, α is a maximal N -word occurrence in Eh.

If α is the last argument of Eh, then h must be equal to m and α is also the last
argument of E, which is succeeded by the closing bracket 〉 of E. If α is not the
last argument of Eh, then the argument succeeding it in Eh is a DNA expression.
Obviously, this argument also succeeds α in E.

In neither case, α is succeeded in E by another N -word.

2. Consider any h with 1 ≤ h ≤ m− 1. By construction, the last argument of Eh and
the first argument of Eh+1 are consecutive arguments of E. As we have observed at
the beginning of the proof, both arguments are DNA expressions.





Chapter 8

All Minimal DNA Expressions

In Chapter 7, we have described how to construct a minimal DNA expression for a given
(expressible) formal DNA molecule. For many formal DNA molecules, the applicable con-
struction is not completely deterministic. It may yield several different, equivalent DNA
expressions, each of which is minimal (see, e.g., Example 7.26). To prove the minimality
of the resulting DNA expressions, we used the lower bounds from Chapter 6.

Both for the analysis in Chapter 6 and for the constructions in Chapter 7, the starting
point was a formal DNA molecule. In this chapter, our starting point is a minimal DNA
expression. We study the set of all minimal DNA expressions.

In Section 8.1, we demonstrate that each minimal DNA expression satisfies the descrip-
tions from Chapter 7, i.e., that there do not exist other minimal DNA expressions. Sub-
sequently, Section 8.2 elaborates a bit on the shortest l-expressions possible for molecules
with nicks. In Section 8.3. we present a characterization of minimal DNA expressions. By
this, we can recognize a minimal DNA expression without determining its length. After
that, we consider the structure trees of minimal DNA expressions, in Section 8.4. Finally,
in Section 8.5, we calculate the number of different minimal DNA expressions for a given
expressible formal DNA molecule.

8.1 Reverse construction of a minimal DNA expres-

sion

For double-complete formal DNA molecules, our specification of minimal DNA expressions
is complete. By Theorem 7.5, the only minimal DNA expression denoting the molecule(

α1

c(α1)

)
for an N -word α1 is 〈l α1〉.

By Theorem 7.24 and Theorem 7.46, we also know how to construct minimal DNA
expressions for expressible formal DNA molecules containing single-stranded components
and/or nick letters. It is, however, not a priori clear that there do not exist other minimal
DNA expressions denoting these molecules. There might be minimal DNA expressions
which do not fit the constructions given in Theorem 7.24 and Theorem 7.46.

Actually, all we know about the structure of these DNA expressions is what the out-
ermost operators may be. Let X be an expressible formal DNA molecule which contains
single-stranded components and/or nick letters. By Corollary 7.6, each minimal DNA
expression denoting X is an ↑-expression or a ↓-expression. In many cases, the outermost
operator of the minimal DNA expression(s) is completely determined. If X is nick free
and B↑(X) 6= B↓(X), then the outermost operator is determined by Lemma 7.30. If X
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contains nick letters, then the outermost operator is determined by Lemma 7.35.
In this section, we will investigate the structure of arbitrary minimal ↑-expressions

and arbitrary minimal ↓-expressions. In fact, we will find that there do not exist minimal
↑-expressions and ↓-expressions other than those described by Theorem 7.24 and The-
orem 7.46. Because results on ↑-expressions and results on ↓-expressions are completely
analogous and can be proved in a completely analogous way, we will only give the results
for the ↑-expressions.

Initially, we consider operator-minimal ↑-expressions rather than minimal ↑-expres-
sions. However, because minimal DNA expressions are in particular operator-minimal,
the results we achieve for operator-minimal ↑-expressions are certainly valid for minimal
↑-expressions.

We start with a simple (but essential) result:

Lemma 8.1 Let E be an operator-minimal ↑-expression denoting a certain formal DNA
molecule X (which may contain nick letters).

Then no argument of E is an ↑-expression.

Proof: Assume that E = 〈↑ ε1 . . . εn〉 for some n ≥ 1 and N -words and DNA expressions
ε1, . . . , εn. Suppose that for some i, the argument εi is an ↑-expression Ei = 〈↑ εi,1 . . . εi,ni

〉
for some ni ≥ 1 and arguments εi,1, . . . , εi,ni

. Then by Lemma 5.10, the DNA expression

E ′ = 〈↑ ε1 . . . εi−1εi,1 . . . εi,ni
εi+1 . . . εn〉 ,

which is three letters shorter than E and has the same outermost operator, is equivalent
to E. This contradicts the operator-minimality of E.

If an argument of an operator-minimal DNA expression is itself a DNA expression,
then it must be minimal. Hence, when we combine Theorem 7.5 and Lemma 8.1, we find

Corollary 8.2 Let E be an operator-minimal ↑-expression denoting a certain formal DNA
molecule X (which may contain nick letters).

Then each argument of E is either an N -word α, or an l-expression 〈l α〉 for an
N -word α, or a ↓-expression.

Let X be a nick free formal DNA molecule that contains at least one single-stranded
component and for which B↑(X) ≥ B↓(X). When we construct a minimal ↑-expression
E denoting X according to Theorem 7.24(1), the arguments of E are N -words αi, l-
expressions 〈l αi〉 for N -words αi, and ↓-expressions Ej denoting lower blocks Xj of X.
In particular, for each argument ε of E, S+(ε) is nick free.

The same properties hold for the arguments of an operator-minimal ↑-expression de-
noting a nick free formal DNA molecule, which is constructed according to Theorem 7.42.

Finally, let X be an expressible formal DNA molecule containing m − 1 ≥ 1 lower
nick letters, and let E1, . . . , Em be operator-minimal ↑-expressions denoting the nick free
pieces Z1, . . . , Zm of X. If E1, . . . , Em have been constructed according to Theorem 7.42,
then by the above, for each argument ε of any of the Eh’s, S+(ε) is nick free. Now, when
we use E1, . . . , Em to construct a minimal ↑-expression E denoting the entire formal DNA
molecule X according to Theorem 7.46, the arguments of E are precisely the arguments
of E1, . . . , Em. Hence, again, for each argument ε of E, S+(ε) is nick free.

In general, whether or not the formal DNA molecule X denoted by an ↑-expression E
contains nick letters, there may be nicks in the arguments of E.
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Example 8.3 Consider the DNA expression

E = 〈↑ α1 〈↓ 〈l α2〉 〈l α3〉α4〉〉 ,

for N -words α1, α2, α3, α4. We have S(E) =
(
α1

−
)(

α2α3

c(α2α3)

)(−
α4

)
, which is a nick free

formal DNA molecule. The second argument of E, however, is not nick free, because

S(〈↓ 〈l α2〉 〈l α3〉α4〉) =
(

α2

c(α2)

)
▽
(

α3

c(α3)

)(−
α4

)
.

We will now see that an ↑-expression cannot be operator-minimal, let alone minimal,
if it has at least one argument denoting a molecule with nicks. Hence, the property
that for each argument ε, S+(ε) is nick free, does not only hold for the (operator-)-
minimal ↑-expressions that we construct according to Theorem 7.24(1), Theorem 7.42 or
Theorem 7.46; it holds for any operator-minimal ↑-expression, no matter how it has been
constructed.

Indeed, the ↑-expression E from Example 8.3, whose second argument has a nick in
the upper strand, is not operator-minimal. The equivalent ↑-expression

E ′ = 〈↑ α1 〈↓ 〈l α2α3〉α4〉〉
is three letters shorter.

Lemma 8.4 Let E = 〈↑ ε1 . . . εn〉, where n ≥ 1 and ε1, . . . , εn are N -words and DNA
expressions, be an operator-minimal DNA expression denoting a certain formal DNA mo-
lecule X (which may contain nick letters).

Then for i = 1, . . . , n, Xi = S+(εi) is nick free.

Hence, each nick letter occurring in X (if any) has been introduced by the outermost
operator ↑ of E.

Proof: For i = 1, . . . , n, let Xi = S+(εi). Then

X = ν+(X1)y1ν
+(X2)y2 . . . yn−1ν

+(Xn), (8.1)

where for i = 1, . . . , n−1, yi is either equal to λ or to △, depending on R(Xi) and L(Xi+1)
(see Definition 4.1).

Consider an argument εi for some i with 1 ≤ i ≤ n. By Corollary 8.2, εi is either an
N -word α, or an l-expression 〈l α〉 for an N -word α, or a ↓-expression.

If εi is an N -word α, then Xi = S+(εi) =
(
α
−
)
, which is indeed nick free.

If εi is an l-expression 〈l α〉 for an N -word α, then Xi = S(εi) =
(

α
c(α)

)
, which is also

nick free.
Now, assume that εi is a ↓-expression Ei. By Lemma 5.2(1), Xi = S(Ei) does not

contain lower nick letters. Consequently, ν+(Xi) does not contain any nick letters.
By Theorem 6.31(2),

|Ei| ≥ 3 + 3 ·B↑(Xi) + 3 · nl(Xi) + |Xi|A, (8.2)

and by Lemma 6.16(1),

B↑(Xi) ≥ B↑(ν
+(Xi)). (8.3)

Suppose that Xi is not nick free. Then it must contain at least one upper nick letter:
#▽(Xi) ≥ 1. Hence, by Lemma 6.16(5),

nl(Xi) > nl(ν
+(Xi)). (8.4)
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Substituting (8.3) and (8.4) into (8.2), we obtain

|Ei| > 3 + 3 ·B↑(ν
+(Xi)) + 3 · nl(ν

+(Xi)) + |Xi|A.
On the other hand, because ν+(Xi) is nick free, we know by Corollary 7.29(2) that a
minimal DNA-expression E ′

i denoting ν+(Xi) satisfies

|E ′
i| ≤ 3 + 3 ·B↑(ν

+(Xi)) + 3 · nl(ν
+(Xi)) + |Xi|A

(obviously, |Xi|A = |ν+(Xi)|A).
Now, if we replace the argument Ei of E by the shorter DNA expression E ′

i, which
satisfies Ei ▽ ≡ E ′

i, then by Lemma 5.11, the resulting string E ′ is a DNA expression
satisfying E ▽≡ E ′. Because ν+(S+(E ′

i)) = ν+(ν+(Xi)) = ν+(Xi) and by Lemma 3.11,
L(ν+(Xi)) = L(Xi) and R(ν+(Xi)) = R(Xi), we even have S(E ′) = X (see (8.1)). In
other words, E ≡ E ′.

Because E ′ is shorter than E and has the same outermost operator as E, E would not
be operator-minimal, which contradicts our assumption. Hence, also in the case that εi is
a ↓-expression Ei, must Xi be nick free.

By Lemma 8.4, the expression-arguments of an operator-minimal ↑-expression E are
nick free. It is not difficult to generalize this to arbitrary proper DNA subexpressions of
E.

Corollary 8.5 Let E be an operator-minimal ↑-expression denoting a certain formal DNA
molecule X (which may contain nick letters). Then each proper DNA subexpression of E
is nick free.

Proof: Let E1 be a proper DNA subexpression of E. By Lemma 7.41, E1 is minimal.
Hence, if E1 is an l-subexpression of E, then by Theorem 7.5, E1 = 〈l α1〉 for an N -word
α1, which is indeed nick free.

Now, assume that E1 is a ↓-subexpression of E. Let E0 be the DNA subexpression of
E that E1 is an argument of. If E0 is equal to E, then by assumption E0 is an operator-
minimal ↑-expression. If, on the other hand, E0 is a proper DNA subexpression of E,
then E0 is minimal. Hence, by Theorem 7.5, and Lemma 8.1, E0 is an ↑-expression. In
particular, also in this case, E0 is an operator-minimal ↑-expression. Now for both cases,
the claim follows from Lemma 8.4, applied to E0.

The proof for the case that E1 is an ↑-subexpression of E is analogous. However, in
that case, we do not have to consider the possibility that E0 is equal to E, because the
operator-minimal ↑-expression E cannot have an ↑-argument E1.

In Lemma 7.17 and Lemma 7.23(2), we considered the value of the function B↓ for a
single lower block and for the substrings occurring in a lower block partitioning, respect-
ively. We now consider this value for the formal DNA submolecules corresponding to the
arguments of an operator-minimal ↑-expression.

Lemma 8.6 Let E = 〈↑ ε1 . . . εn〉, where n ≥ 1 and ε1, . . . , εn are N -words and DNA
expressions, be an operator-minimal DNA expression denoting a certain formal DNA mo-
lecule X (which may contain nick letters). For i = 1, . . . , n, let Xi = S+(εi).

1. For i = 1, . . . , n, if εi is a ↓-expression Ei, then Xi = S(Ei) and B↑(Xi) = B↓(Xi)−
1. Hence, Xi contains at least one single-stranded component and both the first
single-stranded component and the last single-stranded component of Xi are lower
components.
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2.
∑

↓-expr. εi

B↓(Xi) = B↓(X1) + · · ·+B↓(Xn) = B↓(X).

Proof:

1. Consider an argument εi that is a ↓-expression Ei. By definition, Xi = S(Ei), and
by Lemma 8.4, Xi is nick free. Because E is operator-minimal, Ei is minimal.

Suppose that B↑(Xi) ≥ B↓(Xi).

• If B↑(Xi) = 0, then also B↓(Xi) = 0, and by Lemma 6.13(1), Xi does not contain

any single-stranded component. Hence, by Lemma 6.13(2), Xi =
(

α
c(α)

)
for an N -

word α. This, however, leads to a contradiction, because by Theorem 7.5, the unique

minimal DNA expression denoting Xi =
(

α
c(α)

)
is E ′

i = 〈l α〉.
• IfB↑(Xi) ≥ 1, thenXi contains at least one upper component. By Theorem 7.24(1),
there exists a minimal ↑-expression E ′

i denoting Xi.

Because Ei ≡ E ′
i and both of them are minimal, they are equally long. Now, let us

substitute the argument Ei of E by E ′
i. By Lemma 5.11, the resulting overall string

E ′ is a DNA expression satisfying E ≡ E ′. Obviously, E ′ has the same length as E
and has the same outermost operator, which implies that E ′ is operator-minimal,
just like E.

This, however, contradicts Lemma 8.1, because E ′ is an ↑-expression and one of its
arguments, E ′

i, is also an ↑-expression.

Both if B↑(Xi) = 0 and if B↑(Xi) ≥ 1, we end up in a contradiction. This implies
that B↑(Xi) < B↓(Xi). By Lemma 6.12(2), B↑(Xi) = B↓(Xi)−1. Hence, Xi contains
at least one lower component and by Lemma 6.13(3), both the first single-stranded
component and the last single-stranded component of Xi are lower components.

2. Consider an argument εi for some i with 1 ≤ i ≤ n.

By Corollary 8.2, εi is either anN -word α, or an l-expression 〈l α〉 for anN -word α,

or a ↓-expression. If εi is an N -word α (in which case Xi =
(
α
−
)
) or an l-expression

〈l α〉 (Xi =
(

α
c(α)

)
), then obviously B↓(Xi) = 0. This gives us the first equality in

the claim.

By Lemma 8.4, Xi = S+(εi) is nick free. In particular, #▽(Xi) = 0. But then the
second equality in the claim follows immediately from inequalities (6.4) and (6.5) in
Lemma 6.27(1).

Definition 4.1, and in particular equation (4.2), describes the semantics of a general ↑-
expression. Now that we have derived some properties of operator-minimal ↑-expressions,
we can simplify the definition of the semantics for such ↑-expressions.

Lemma 8.7 Let E = 〈↑ ε1 . . . εn〉, where n ≥ 1 and ε1, . . . , εn are N -words and DNA
expressions, be an operator-minimal DNA expression denoting a certain formal DNA mo-
lecule X. For i = 1, . . . , n, let Xi = S+(εi). Then

X = X1y1X2y2 . . . yn−1Xn,
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where for i = 1, . . . , n− 1, yi = △ if R(Xi), L(Xi+1) ∈ A±, and yi = λ otherwise.
Here, for i = 1, . . . , n − 1, R(Xi), L(Xi+1) ∈ A±, if and only if both εi and εi+1 are

expression-arguments.

Hence, for operator-minimal ↑-expressions, there is a nick between two consecutive argu-
ments εi and εi+1, if and only if both εi and εi+1 are expression-arguments.

Proof: By the definition of the semantics of an ↑-expression (equation (4.2)),

X = ν+(X1)y1ν
+(X2)y2 . . . yn−1ν

+(Xn),

where for i = 1, . . . , n − 1, yi = △ if R(Xi), L(Xi+1) ∈ A±, and yi = λ otherwise. By
Lemma 8.4, for i = 1, . . . , n, Xi is nick free, and in particular, ν+(Xi) = Xi. We can thus
reduce the semantics to

X = X1y1X2y2 . . . yn−1Xn,

with yi’s as before. This is the first part of the claim.
Next, consider any i with 1 ≤ i ≤ n− 1. By Corollary 8.2, εi is either an N -word α,

or an l-expression 〈l α〉 for an N -word α, or a ↓-expression.
If εi is an N -word α, then Xi = S+(εi) =

(
α
−
)
and R(Xi) /∈ A±.

If εi an l-expression 〈l α〉 for anN -word α, thenXi = S(εi) =
(

α
c(α)

)
and R(Xi) ∈ A±.

Finally, if εi is a ↓-expression, then by Lemma 8.6(1), Xi contains at least one single-
stranded component and the last single-stranded component of Xi is a lower component.
Because εi has to prefit εi+1 by upper strands, this lower component cannot be the last
component of Xi. By Corollary 3.8(1), the last component of Xi must be a double com-
ponent. This implies that R(Xi) ∈ A±.

We conclude that R(Xi) ∈ A±, if and only if εi is an expression-argument. Analog-
ously, we find that L(Xi+1) ∈ A±, if and only if εi+1 is an expression-argument. Con-
sequently, R(Xi), L(Xi+1 ∈ A±, if and only if both εi and εi+1 are expression-arguments.

As we observed before, if an ↑-expression or a ↓-expression has two or more consecutive
N -word-arguments, then these arguments may be substituted by one argument being the
concatenation of the N -words. By Theorem 4.3, this substitution does not change the
semantics of the DNA expression. In fact, the original DNA expression and the new DNA
expression cannot even be distinguished from each other, unless one explicitly indicates
what the arguments of each of them are. Hence, we do not lose generality when we
assume that the arguments of an ↑-expression or a ↓-expression are maximal N -word
occurrences and DNA expressions. In the remainder of this section, we will explicitly
make this assumption.

We now examine the relation between components of the formal DNA molecule X
denoted by an operator-minimal ↑-expression E and the components of the arguments of
E.

Lemma 8.8 Let E = 〈↑ ε1 . . . εn〉, where n ≥ 1 and ε1, . . . , εn are maximal N -word
occurrences and DNA expressions, be an operator-minimal DNA expression denoting a
certain formal DNA molecule X (which may contain nick letters). For i = 1, . . . , n, let
Xi = S+(εi), and let x′

1 . . . x
′
k for some k ≥ 1 be the decomposition of X. Then for

i = 1, . . . , n,
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1. each component of Xi is also a component of X (at a corresponding position);

2. there exist ai and bi with 1 ≤ ai ≤ bi ≤ k such that Xi = x′
ai
. . . x′

bi
.

In Claim 1, we added the phrase ‘(at a corresponding position)’ to avoid misinterpreta-
tions, as illustrated by the following example:

Example 8.9 Consider the DNA expression

E = 〈↑ 〈↑ α1 〈l α2〉α1〉α1〉

for N -words α1 and α2. We have X1 = S+(ε1) =
(
α1

−
)(

α2

c(α2)

)(
α1

−
)
, X2 = S+(ε2) =(

α1

−
)
and X = S(E) =

(
α1

−
)(

α2

c(α2)

)(
α1α1

−
)
. Indeed, for each component of X1 and each

component of X2, we can find an ‘equal’ component of X. However, the last component
of X1 and the only component of X2 have merged into one component of X. The position

in X = X1X2 of the component which is ‘equal’ to, e.g., the only component
(
α1

−
)
of

X2 does not correspond to the position of this component in X2. Not surprisingly, the
↑-expression E is not operator-minimal.

Proof of Lemma 8.8: By Lemma 8.7,

X = X1y1X2y2 . . . yn−1Xn, (8.5)

where for i = 1, . . . , n − 1, yi = △ if both R(Xi) and L(Xi+1) are double A-letters, and
yi = λ otherwise.

1. Obviously, no component of any Xi is split up over different components of X.
Because X satisfies (8.5), it is also clear that no component of any Xi simply disap-
pears. In particular, the Xi’s do not have nick letters that are removed. To complete
the proof, we have to demonstrate that no component of any Xi merges into a larger
component of X.

It is immediate from (8.5), that different components of the same Xi do not merge
into the same component of X. By definition, if for some i with 1 ≤ i ≤ n−1, yi = △,
then it is a component of X by itself. Hence, only if yi = λ and the last component
of Xi and the first component of Xi+1 are of the same type (upper component,
lower component or double component) then these two components merge into one
component of X. No other component of any Xi merges into a larger component of
X.

Consider any i with 1 ≤ i ≤ n − 1, such that yi = λ. Because the arguments εi
and εi+1 have to fit together by upper strands, neither the last component of Xi,
nor the first component of Xi+1 can be a lower component. Because yi = λ, the two
components cannot both be double components, either. At least one of them has to
be an upper component.

Without loss of generality, assume that the last component of Xi is an upper com-
ponent. By Corollary 8.2 and Lemma 8.6(1), εi is a maximal N -word occurrence.
By definition, εi+1 is not an N -word, and thus is either an l-expression 〈l α〉 for
an N -word α, or a ↓-expression. In neither case, the first component of Xi+1 is an
upper component. Consequently, the last component of Xi and the first component
of Xi+1 do not merge into one component.
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2. This claim follows immediately from (8.5) and the previous claim.

We temporarily focus on nick free formal DNA molecules. We first rephrase Lemma 8.7
for the nick free case. By Lemma 8.7, a nick free, operator-minimal ↑-expression E
cannot have consecutive expression-arguments. By definition, it cannot have consecutive
arguments that are maximal N -word occurrences, either. We thus have

Corollary 8.10 Let E = 〈↑ ε1 . . . εn〉, where n ≥ 1 and ε1, . . . , εn are maximal N -word
occurrences and DNA expressions, be an operator-minimal DNA expression denoting a
certain nick free formal DNA molecule X. For i = 1, . . . , n, let Xi = S+(εi).

Then

X = X1X2 . . . Xn, (8.6)

and the arguments ε1, . . . , εn are maximal N -word occurrences and DNA expressions,
alternately.

Recall that in Lemma 7.27 and Lemma 7.45, we considered the arguments of the (operator-
)minimal ↑-expressions and ↓-expressions we obtain for nick free formal DNA molecules
according to the constructions from Theorem 7.24 and Theorem 7.42. We established
that the arguments form an alternating sequence of N -words and DNA expressions. By
the above, we have the same result for arbitrary operator-minimal ↑-expressions denoting
nick free formal DNA molecules.

Recall also that by Lemma 5.8, if each occurrence of ↑ or ↓ in a DNA expression E
is alternating, then X = S(E) is nick free. We can use Corollary 8.10 to prove that for
operator-minimal ↑-expressions, the converse is also true.

Corollary 8.11 Let E be an operator-minimal ↑-expression denoting a certain formal
DNA molecule X. The following four statements are equivalent:

1. X is nick free.

2. X does not contain lower nick letters.

3. (The outermost operator ↑ of) E is alternating.

4. Each occurrence of ↑ or ↓ in E is alternating.

Proof: The equivalence of statements 1 and 2 follows from Lemma 5.1(1). We now prove
that statements 3 and 4 are also equivalent to statement 1.

1 =⇒ 3 This implication follows directly from Corollary 8.10.

3 ⇐⇒ 4 Consider an arbitrary inner occurrence of ↑ or ↓ in E, and let Es be the
(proper) DNA subexpression of E governed by it. By Lemma 7.41, Es is minimal,
and by Corollary 8.5, Es is nick free. Hence, we can apply Corollary 8.10 to Es, and
conclude that the occurrence of ↑ or ↓ that we consider is alternating.

This implies that the outermost operator ↑ of E is alternating, if and only if each
occurrence of ↑ or ↓ in E is alternating.

4 =⇒ 1 This implication follows directly from Lemma 5.8.
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We now consider the ↓-arguments of an operator-minimal ↑-expression denoting a nick
free molecule.

Lemma 8.12 Let E = 〈↑ ε1 . . . εn〉, where n ≥ 1 and ε1, . . . , εn are maximal N -word
occurrences and DNA expressions, be an operator-minimal DNA expression denoting a
certain nick free formal DNA molecule X. For i = 1, . . . , n, let Xi = S+(εi) and let
x′
i,1 . . . x

′
i,ki

for some ki ≥ 1 be the decomposition of Xi.

1. For i = 1, . . . , n−1, if εi is a ↓-expression, then ki ≥ 2, x′
i,ki−1 is a lower component

of X, x′
i,ki

is a double component of X, εi+1 is a maximal N -word occurrence α and

Xi+1 =
(
α
−
)
is an upper component of X.

2. For i = 2, . . . , n, if εi is a ↓-expression, then ki ≥ 2, x′
i,2 is a lower component of

X, x′
i,1 is a double component of X, εi−1 is a maximal N -word occurrence α and

Xi−1 =
(
α
−
)
is an upper component of X.

3. For i = 1, . . . , n, if εi is a ↓-expression, then Xi is a lower block of X.

Proof: Claims 1 and 2 are completely analogous and so are their proofs. We give the
proof of Claim 2. First, however, we make some general observations, which are also useful
in the proof of Claim 3.

Consider a ↓-argument εi of E, with 1 ≤ i ≤ n. By Lemma 8.4, Xi = S(εi) is nick
free. By Lemma 8.6(1), Xi contains at least one single-stranded component and the first
single-stranded component of Xi is a lower component of Xi. Hence, by Corollary 3.8(1),
x′
i,1 is either a lower component, or a double component of Xi. In the latter case, by

Corollary 3.8(2), ki ≥ 2 and x′
i,2 is a lower component of Xi. By Lemma 8.8(1), these are

also components of X.
We now examine properties ofXi (for the ↓-argument εi) which are specific for Claims 2

and 3, respectively.

2. Assume that 2 ≤ i ≤ n.

Because εi−1 has to prefit εi by upper strands, x′
i,1 cannot be a lower component.

This implies that it is a double component of Xi (and of X), ki ≥ 2 and x′
i,2 is a

lower component of Xi (and of X).

By Corollary 8.10, εi−1 is a maximal N -word occurrence α. Hence, Xi−1 =
(
α
−
)
is

an upper A-word. By Lemma 8.8(1), it is an upper component of X.

3. The first single-stranded component of Xi, which is a lower component, is also a
lower component of X. Either this lower component is x′

i,1, or it is x
′
i,2. Let us use

x′
i,· to denote it. By Lemma 6.7(2), x′

i,· is part of a primitive lower block X ′
1 of X.

We examine the relation between the first component x′
i,1 of Xi and the primitive

lower block X ′
1.

If x′
i,· = x′

i,1, then obviously x′
i,1 is part of X

′
1. If, on the other hand, x′

i,· = x′
i,2, then

x′
i,1 is a double component. By Lemma 6.6(1), the primitive lower block X ′

1 cannot
start with the lower component x′

i,2 that it contains. Hence, also in this case, x′
i,1 is

part of X ′
1.

If i = 1, then x′
i,1 is the first component of X, and clearly, it is also the first

component of X ′
1. If, on the other hand, i ≥ 2, then by Claim 2, εi−1 is a maximal
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N -word occurrence α, and Xi−1 =
(
α
−
)
is an upper component of X. Because, by

Corollary 8.10, X = X1X2 . . . Xn, this upper component immediately precedes x′
i,1

in X. By definition, it is not part of any primitive lower block. Hence, also in this
case, x′

i,1 is the first component of X ′
1.

Completely analogously, we can prove that the last component x′
i,ki

of Xi is the
last component of a primitive lower block (which may be different from X ′

1). We
conclude that Xi is a substring of X which starts with a primitive lower block and
ends with a primitive lower block. In other words, Xi is a lower block of X.

We have established many properties of arbitrary operator-minimal ↑-expressions. We
use them to prove that the constructions from Theorem 7.24(1), Theorem 7.42 and The-
orem 7.46 are the only ways to obtain a minimal or operator-minimal ↑-expression. We
start with minimal ↑-expressions denoting nick free formal DNA molecules. They are
described by Theorem 7.24(1):

Theorem 8.13 Let E = 〈↑ ε1 . . . εn〉, where n ≥ 1 and ε1, . . . , εn are maximal N -word
occurrences and DNA expressions, be a minimal DNA expression denoting a certain nick
free formal DNA molecule X. For i = 1, . . . , n, let Xi = S+(εi).

Let εi1 , εi2 , . . . , εir , with 0 ≤ r ≤ n and i1 < i2 < · · · < ir, be all ↓-arguments of E.
Finally, let Y0, Y1, . . . , Yr be defined by

Y0 =

{
X1 . . . Xn if r = 0
X1 . . . Xi1−1 if r ≥ 1

Yj = Xij+1 . . . Xij+1−1 (j = 1, . . . , r − 1)

Yr =

{
X1 . . . Xn if r = 0
Xir+1 . . . Xn if r ≥ 1

1. P = Y0Xi1Y1Xi2Y2 . . . XirYr is a lower block partitioning of X.

2. E satisfies the description of a minimal DNA expression denoting X and based on
P, given in Theorem 7.24(1).

Intuitively, Y0 is the concatenation of Xi’s preceding the first ↓-argument εi1 , Yr is the
concatenation of Xi’s succeeding the last ↓-argument εir , and for j = 1, . . . , r − 1, Yj is
the concatenation of Xi’s separating the ↓-expressions εij and εij+1

.

Proof: Because a minimal DNA expression is in particular operator-minimal, all earlier
results in this section are also applicable to E.

By Corollary 8.2, each argument εi of E which is not a ↓-expression, is either a maximal
N -word occurrence α, or an l-expression 〈l α〉 for an N -word α. The corresponding

formal DNA molecule Xi = S+(εi) is
(
α
−
)
or
(

α
c(α)

)
, respectively. By Lemma 8.8(1), this

is a component of X; in particular, it is an upper component or a double component of
X.

1. We verify that P = Y0Xi1Y1Xi2Y2 . . . XirYr satisfies all conditions of a lower block
partitioning of X.

If r ≥ 1, then, as we observed before the proof, Y0 is the concatenation of Xi’s
preceding εi1 , Yr is the concatenation of Xi’s succeeding εir and for j = 1, . . . , r− 1,
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Yj is the concatenation of Xi’s between εij and εij+1
. Now, both if r = 0 and if

r ≥ 1, it follows immediately that

Y0Xi1Y1Xi2Y2 . . . XirYr = X1 . . . Xn.

By Corollary 8.10, this equals X.

By Lemma 8.12(3), for j = 1, . . . , r, Xij is a lower block of X.

For j = 0, . . . , r, Yj is the concatenation of a number of upper components
(
α
−
)

and double components
(

α
c(α)

)
for N -words α. Because, by definition, a primitive

lower block of X contains at least one lower component, no Yj contains a (complete)
primitive lower block.

Suppose that X has a primitive lower block that is partly in a sequence Yj and
partly in a lower block Xij . Then this primitive lower block would intersect with
another primitive lower block, because each lower block Xij starts with a (complete)
primitive lower block and ends with a (complete) primitive lower block. This would
contradict Lemma 6.7(1). Hence, each primitive lower block is contained in one of
the lower blocks Xij .

We conclude that Y0Xi1Y1Xi2Y2 . . . XirYr is a lower block partitioning of X.

Note that, if r = 0, hence if no argument εi of E is a ↓-expression, then for i =
1, . . . , n, Xi is an upper component or a double component of X. By Lemma 7.19,
the only lower block partitioning of X is P = X. Indeed, Y0 = X1 . . . Xn = X in
this case.

2. We first establish that Theorem 7.24(1) is applicable to X.

By assumption, X is nick free. By Theorem 7.5, X is not equal to
(

α
c(α)

)
for an

N -word α. because the only minimal DNA expression denoting such a formal DNA
molecule is 〈l α〉, whereas E is an ↑-expression. Hence, by Lemma 6.13(2), X
contains at least one single-stranded component.

Finally, by Lemma 7.30(2), if B↓(X) > B↑(X), then each minimal DNA expression
denoting X would be a ↓-expression. Because E is an ↑-expression, we must have
B↑(X) ≥ B↓(X). Indeed, Theorem 7.24(1) applies to X.

By Claim 1, P = Y0Xi1Y1Xi2Y2 . . . XirYr is a lower block partitioning of X.

Consider any argument εij with 1 ≤ j ≤ r. By definition, εij is a ↓-expression
denoting Xij . In particular, because E is minimal, εij is a minimal ↓-expression
denoting Xij .

When we define indices aj and bj for j = 0, . . . , r by

a0 = 1,
aj = ij + 1 (j = 1, . . . , r),
bj = ij+1 − 1 (j = 0, . . . , r − 1), and
br = n,

it is easy to verify that for j = 0, . . . , r, Yj = Xaj . . . Xbj . Indeed, each of the Xi’s
in such a sequence is a component of X.
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Consider any argument εi of E such that aj ≤ i ≤ bj for some j with 0 ≤ j ≤ r,
in other words: any εi that is not a ↓-expression. As we observed before, εi is

either a maximal N -word occurrence α (in which case Xi = S+(εi) =
(
α
−
)
), or an

l-expression 〈l α〉 for an N -word α (in which case Xi =
(

α
c(α)

)
). Hence, εi satisfies

equation (7.2) from Theorem 7.24(1).

Finally, by the definition of the aj’s and the bj’s,

E = 〈↑ εa0 . . . εb0 εi1 εa1 . . . εb1 . . . εir εar . . . εbr〉 ,

where we added white space before and after the arguments εij to emphasize the
correspondence with the arguments Ej in equation (7.3) from Theorem 7.24(1).

As all auxiliary results in this section deal with operator-minimal ↑-expressions, it is a
small step from Theorem 8.13 to a characterization of the operator-minimal ↑-expressions
denoting a nick free formal DNA molecule. In this characterization, we only refer to the
construction from Theorem 7.42 instead of the one from Theorem 7.24(1).

Theorem 8.14 Let E = 〈↑ ε1 . . . εn〉, where n ≥ 1 and ε1, . . . , εn are maximal N -word
occurrences and DNA expressions, be an operator-minimal DNA expression denoting a
certain nick free formal DNA molecule X. For i = 1, . . . , n, let Xi = S+(εi).

Let εi1 , εi2 , . . . , εir , with 0 ≤ r ≤ n and i1 < i2 < · · · < ir, be all ↓-arguments of E.
Finally, let Y0, Y1, . . . , Yr be defined by

Y0 =

{
X1 . . . Xn if r = 0
X1 . . . Xi1−1 if r ≥ 1

Yj = Xij+1 . . . Xij+1−1 (j = 1, . . . , r − 1)

Yr =

{
X1 . . . Xn if r = 0
Xir+1 . . . Xn if r ≥ 1

1. P = Y0Xi1Y1Xi2Y2 . . . XirYr is a lower block partitioning of X.

2. E satisfies the description of an operator-minimal DNA expression denoting X and
based on P, given in Theorem 7.42.

Proof: The proof of Claim 1 is identical to that of Theorem 8.13(1).

The proof of Claim 2 is a bit shorter than that of Theorem 8.13(2). In order to
demonstrate that Theorem 7.42 is applicable to X (rather than Theorem 7.24(1)), we
do not have to elaborate on single-stranded components occurring in X, nor on B↑(X)
and B↓(X). We only have to observe that X is nick free. When we read “because E is
operator-minimal” instead of “because E is minimal”, the rest of the proof is identical.

We finally characterize the minimal ↑-expressions for a formal DNA molecule X con-
taining (lower) nick letters. The characterization in fact reduces to a characterization of
operator-minimal ↑-expressions denoting nick free formal DNA submolecules of X, which
is provided by Theorem 8.14 above.
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Theorem 8.15 Let E = 〈↑ ε1 . . . εn〉, where n ≥ 1 and ε1, . . . , εn are maximal N -word
occurrences and DNA expressions, be a minimal DNA expression denoting a certain formal
DNA molecule X which contains at least one nick letter. Let Z1△

Z2△
. . .

△
Zm for some

m ≥ 2 be the nick free decomposition of X.
Then E satisfies the description of a minimal DNA expression denoting X given in

Theorem 7.46. Hence, there exist indices i0, i1, . . . , im, such that

• i0 = 0 < i1 < i2 < · · · < im−1 < im = n, and

• for h = 1, . . . ,m,
〈
↑ εih−1+1 . . . εih

〉
is an operator-minimal ↑-expression denoting

Zh.

Note that the indices i0, i1, . . . , im are unique. Suppose that j0, j1, . . . , jm is another se-
quence of indices that satisfies the conditions, and that h0 is the smallest value for which

ih0
6= jh0

. As i0 = j0 = 0, h0 ≥ 1. Then, however, both
〈
↑ εih0−1+1 . . . εih0

〉
and

〈
↑ εjh0−1+1 . . . εjh0

〉
=
〈
↑ εih0−1+1 . . . εjh0

〉
would denote Zh0

. This is impossible, because

by Lemma 4.12, each argument εi contains at least one N -word α, and thus contributes
at least an A-word to the semantics.

Proof: By assumption, X contains at least one nick letter, and by Lemma 5.1(1), X does
not contain upper nick letters. Hence, indeed m ≥ 2 and each nick letter occurring in the
nick free decomposition of X is a lower nick letter.

For i = 1, . . . , n, let Xi = S+(εi). By Lemma 8.7,

X = X1y1X2y2 . . . yn−1Xn, (8.7)

where for i = 1, . . . , n−1, yi is either equal to △ or to λ, depending on R(Xi) and L(Xi+1).
On the other hand, we have

X = Z1△
Z2△

. . .
△
Zm.

Because by Lemma 8.4, the Xi’s themselves are nick free, the lower nick letters occur-
ring in the nick free decomposition of X do not occur in them. Each of the lower nick
letters must correspond to a yi in (8.7).

More formally, there exist indices i1, i2, . . . , im−1 such that

• 1 ≤ i1 < i2 < · · · < im−1 ≤ n− 1,

• for h = 1, . . . ,m− 1, yih = △ and the occurrence

(X1y1 . . . yih−1Xih , Xih+1yih+1 . . . yn−1Xn) (8.8)

of yih in X is equal to the occurrence

(Z1△
. . .

△
Zh, Zh+1△

. . .
△
Zm) (8.9)

of △ in X, and

• for i ∈ {1, . . . , n− 1} \ {i1, . . . , im−1}, yi = λ.
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Lemma 8.7

nick free decomp.

X = X1y1 . . . Xih−1
yih−1

Xih−1+1yih−1+1 . . . yih−1XihyihXih+1 . . . yn−1Xn

X = Z1△
. . . Zh−1△

Zh△
Zh+1 . . . △

Zm

△ λ λ △.....................

.....................

Figure 8.1: Corresponding lower nick letters in two descriptions of a formal DNA mo-
lecule denoted by a minimal ↑-expression (see the proof of Theorem 8.15).

This formal description is illustrated by Figure 8.1.
Let us define i0 = 0 and im = n, and consider any h with 1 ≤ h ≤ m. It is clear from

(8.8) and (8.9) that

Zh = Xih−1+1yih−1+1 . . . yih−1Xih , (8.10)

which is equal to Xih−1+1Xih−1+2 . . . Xih , because every yi with ih−1 + 1 ≤ i ≤ ih −
1 is equal to λ. Note that by Lemma 7.38(1), Zh 6= λ. Indeed, because ih−1 < ih,
Xih−1+1Xih−1+2 . . . Xih 6= λ.

Now, consider the ↑-expression Eh =
〈
↑ εih−1+1 . . . εih

〉
. By definition,

S(Eh) = ν+(Xih−1+1)yih−1+1 . . . yih−1ν
+(Xih), (8.11)

where yih−1+1, . . . , yih−1 are the same as in, e.g., (8.10). That is, each of them is empty.
Because all Xi’s are nick free, (8.11) reduces to

S(Eh) = Xih−1+1Xih−1+2 . . . Xih = Zh.

Hence, Eh is an ↑-expression denoting Zh. Suppose that Eh is not operator-minimal, i.e.,
that there exists an ↑-expression E ′

h = 〈↑ εh,1 . . . εh,nh
〉 for some nh ≥ 1 and N -words and

DNA expressions εh,1, . . . , εh,nh
, such that S(E ′

h) = S(Eh) = Zh and |E ′
h| < |Eh|. Then

apparently,

|εh,1 . . . εh,nh
| < |εih−1+1 . . . εih | (8.12)

and

E = 〈↑ ε1 . . . εn〉
≡

〈
↑ ε1 . . . εih−1

〈
↑ εih−1+1 . . . εih

〉
εih+1 . . . εn

〉

≡
〈
↑ ε1 . . . εih−1

〈↑ εh,1 . . . εh,nh
〉 εih+1 . . . εn

〉

≡
〈
↑ ε1 . . . εih−1

εh,1 . . . εh,nh
εih+1 . . . εn

〉
.

The second equivalence in this derivation is valid by Lemma 5.11, the other two by
Lemma 5.10. Because of (8.12), the resulting ↑-expression

〈
↑ ε1 . . . εih−1

εh,1 . . . εh,nh
εih+1

. . . εn〉 is shorter than E. This, however, contradicts the fact that E is minimal. Con-
sequently, Eh must be operator-minimal.

For each type of expressible formal DNA molecule X, we have described how to con-
struct a minimal DNA expression denoting X and what the length of this DNA expression
is. We have also demonstrated that there do not exist minimal DNA expressions for X
other than the ones satisfying the description. We give a short overview of the results:
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Summary 8.16 Let X be an expressible formal DNA molecule.

1. If X =
(

α1

c(α1)

)
for an N -word α1, then the only minimal DNA expression denoting

X is E = 〈l α1〉 (see Theorem 7.5).

The length of this minimal DNA expression is

|E| = 3 · nl(X) + |X|A.

2. If X is nick free, contains at least one single-stranded component and B↑(X) =
B↓(X), then the only minimal DNA expressions denoting X are ↑-expressions based
on a lower block partitioning of X as described in Theorem 7.24(1), and ↓-expressions
based on an upper block partitioning of X as described in Theorem 7.24(2) (see also
Theorem 8.13).

The length of a minimal DNA expression E is

|E| = 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A
= 3 + 3 ·B↑(X) + 3 · nl(X) + |X|A.

3. If X is nick free and B↑(X) > B↓(X), then the only minimal DNA expressions
denoting X are ↑-expressions based on a lower block partitioning of X, as described
in Theorem 7.24(1) (see also Theorem 8.13).

The length of a minimal DNA expression E is

|E| = 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A.

4. If X is nick free and B↓(X) > B↑(X), then the only minimal DNA expressions
denoting X are ↓-expressions based on an upper block partitioning of X, as described
in Theorem 7.24(2) (see also Theorem 8.13).

The length of a minimal DNA expression E is

|E| = 3 + 3 ·B↑(X) + 3 · nl(X) + |X|A.

5. If X contains at least one lower nick letter, then the only minimal DNA expres-
sions denoting X are ↑-expressions based on operator-minimal ↑-expressions for the
formal DNA submolecules Z1, Z2, . . . , Zm occurring in the nick free decomposition
Z1△

Z2△
. . .

△
Zm of X, as described in Theorem 7.46 (see also Theorem 8.15).

The operator-minimal ↑-expressions denoting a (nick free) formal DNA submolecule
Zh are in turn based on a lower block partitioning of Zh, as described in Theorem
7.42 (see also Theorem 8.14).

The length of a minimal DNA expression E denoting X is

|E| = 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A.
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6. If X contains at least one upper nick letter, then the only minimal DNA expres-
sions denoting X are ↓-expressions based on operator-minimal ↓-expressions for the
formal DNA submolecules Z1, Z2, . . . , Zm occurring in the nick free decomposition
Z1

▽Z2
▽ . . . ▽Zm of X, analogous to the description in Theorem 7.46 (see also The-

orem 8.15).

The operator-minimal ↓-expressions denoting a (nick free) formal DNA submolecule
Zh are in turn based on an upper block partitioning of Zh, analogous to the descrip-
tion in Theorem 7.42 (see also Theorem 8.14).

The length of a minimal DNA expression E denoting X is

|E| = 3 + 3 ·B↑(X) + 3 · nl(X) + |X|A.

In each of the cases, a minimal DNA expression achieves the applicable lower bound on
its length from Theorem 6.31.

Now, we can also say more about the numbers of operators occurring in a minimal or
operator-minimal DNA expression.

A minimal l-expression contains only one occurrence of an operator, the operator l.
We observe once more that minimal ↑-expressions and ↓-expressions achieve the lower
bounds on their lengths from Theorem 6.31(1) and (2), respectively.

Next, consider an operator-minimal ↑-expression E denoting a formal DNA molecule
X. If X is nick free, then by Theorem 8.14, E can be obtained by the construction
from Theorem 7.42. This implies in particular that E achieves the lower bound from
Theorem 6.31(1). If X contains (lower) nick letters, then E is minimal and thus also
achieves the lower bound. Analogously, each operator-minimal ↓-expression achieves the
lower bound from Theorem 6.31(2).

Because the lower bounds in Theorem 6.31(1) and (2) followed immediately from
Theorem 6.30, we have

Corollary 8.17 Let E be a DNA expression, and let X = S(E).

1. If E is an operator-minimal ↑-expression, then

#↑,↓(E) = 1 + B↓(X) and

#l(E) = nl(X).

2. If E is an operator-minimal ↓-expression, then

#↑,↓(E) = 1 + B↑(X) and

#l(E) = nl(X).

3. If E is a minimal l-expression, then

#↑,↓(E) = 0 and

#l(E) = 1.
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Because a minimal DNA expression is certainly operator-minimal, Claims 1 and 2 apply
in particular to minimal ↑-expressions and minimal ↓-expressions, respectively.

We conclude this section with two examples of types of formal DNA molecules for
which the minimal DNA expressions are unique.

Lemma 8.18 Let X be an expressible formal DNA molecule.

1. If X is nick free, contains at least one upper component and does not contain
any lower component, then the only minimal DNA expression denoting X is an ↑-
expression whose arguments are maximal N -word occurrences αi and l-expressions
〈l αi〉 for N -words αi, alternately.

2. If X does not contain any single-stranded component and contains at least one lower

nick letter, then let
(

α1

c(α1)

)
△

(
α2

c(α2)

)
△
. . .

△

(
αm

c(αm)

)
for some m ≥ 2 and N -words

α1, α2, . . . , αm be the nick free decomposition of X. The only minimal DNA expres-
sion denoting X is

E = 〈↑ 〈l α1〉 〈l α2〉 . . . 〈l αm〉〉 .

Of course, there is an analogous result about nick free molecules with at least one lower
component and without upper components, and about molecules without single-stranded
components and with upper nick letters. For these types of molecules, the unique minimal
DNA expressions are ↓-expressions.

Note that by Lemma 6.5(2), the formal DNA molecule from Claim 1 is a primitive
upper block of itself.

Note also that for the formal DNA molecule X from Claim 2, B↓(X) = 0 and nl(X) =
m. Indeed, the minimal ↑-expression E for that case has length

|E| = 3 + 3 ·m+ |α1α2 . . . αm| = 3 + 3 · B↓(X) + 3 · nl(X) + |X|A.

Proof:

1. Assume that X is nick free, contains at least one upper component and does not
contain any lower component.

By Lemma 6.13(1), B↑(X) > 0 and B↓(X) = 0. By Summary 8.16(3), each minimal
DNA expression denoting X is an ↑-expression based on a lower block partitioning
P of X, as described in Theorem 7.24(1). By Lemma 7.19, there is only one lower
block partitioning of X: P = Y0 = X. Now, Theorem 7.24(1) specifies one minimal
↑-expression, whose arguments are N -words αi and l-expressions 〈l αi〉 for N -words
αi. By Lemma 7.27, these types of arguments alternate.

2. Assume that X does not contain any single-stranded component and contains at
least one lower nick letter.

By Corollary 5.6, the nick free decomposition of X satisfies the description in the
claim. By Summary 8.16(5), each minimal DNA expression denoting X is based on

operator-minimal ↑-expressions for Z1 =
(

α1

c(α1)

)
, . . . , Zm =

(
αm

c(αm)

)
, as described

in Theorem 7.46. For h = 1, . . . ,m, an operator minimal ↑-expression denoting

Zh =
(

αh

c(αh)

)
is in turn based on a lower block partitioning Ph of Zh, as described

in Theorem 7.42. Because Zh does not contain any lower component, the only lower
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block partitioning of Zh is Ph = Zh =
(

αh

c(αh)

)
. Hence, the only operator-minimal

↑-expression denoting Zh we can obtain by the construction from Theorem 7.42 is
〈↑ 〈l αh〉〉. Now, Theorem 7.46 specifies one minimal DNA expression denoting X:

E = 〈↑ 〈l α1〉 〈l α2〉 . . . 〈l αm〉〉 .

8.2 Operator-minimal l-expressions

In earlier sections, we have not explicitly paid attention to operator-minimal l-expressions.
The reason for that is that we do not need them to construct (other) minimal DNA
expressions.

In fact, we did consider one type of operator-minimal l-expressions, namely the min-
imal l-expressions 〈l α1〉 for N -words α1, see Theorem 7.5. For the sake of completeness,
we will now study other operator-minimal l-expressions.

By Corollary 5.7, if E is an l-expression and X = S(E), then there exist m ≥ 1 N -

words α1, . . . , αm, and a nick letter y ∈ {▽, △}, such thatX =
(

α1

c(α1)

)
y
(

α2

c(α2)

)
y . . . y

(
αm

c(αm)

)
.

X does not contain any single-stranded component.

Ifm = 1, thenX =
(

α1

c(α1)

)
. This is the type of molecules we dealt with in Theorem 7.5.

Hence, for such molecules, we already know the (unique) (operator-)minimal l-expressions.
From now on, we assume that m ≥ 2. Without loss of generality, we assume that the

nick letters y occurring in X are lower nick letters. We first describe how to construct an
operator-minimal l-expression denoting X.

Theorem 8.19 Let X be an expressible formal DNA molecule which does not contain
any single-stranded component and contains at least one lower nick letter.

• Let
(

α1

c(α1)

)
△

(
α2

c(α2)

)
△
. . .

△

(
αm

c(αm)

)
for some m ≥ 2 and N -words α1, α2, . . . , αm be

the nick free decomposition of X;

• let α′
1 be a (possibly empty) string over N , and let α′′

1 be an N -word, such that
α1 = α′

1α
′′
1;

• let α′
m be an N -word, and let α′′

m be a (possibly empty) string over N , such that
αm = α′

mα
′′
m; and

• let

E = 〈l 〈↑ α′
1 〈l α′′

1〉 〈l α2〉 〈l α3〉 . . . 〈l αm−1〉 〈l α′
m〉α′′

m〉〉 .

Then

(a) all ingredients needed to construct E (i.e., the nick free decomposition, the strings
α′
1 and α′′

m, and the N -words α′′
1 and α′

m) are well defined, and

(b) E is an operator-minimal l-expression denoting X and

|E| = 6 + 3 ·m+ |X|A = 6 + 3 · nl(X) + |X|A. (8.13)
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By Lemma 6.5(2) and Lemma 6.7(1), X is the only primitive ↑-block of itself and X does
not contain any primitive ↓-block. Hence, B↑(X) = 1 and B↓(X) = 0, and we can rewrite
(8.13) as follows:

|E| = 3 + 3 ·B↑(X) + 3 · nl(X) + |X|A
> 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A
= 3 + 3 · nl(X) + |X|A.

This implies that, unlike the (operator-)minimal DNA expressions we have constructed
before, the operator-minimal l-expression E we construct here does not achieve the ap-
plicable lower bounds from Theorem 6.31. Apparently, these lower bounds are not tight
for l-expressions denoting formal DNA molecules with (lower) nick letters.

Proof: Indeed, by Corollary 5.6, the nick free decomposition of X satisfies the description
in the claim.

Obviously, if we let α′
1 = λ and α′′

1 = α1, then we have a string α′
1 and an N -word

α′′
1 for which α1 = α′

1α
′′
1. Hence, there exists at least one pair of strings α′

1 and α′′
1 that

satisfies this equality. If |α1| ≥ 2, then we can also take an arbitrary partitioning of α1

into N -words α′
1 and α′′

1.
Analogously, there exists at least one combination of an N -word α′

m and a string α′′
m,

such that αm = α′
mα

′′
m.

Let

E1 = 〈↑ α′
1 〈l α′′

1〉 〈l α2〉 〈l α3〉 . . . 〈l αm−1〉 〈l α′
m〉α′′

m〉

be the argument of E. For notational convenience, let us assume that both α′
1 6= λ and

α′′
m 6= λ.1 By definition, S+(α′

1) =
(
α′
1

−
)
, S+(〈l α′′

1〉) =
(

α′′
1

c(α′′
1 )

)
, S+(〈l α′

m〉) =
(

α′
m

c(α′
m)

)
,

S+(α′′
m) =

(
α′′
m

−
)
and for h = 2, . . . ,m − 1, S+(〈l αh〉) =

(
αh

c(αh)

)
. Hence, the arguments

of the operator ↑ occurring in E1 fit together by upper strands. Indeed, E1 is a DNA
expression, and so is E = 〈l E1〉. Because

S(E1) =
(
α′
1

−
)(

α′′
1

c(α′′
1 )

)
△

(
α2

c(α2)

)
△
. . .

△

(
αm−1

c(αm−1)

)
△

(
α′
m

c(α′
m)

)(
α′′
m

−
)

and hence

S(E) =
(

α′
1

c(α′
1)

)(
α′′
1

c(α′′
1 )

)
△

(
α2

c(α2)

)
△
. . .

△

(
αm−1

c(αm−1)

)
△

(
α′
m

c(α′
m)

)(
α′′
m

c(α′′
m)

)

=
(

α1

c(α1)

)
△

(
α2

c(α2)

)
△
. . .

△

(
αm−1

c(αm−1)

)
△

(
αm

c(αm)

)
,

the l-expression E denotes X.
E contains m+2 operators. Hence, by Lemma 6.1, the length |E| of E satisfies (8.13).

Now, the only thing left to be proved is that E is operator-minimal, i.e., that there does
not exist a shorter l-expression denoting X.

By Lemma 8.18(2), the unique minimal DNA expression denotingX is the ↑-expression

E ′ = 〈↑ 〈l α1〉 〈l α2〉 . . . 〈l αm〉〉 ,

which contains m+ 1 operators and thus has length

|E ′| = 3 + 3 ·m+ |X|A = 3 + 3 · nl(X) + |X|A.
1If either of these strings is empty, then E1 has fewer arguments and is actually easier to analyse.
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Consequently, any l-expression denoting X contains at least one operator more and thus
is at least three letters longer than E ′. This implies that it is at least as long as E. Indeed,
E is operator-minimal.

We now show that the specification of operator-minimal l-expressions given above is
complete. That is, for the formal DNA molecules considered in Theorem 8.19, there do
not exist operator-minimal l-expressions other than the ones specified there.

Theorem 8.20 Let E be an operator-minimal l-expression, denoting a certain formal
DNA molecule X which contains at least one lower nick letter.

Then E satisfies the description of an operator-minimal l-expression denoting X given
in Theorem 8.19.

Proof: By the definition of the semantics of an l-expression, X does not contain any
single-stranded component. Indeed, Theorem 8.19 is applicable to X.

By Corollary 5.7, the nick free decomposition of X is
(

α1

c(α1)

)
△

(
α2

c(α2)

)
△
. . .

△

(
αm

c(αm)

)

for some m ≥ 2 and N -words α1, . . . , αm.

If E = 〈l α〉 for an N -word α, then X = S(E) =
(

α
c(α)

)
would not contain any lower

nick letter. Hence, E = 〈l E1〉 for a DNA expression E1.
LetX1 = S(E1). By definition, X = κ(X1). Because the function κ does not introduce,

nor remove nick letters, X1 contains m − 1 lower nick letters, just like X. As E is
operator-minimal, its argument E1 must be minimal. Hence, by Lemma 7.35(1), E1 is an
↑-expression, and by Theorem 7.46,

|E1| = 3 + 3 ·B↓(X1) + 3 · nl(X1) + |X1|A. (8.14)

Let Z1,1△
Z1,2△

. . .
△
Z1,m be the nick free decomposition of X1. By Theorem 8.15, there

exist operator-minimal ↑-expressions E1,1, E1,2, . . . , E1,m denoting Z1,1, Z1,2, . . . , Z1,m, re-

spectively, such that E1 =
〈
↑ Ê1,1Ê1,2 . . . Ê1,m

〉
, where for h = 1, . . . ,m, Ê1,h is the

sequence of the arguments of E1,h. In order to determine what exactly each E1,h may be,
we first analyse the Z1,h’s.

By definition, each lower nick letter occurring in (the formal DNA molecule) X1 is both
preceded and succeeded by a double A-letter. Hence, for h = 1, . . . ,m, Z1,h contains at
least one double component: nl(Z1,h) ≥ 1. The double components of X1 are distributed
over the Z1,h’s. Hence, by Lemma 6.3,

nl(X1) = nl(Z1,1) + nl(Z1,2) + · · ·+ nl(Z1,m) ≥ m. (8.15)

When we substitute this into (8.14), we obtain

|E1| ≥ 3 + 3 · B↓(X1) + 3 ·m+ |X1|A ≥ 3 + 3 ·m+ |X1|A, (8.16)

and hence,

|E| = 3 + |E1| ≥ 6 + 3 ·m+ |X1|A = 6 + 3 ·m+ |X|A. (8.17)

By Theorem 8.19, there exists an operator-minimal l-expression denoting X with length
(exactly) 6+3 ·m+ |X|A. Because, obviously, all operator-minimal l-expressions denoting
X have the same length, we must have equality in (8.16) and (8.17):

|E1| = 3 + 3 ·m+ |X1|A
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and

|E| = 6 + 3 ·m+ |X|A.
Consequently, B↓(X1) = 0, nl(X1) = m and in particular, for h = 1, . . . ,m, nl(Z1,h) = 1.
By Lemma 6.7(2), X1 does not have any ↓-component. Then certainly, none of the Z1,h’s
has a ↓-component. Hence, by definition, for h = 1, . . . ,m, B↓(Z1,h) = 0.

The relation X = κ(X1) implies that for h = 1, . . . ,m,
(

αh

c(αh)

)
= κ(Z1,h). Now,

consider any h with 1 ≤ h ≤ m.
• If 2 ≤ h ≤ m− 1, then Z1,h is both preceded and succeeded in X1 by a lower nick letter.
Hence, it both starts and ends with a double component. Because nl(Z1,h) = 1, these

have to be the same double component: Z1,h =
(

αh

c(αh)

)
, as κ(Z1,h) =

(
αh

c(αh)

)
.

By Lemma 7.19, the only lower block partitioning of Z1,h is Y0 = Z1,h =
(

αh

c(αh)

)
. Hence,

by Theorem 7.42 and Theorem 8.14, the only operator-minimal ↑-expression denoting Z1,h

is E1,h = 〈↑ 〈l αh〉〉.
• If h = 1, then Z1,h = Z1,1 ends with a double component

(
α′′
1

c(α′′
1 )

)
for an N -word α′′

1.

Because nl(Z1,1) = 1, Z1,1 does not contain any other double component. Hence, by

Corollary 3.8,
(

α′′
1

c(α′′
1 )

)
is preceded in Z1,1 by at most one other component, which then is

a single-stranded component.

If
(

α′′
1

c(α′′
1 )

)
is not preceded in Z1,1 by any other component, then Z1,1 =

(
α′′
1

c(α′′
1 )

)
=(

α1

c(α1)

)
.

If
(

α′′
1

c(α′′
1 )

)
is preceded in Z1,1 by a single-stranded component, then this cannot be a

lower component, because Z1,1 does not contain ↓-components. Consequently,
(

α′′
1

c(α′′
1 )

)
is

preceded in Z1,1 by an upper component
(
α′
1

−
)
for an N -word α′

1: Z1,1 =
(
α′
1

−
)(

α′′
1

c(α′′
1 )

)
.

Because κ(Z1,1) =
(

α′
1

c(α′
1)

)(
α′′
1

c(α′′
1 )

)
=
(

α′
1α

′′
1

c(α′
1α

′′
1 )

)
=
(

α1

c(α1)

)
, α′

1α
′′
1 = α1. In this case, both α′

1

and α′′
1 must contain at least one N -letter, which implies that |α1| ≥ 2.

We proceed in the same way as for the case 2 ≤ h ≤ m− 1. By Lemma 7.19, both if

Z1,1 =
(

α1

c(α1)

)
and if Z1,1 =

(
α′
1

−
)(

α′′
1

c(α′′
1 )

)
for a partitioning (α′

1, α
′′
1) of α1, the only lower

block partitioning of Z1,1 is Y0 = Z1,1. Hence, by Theorem 7.42 and Theorem 8.14, there
is exactly one operator-minimal ↑-expression E1,1 denoting Z1,1: either E1,1 = 〈↑ 〈l α1〉〉
(if Z1,1 =

(
α1

c(α1)

)
), or E1,1 = 〈↑ α′

1 〈l α′′
1〉〉 (if Z1,1 =

(
α′
1

−
)(

α′′
1

c(α′′
1 )

)
for a partitioning

(α′
1, α

′′
1) of α1). Both types of operator-minimal ↑-expressions fit in with the format

E1,1 = 〈↑ α′
1 〈l α′′

1〉〉 for a (possibly empty) string α′
1 over N and an N -word α′′

1 with
α1 = α′

1α
′′
1.

• The case h = m is dealt with analogously to the case h = 1. After having established that
Z1,m begins with a double component, which may be succeeded by an upper component,
we find that E1,m = 〈↑ 〈l α′

m〉α′′
m〉 for an N -word α′

m and a (possibly empty) string α′′
m

over N with αm = α′
mα

′′
m.

We conclude that

E = 〈l E1〉
=

〈
l
〈
↑ Ê1,1Ê1,2Ê1,3 . . . Ê1,m−1Ê1,m

〉〉
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= 〈l 〈↑ α′
1 〈l α′′

1〉 〈l α2〉 〈l α3〉 . . . 〈l αm−1〉 〈l α′
m〉α′′

m〉〉 .

Indeed, E satisfies the description from Theorem 8.19.

By Theorem 8.19 and Theorem 8.20, we do not have much freedom in the construction
of an operator-minimal l-expression for a formal DNA molecule containing lower nick
letters. In particular, the operators occurring in it are fixed. We thus have, as an addition
to Corollary 8.17(3),

Corollary 8.21 Let E be a DNA expression, and let X = S(E).

1. If X contains at least one lower nick letter and E is an operator-minimal l-expres-
sion, then

#↑(E) = 1,

#↓(E) = 0 and

#l(E) = nl(X) + 1.

2. If X contains at least one upper nick letter and E is an operator-minimal l-expres-
sion, then

#↑(E) = 0,

#↓(E) = 1 and

#l(E) = nl(X) + 1.

8.3 Characterization of minimal DNA expressions

In Chapter 7, we have learned how to construct a minimal DNA expression denoting an
arbitrary (expressible) formal DNA molecule. We also observed that we can calculate the
length of a minimal DNA expression directly from the formal DNA molecule. We do not
have to explicitly construct a minimal DNA expression for this.

Now suppose that we are given a DNA expression E and that we want to decide
whether or not it is minimal. Then we can use the following three-stage approach: we
first determine the semantics S(E) of E, we subsequently calculate the length of a minimal
DNA expression denoting S(E), and we finally count the length of E and check if it is
equal to this minimal length.

There is also another, direct method. This method is based on a characterization of
minimal DNA expressions by six properties of (the arguments of) the operators occurring
in them. When we want to know if a given DNA expression E is minimal, we simply
check if E has all the properties. If so, then it is minimal; if not, then it is not. We do
not need the semantics for this.

In this section, we describe this characterization. We first prove that the six properties
are necessary for a DNA expression to be minimal. That is, each minimal DNA expression
automatically has these properties. In Lemma 8.25, we will prove that the properties are
also sufficient.
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Lemma 8.22 Let E be a minimal DNA expression.

(DMin.1) Each occurrence of the operator l in E has as its argument an N -word α (i.e.,
not a DNA expression).

(DMin.2) No occurrence of the operator ↑ in E has an ↑-argument, and no occurrence of
the operator ↓ in E has a ↓-argument.

(DMin.3) Unless E = 〈↑ α〉 or E = 〈↓ α〉 for an N -word α, each occurrence of an operator
↑ or ↓ in E has at least two arguments.

(DMin.4) Each inner occurrence of an operator ↑ or ↓ in E is alternating.

(DMin.5) For each inner occurrence of an operator ↑ or ↓ in E,

• the first argument is either an N -word α or an l-expression 〈l α〉 for an N -
word α, and

• the last argument is either an N -word α or an l-expression 〈l α〉 for an N -word
α.

(DMin.6) If the outermost operator of E is ↑ or ↓, then

• either its first argument is an N -word α or an l-expression 〈l α〉 for an N -word
α,

• or its last argument is an N -word α or an l-expression 〈l α〉 for an N -word
α,

• or it has two consecutive expression-arguments.

As we will see in the proof, Properties (DMin.1) and (DMin.2) follow immediately from
earlier results on (operator-)minimal DNA expressions. In addition to Property (DMin.2),
no occurrence of l has an l-argument in a minimal DNA expression. We have not included
this in Property (DMin.2), as it already follows from Property (DMin.1).

Intuitively, Property (DMin.3) means that the effect of an operator ↑ or ↓ with a single
argument is often too small to justify the presence of the operator. In particular such an
operator cannot express its ability to connect consecutive arguments. Property (DMin.4)
ensures that the arguments of the DNA expression are nick free (see Lemma 5.8). It is
not efficient to first introduce nick letters and to later remove them. All nick letters in
the formal DNA molecule denoted can be produced by the outermost operator.

Let Xs be the submolecule denoted by a proper ↑-expression. By Property (DMin.5)
(and Properties (DMin.3) and (DMin.4)), both the first and the last single-stranded compon-
ent of Xs are upper components. Hence, B↑(X

s) = B↓(X
s) + 1. In fact, the submolecule

is an upper block. This justifies the use of the operator ↑ here. If either the first or the
last single-stranded component were a lower component, then it would be more efficient
to have this lower component produced by the parent operator of the ↑-subexpression,
which is an occurrence of ↓.

The outermost operator has a weaker property. Assume that the outermost operator
is ↑. Then, by Property (DMin.6), it is possible that this operator has only one of the two
subproperties from Property (DMin.5) (which is, e.g., the case if the formal DNA molecule
X denoted is nick free and B↑(X) = B↓(X)), or that the operator has two consecutive
expression-arguments (which, by Corollary 8.11(2) and (3), is the case if and only if X
contains lower nick letters).
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The basic DNA expressions 〈↑ α〉, 〈↓ α〉 and 〈l α〉 for N -words α (which are minimal)
trivially have all six properties.

Example 8.23 We repeat the minimal DNA expression we constructed in Example 7.47,
for a formal DNA molecule containing lower nick letters, see Equation (7.28):

E = 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 〈↓ 〈l α5〉α6 〈l α7〉〉α8 〈↓ 〈l α9〉α10 〈l α11〉〉
〈l α12〉α13 〈l α14〉α15 〈l α16〉 〈l α17〉
〈↓ 〈l α18〉α19 〈l α20〉〉α21 〈l α22〉 〉 .

(8.18)

It is easily verified that indeed, E has the six properties from Lemma 8.22. Although
Property (DMin.5) is only about inner occurrences of ↑ and ↓, its two subproperties also
happen to be valid for the outermost operator ↑ of E. In fact, this operator has all three
subproperties from Property (DMin.6).

Proof of Lemma 8.22: In the proofs of Properties (DMin.1), (DMin.2) and (DMin.3), we
will consider an arbitrary occurrence of a certain operator in E. It is worth noting that
in principle, this may be the outermost operator of E. Hence, the DNA subexpression Es

governed by it may be equal to E.

(DMin.1) Consider an arbitrary occurrence of the operator l in E and let Es be the
DNA subexpression of E governed by it. Because E is minimal, so is Es. Now,
Theorem 7.5 implies that Es is of the form 〈l α〉 for an N -word α.

(DMin.2) Consider an arbitrary occurrence of the operator ↑ in E and let Es be the DNA
subexpression of E governed by it. Because E is minimal, so is Es. By Lemma 8.1,
Es does not have any ↑-argument.

Analogously, no occurrence of the operator ↓ in E has a ↓-argument.

(DMin.3) Assume that E is not equal to 〈↑ α〉 or 〈↓ α〉 for an N -word α.

Consider an arbitrary occurrence of the operator ↑ in E and let Es be the DNA
subexpression of E governed by it. Because E is minimal, so is Es.

Suppose that Es has only one argument ε1: Es = 〈↑ ε1〉. By Lemma 8.4, S+(ε1)
is nick free. Now if ε1 were a DNA expression E1, then by definition, S(Es) =
S(〈↑ E1〉) = ν+(S(E1)) = S(E1). Because E1 is three letters shorter than Es, Es

would not be minimal. Consequently, ε1 must be an N -word α1: E
s = 〈↑ α1〉.

Because E 6= 〈↑ α〉 for any N -word α, Es 6= E, i.e., Es is a proper DNA subex-
pression of E. By Properties (DMin.1) and (DMin.2), the parent operator of (the

↑-expression) Es is ↓. Because S(Es) =
(
α1

−
)
does not fit together by lower strands

with any other formal DNA molecule, Es must be the only argument of its parent op-
erator ↓. Hence, E has a DNA subexpression 〈↓ Es〉 = 〈↓ 〈↑ α1〉〉. This DNA subex-
pression is, however, equivalent to the shorter DNA subexpression 〈↑ α1〉, which
contradicts the minimality of E.

Hence, our hypothesis that Es has only one argument must be wrong.

The proof for an occurrence of the operator ↓ in E is analogous.

(DMin.4) Consider an arbitrary inner occurrence of the operator ↑ in E and let Es be the
(proper) DNA subexpression of E governed by it. Clearly, by Property (DMin.1), E
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is not an l-expression. Es is minimal and by Corollary 8.5, Es is nick free. Hence,
by Corollary 8.10, Es is alternating.

The proof for an inner occurrence of the operator ↓ in E is analogous.

Note that we in fact proved this property already in the proof of Corollary 8.11.

(DMin.5) Consider an arbitrary inner occurrence of the operator ↑ in E, and let Es
1 be the

DNA subexpression of E governed by it. Es
1 is the argument of a DNA subexpression

Es
0 of E. Both Es

1 and Es
0 are minimal. Because Es

1 is an ↑-expression, Properties
(DMin.1) and (DMin.2) imply that Es

0 is a ↓-expression.
Let Xs

1 = S(Es
1). By (the analogue for ↓-expressions of) Lemma 8.4, Xs

1 is nick
free. By Theorem 8.13, Es

1 satisfies the construction from Theorem 7.24(1). In
particular, Xs

1 contains at least one single-stranded component and B↑(X) ≥ B↓(X).
By Lemma 8.6(1), we even have B↑(X

s
1) = B↓(X

s
1) + 1. Now by Corollary 7.33(1),

neither the first argument, nor the last argument of Es
1 is a ↓-argument. Hence, by

Corollary 8.2, each of them is either an N -word α, or an l-expression 〈l α〉 for an
N -word α.

The proof for an inner occurrence of the operator ↓ in E is analogous.

(DMin.6) Let X = S(E). Assume that the outermost operator of E is ↑ and that E does
not have two consecutive expression-arguments. By Corollary 8.11(1) and (3), X is
nick free.

By Theorem 8.13, E satisfies the construction from Theorem 7.24(1). In particular,
X contains at least one single-stranded component and B↑(X) ≥ B↓(X). Then
by Corollary 7.33(3), it is impossible that both the first argument, and the last
argument of E are ↓-arguments. Hence, by Corollary 8.2, either the first argument,
or the last argument of E (or both) is an N -word α or an l-expression 〈l α〉 for an
N -word α.

The proof for the case that the outermost operator of E is ↓ is analogous.

In the proof of Properties (DMin.5) and (DMin.6) above, there was a crucial role for the
construction of minimal ↑-expressions, as described in Theorem 7.24(1). It is instructive
to also consider another proof of these two properties, which directly relates them to the
concept of minimality: if a DNA expression does not have these properties, then we can
easily find a shorter, equivalent DNA expression.

Alternative proof of Properties (DMin.5) and (DMin.6): Let E be a DNA expression
with Properties (DMin.1)–(DMin.4).

(DMin.5) Assume that E does not have Property (DMin.5). Without loss of generality,
assume that there is an inner occurrence ↑1 of the operator ↑ in E, such that the last
argument of ↑1 is neither an N -word α, nor an l-expression 〈l α〉 for an N -word α.
We prove that E is not minimal.

Let Es
1 = 〈↑1 ε1 . . . εn〉 for some n ≥ 1 and N -words and DNA expressions ε1, . . . , εn

be the DNA subexpression governed by ↑1.
E is not equal to 〈↑ α〉 or 〈↓ α〉 for an N -word α, because such DNA expressions do
not have inner occurrences of operators. Hence, by Property (DMin.3), n ≥ 2.
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By Properties (DMin.1) and (DMin.2), E
s
1 is the argument of a ↓-expression Es

0. By
the same properties, each argument εi of ↑1 is either anN -word α, or an l-expression
〈l α〉 for an N -word α, or a ↓-expression. Now by assumption, the last argument
εn must be a ↓-expression. Hence, Es

0 has the following shape:

Es
0 = 〈↓0 . . . 〈↑1 ε1 . . . εn−1 〈↓2 εn,1 . . . εn,mn

〉〉 . . .〉

for some mn ≥ 1 and N -words and DNA expressions εn,1, . . . , εn,mn
. Because the

arguments of ↑1 must fit together by upper strands, the first argument εn,1 of ↓2 is
a DNA expression. Moreover, by Property (DMin.4), each occurrence of ↑ or ↓ in
Es

1 = 〈↑1 ε1 . . . εn−1 〈↓2 εn,1 . . . εn,mn
〉〉 is alternating.

We show that the effects of ↓2 can as well be achieved by the operator ↓0, by
transferring the last mn − 1 arguments of ↓2 to ↓0. By Theorem 5.16(1) and (2),

Es
1 = 〈↑1 ε1 . . . εn−1 〈↓2 εn,1 . . . εn,mn

〉〉
≡ 〈↓2 〈↑1 ε1 . . . εn−1εn,1〉 εn,2 . . . εn,mn

〉 .

Then by Lemma 5.11 and Lemma 5.10,

Es
0 = 〈↓0 . . . 〈↑1 ε1 . . . εn−1 〈↓2 εn,1 . . . εn,mn

〉〉 . . .〉
≡ 〈↓0 . . . 〈↓2 〈↑1 ε1 . . . εn−1εn,1〉 εn,2 . . . εn,mn

〉 . . .〉
≡ 〈↓0 . . . 〈↑1 ε1 . . . εn−1εn,1〉 εn,2 . . . εn,mn

. . .〉 .

Let us use Es
0
′ to denote the resulting ↓-expression. Clearly, Es

0
′ is three letters

shorter than Es
0. When we substitute Es

0 in E by Es
0
′, by Lemma 5.11, the result

is a (shorter) DNA expression that is equivalent to E. We conclude that E is not
minimal.

(DMin.6) Assume that E does not have Property (DMin.6). Without loss of generality,
assume that the outermost operator of E is ↑. Hence, E = 〈↑ ε1 . . . εn〉 for some
n ≥ 1 and N -words and DNA expressions ε1, . . . , εn. We prove that E is not
minimal.

By Properties (DMin.1) and (DMin.2), each argument εi of E is either an N -word α,
or an l-expression 〈l α〉 for an N -word α, or a ↓-expression. By assumption, both
the first argument and the last argument are ↓-expressions:

ε1 = 〈↓ ε1,1 . . . ε1,m1−1ε1,m1
〉 , and

εn = 〈↓ εn,1εn,2 . . . εn,mn
〉

for some m1,mn ≥ 1 and N -words and DNA expressions ε1,1, . . . , ε1,m1−1, ε1,m1
, εn,1,

εn,2, . . . , εn,mn
. By Property (DMin.3), n,m1,mn ≥ 2.

By assumption, the outermost operator ↑ does not have two consecutive expression-
arguments. Hence, by Property (DMin.4), each occurrence of ↑ or ↓ in E is alternat-
ing.

We can apply Theorem 5.21(1) and (2) to E (with r = 1):

E = 〈↑ 〈↓ ε1,1 . . . ε1,m1−1ε1,m1
〉 ε2 . . . εn−1 〈↓ εn,1εn,2 . . . εn,mn

〉〉
≡ 〈↓ ε1,1 . . . ε1,m1−1 〈↑ ε1,m1

ε2 . . . εn−1εn,1〉 εn,2 . . . εn,mn
〉 .
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Let us use E ′ to denote the resulting DNA expression. As two occurrences of the
operator ↓ in E have been replaced by one occurrence in E ′, E ′ is shorter than E.
Also in this case, E is not minimal.

We use DMin to denote the set of DNA expressions that have Properties (DMin.1)–
(DMin.6). Membership of DMin carries over to DNA subexpressions:

Lemma 8.24 A DNA expression E is in DMin if and only if each DNA subexpression of
E is in DMin.

This result is not immediate, as Properties (DMin.3) and (DMin.6) are ‘non-local’ properties
of E: Property (DMin.3) takes into account the total DNA expression E and Property
(DMin.6) is a property of the outermost operator of E.

Proof: Let E be an arbitrary DNA expression.
Clearly, if each DNA subexpression of E is in DMin, then so is E, because E is a DNA

subexpression of itself.
Now assume that E ∈ DMin and let Es be a proper DNA subexpression of E. We will

prove that Es has the six properties from Lemma 8.22, and thus is in DMin.
Each occurrence of an operator in Es is also an occurrence of that operator in E,

with the same arguments. In particular, each inner occurrence of an operator ↑ or ↓ in
Es is also an inner occurrence of that operator in E, with the same arguments. Hence,
Properties (DMin.1), (DMin.2), (DMin.4) and (DMin.5) are valid for Es, simply because they
are valid for E.

Because Es is a proper DNA subexpression of E, E cannot be equal to 〈↑ α〉 or 〈↓ α〉
for an N -word α; such DNA expressions do not have proper DNA subexpressions. Hence,
by Property (DMin.3) for E, each occurrence of an operator ↑ or ↓ in E has at least two
arguments. Of course, the same holds for such an occurrence in Es, which means that
Property (DMin.3) is also valid for Es. Note that indeed, Es cannot be equal to 〈↑ α〉 or
〈↓ α〉 for an N -word α.

If the outermost operator of Es is ↑ or ↓, then it is an inner occurrence of that
operator in E. Hence, by Property (DMin.5), both its first argument is an N -word α
or an l-expression 〈l α〉 for an N -word α, and its last argument is an N -word α or an
l-expression 〈l α〉 for an N -word α. This implies that also Property (DMin.6) is valid for
Es. Note that by Property (DMin.4) for E, the outermost operator of Es cannot have two
consecutive expression-arguments.

We can now prove that all elements of DMin are minimal, which means that the six
properties are indeed sufficient.

Lemma 8.25 Each DNA expression E ∈ DMin is minimal.

Proof: Let E be an arbitrary DNA expression in DMin. We prove that E is minimal, by
induction on the number p of operators occurring in E.

• If p = 1, then apparently the outermost operator of E is the only operator occurring
in E. E does not have any expression-argument. Hence, either E = 〈↑ α〉, or E =
〈↓ α〉 or E = 〈l α〉 for an N -word α. Indeed, these are minimal DNA expressions,

which denote
(
α
−
)
,
(−
α

)
and

(
α

c(α)

)
, respectively.
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• Let p ≥ 1, and suppose that each DNA expression in DMin that contains at most p
operators is minimal (induction hypothesis).

Now consider a DNA expression E in DMin that contains p + 1 operators. Because
p+ 1 ≥ 2, Property (DMin.1) implies that E is not an l-expression.
Assume that E is an ↑-expression: E = 〈↑ ε1 . . . εn〉 for some n ≥ 1 and N -words
and DNA expressions ε1, . . . , εn. In fact, since E contains p + 1 ≥ 2 operators, it
follows from Property (DMin.3) that n ≥ 2. Let X = S(E) and for i = 1, . . . , n, let
Xi = S+(εi). By definition,

X = ν+(X1)y1ν
+(X2)y2 . . . yn−1ν

+(Xn),

where the yi’s are defined by (4.3).

By Property (DMin.2), E does not have ↑-arguments. Hence, its arguments are
N -words, l-expressions and ↓-expressions. Consider an arbitrary argument εi of E.

If εi is an N -word α, then Xi =
(
α
−
)
. Because in this case B↓(Xi) = nl(Xi) = 0,

|εi| = |α| = |Xi|A = 3 ·B↓(Xi) + 3 · nl(Xi) + |Xi|A.

If εi is an l-expression, then by Property (DMin.1), it is of the form 〈l α〉 for an

N -word α. In this case, Xi =
(

α
c(α)

)
, B↓(Xi) = 0 and nl(Xi) = 1. Hence,

|εi| = | 〈l α〉 | = 3 + |Xi|A = 3 ·B↓(Xi) + 3 · nl(Xi) + |Xi|A.

Finally, assume that εi is a ↓-expression Ei. Because Ei does not contain the outer-
most operator ↑ of E, it contains at most p operators. By Lemma 8.24, Ei ∈ DMin,
and by the induction hypothesis, Ei is a minimal DNA expression.

All occurrences of ↑ and ↓ in Ei are inner occurrences in E. Hence, by Prop-
erty (DMin.4) and Lemma 5.8, Xi = S(Ei) is nick free.

By Property (DMin.3), Ei has at least two arguments. By Property (DMin.5), the
first one is either an N -word α1 or an l-expression 〈l α1〉 for an N -word α1. In
the latter case, by Property (DMin.4), the second argument is an N -word α2. In
both cases, Xi contains at least one single-stranded component and the first single-
stranded component is a lower component. Analogously, the last single-stranded
component of Xi is a lower component.

Then by Lemma 6.13(3d), B↓(Xi) = B↑(Xi)+1. Consequently, by Theorem 7.24(2),

|εi| = |Ei| = 3 + 3 · B↑(Xi) + 3 · nl(Xi) + |Xi|A
= 3 ·B↓(Xi) + 3 · nl(Xi) + |Xi|A.

We are now ready to calculate the length of E:

|E| = 3 +
n∑

i=1

|εi|

= 3 + 3 ·
n∑

i=1

B↓(Xi) + 3 ·
n∑

i=1

nl(Xi) +
n∑

i=1

|Xi|A.
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For i = 1, . . . , n, Xi is nick free and in particular, #▽(Xi) = 0. But then Equations
(6.4), (6.5) and (6.6) from Lemma 6.27(1) imply that

|E| = 3 + 3 ·B↓(X) + 3 · nl(X) + |X|A. (8.19)

Because (the ↑-expression) E achieves the lower bound from Theorem 6.31(1), it is
operator-minimal. The only thing left to be proved is that it is also minimal.

If X contains nick letters, then by definition, these must be lower nick letters.
By Lemma 7.35(1), each minimal DNA expression denoting X is an ↑-expression.
In particular, E, which is an operator-minimal ↑-expression, is minimal. Indeed,
|E| equals the length of a minimal DNA expression denoting X, as specified in
Theorem 7.46.

Now assume that X is nick free and recall that n ≥ 2. By Corollary 8.11(1) and
(3), E is alternating. Then by Property (DMin.6), either the first argument, or the
last argument of E (or both arguments) is an N -word α1 or an l-expression 〈l α1〉
for an N -word α1. Without loss of generality, assume that the first argument of E
is an N -word α1 or an l-expression 〈l α1〉 for an N -word α1. In the latter case,
the second argument must be an N -word α2. In both cases, X = S(E) contains
at least one single-stranded component and the first single-stranded component is
an upper component. Then it follows from Lemma 6.13(3a) and (3c) that B↑(X) ≥
B↓(X), and from Theorem 7.24(1) that there exists at least one minimal ↑-expression
denoting X. Consequently, the operator-minimal ↑-expression E is also minimal.

The proof for the case that E is a ↓-expression is analogous.

When we combine Lemma 8.22 and Lemma 8.25, we obtain the characterization that we
set out for:

Theorem 8.26 A DNA expression E is minimal if and only if E ∈ DMin.

Hence, the minimal DNA expressions can be characterized by six properties, Properties
(DMin.1) – (DMin.6). One may replace one or more of these properties by other, new
properties, and yet retain a valid characterization. However, none of the six properties can
simply be omitted, i.e., none of the properties follows from the remaining set of properties.
For each of the properties, there exist DNA expressions without that particular property
(which thus are not minimal), that do have the other five properties. Examples of this
are given in Table 8.1.

We use the characterization to derive other properties of minimal DNA expressions.

Lemma 8.27 Let E be a minimal DNA expression.

1. (a) For each proper ↑-subexpression of E, the parent operator is ↓.
(b) For each proper ↓-subexpression of E, the parent operator is ↑.

2. Each proper ↑-subexpression or ↓-subexpression of E has at least two arguments.

3. If E is nick free, then it has at least one N -word-argument α.

4. Each proper DNA subexpression of E has at least one N -word-argument α.
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Prop. E X = S(E) E∗

(DMin.1) 〈l 〈l α1〉〉
(

α1

c(α1)

)
〈l α1〉

(DMin.1) 〈↑ α1 〈l 〈↑ α2 〈l α3〉〉〉〉
(
α1

−
)(

α2α3

c(α2α3)

)
〈↑ α1 〈l α2α3〉〉

(DMin.2) 〈↑ α1 〈↑ 〈l α2〉α3〉〉
(
α1

−
)(

α2

c(α2)

)(
α3

−
)

〈↑ α1 〈l α2〉α3〉
(DMin.3) 〈↑ 〈l α1〉〉

(
α1

c(α1)

)
〈l α1〉

(DMin.3) 〈↓ α1 〈↑ 〈l α2〉〉〉
(−
α1

)(
α2

c(α2)

)
〈↓ α1 〈l α2〉〉

(DMin.4) 〈↑ α1 〈↓ 〈l α2〉 〈l α3〉〉〉
(
α1

−
)(

α2α3

c(α2α3)

)
〈↑ α1 〈l α2α3〉〉

(DMin.5) 〈↑ α1 〈↓ 〈↑ α2 〈l α3〉〉α4〉〉
(
α1α2

−
)(

α3

c(α3)

)(−
α4

)
〈↑ α1α2 〈↓ 〈l α3〉α4〉〉

(DMin.5) 〈↑ 〈↓ α1 〈↑ 〈l α2〉α3〉〉α4〉
(−
α1

)(
α2

c(α2)

)(
α3α4

−
)

〈↑ 〈↓ α1 〈l α2〉〉α3α4〉
(DMin.6) 〈↑ 〈↓ α1 〈l α2〉〉α3 〈↓ 〈l α4〉α5〉〉

(−
α1

)(
α2

c(α2)

)(
α3

−
)(

α4

c(α4)

)(−
α5

)
〈↓ α1 〈↑ 〈l α2〉α3 〈l α4〉〉α5〉

Table 8.1: Examples of DNA expressions with all six properties from Lemma 8.22 except
one. The first column mentions the property that is not valid, the second column contains
a corresponding DNA expression E, the third column gives the formal DNA molecule X
denoted by E, and the fourth column contains a minimal DNA expression E∗ denoting
X. As usual, the αi’s occurring represent (arbitrary) N -words.

︸ ︷︷ ︸ ︸ ︷︷ ︸
α1 α2 α3 α4

α5

α6 α7 α8
α9

α10
α11

α12 α13 α14 α15 α16
α17

Figure 8.2: Nick free formal DNA molecule X that is denoted by the minimal DNA
expression E in (8.20). The lower block partitioning used to construct E is also indicated.

5. (a) Each proper ↑-subexpression or ↓-subexpression of E which is not the first ar-
gument of its parent operator has as its (own) first argument an l-expression
〈l α〉 for an N -word α.

(b) Each proper ↑-subexpression or ↓-subexpression of E which is not the last ar-
gument of its parent operator has as its (own) last argument an l-expression
〈l α〉 for an N -word α.

6. For each proper ↑-subexpression or ↓-subexpression of E, either the first argument,
or the last argument is an l-expression 〈l α〉 for an N -word α.

7. Each proper ↑-subexpression or ↓-subexpression of E which is neither the first argu-
ment, nor the last argument of E, has an odd number of arguments (at least three),
the first one and the last one of which are l-expressions 〈l α〉 for N -words α.

In fact, we already proved and used Claims 1 and 2 in the proof of Lemma 8.22 and the
proof of Lemma 8.24, respectively. For the sake of clearness, we also include these claims
here.

Example 8.28 Consider the nick free formal DNA molecule X depicted in Figure 8.2.
Using the construction from Theorem 7.24, we can obtain different minimal DNA expres-
sions denoting X. In fact, because B↑(X) = B↓(X) = 3, we can obtain both minimal ↑-



8.3 Characterization of minimal DNA expressions 213

expressions and minimal ↓-expressions. If we start with the lower block partitioning indic-
ated in the picture (to construct a minimal ↑-expression), then the minimal ↓-expressions
denoting the two lower blocks are fixed. The result is

E = 〈↑ α1 〈l α2〉α3 〈↓ 〈l α4〉α5 〈↑ 〈l α6〉α7 〈l α8〉〉α9 〈l α10〉α11 〈l α12〉〉
α13 〈l α14〉α15 〈↓ 〈l α16〉α17〉 〉 . (8.20)

We examine which of the last three claims apply to which DNA subexpressions of E.
Claim 5a is applicable to all proper ↑-subexpressions and ↓-subexpressions of E. The

first argument of E itself is not an l-expression.
Claim 5b is applicable to the only proper ↑-subexpression and to the first proper ↓-

subexpression of E. Both for E itself and for the second proper ↓-expression 〈↓ 〈l α16〉α17〉
of E, the last argument is not an l-expression.

Claim 6 is applicable to all proper ↑-subexpressions and ↓-subexpressions of E. Neither
the first argument, nor the last argument of E itself is an l-expression.

Claim 7 is applicable to the only proper ↑-subexpression and to the first proper ↓-
subexpression of E. Neither E itself, nor the second proper ↓-expression 〈↓ 〈l α16〉α17〉 of
E, has an odd number of arguments, let alone an odd number of arguments with additional
properties.

Note that in general, even when a claim is not applicable to a DNA (sub-)expression, it
may be true for that DNA (sub-)expression. For example, the DNA expression E above
has eight arguments and four of these arguments are N -words (cf. Claims 2 and 4). As
another example, the minimal DNA expression from Equations (7.28) and (8.18) has as
its last argument the l-expression 〈l α22〉 (cf. Claims 5b and 6).

Proof of Lemma 8.27:

1. (a) Consider an arbitrary proper ↑-subexpression Es of E. By Property (DMin.1),
its parent operator cannot be l, and by Property (DMin.2), its parent operator
cannot be ↑. Hence, the parent operator of Es is ↓ (cf., for example, the first
paragraph of the proof of Lemma 8.22(DMin.5)).

(b) The proof of this subclaim is analogous to that of the previous subclaim.

2. Consider an arbitrary proper ↑-subexpression Es of E. Because the DNA expressions
〈↑ α〉 or 〈↓ α〉 for N -words α do not have proper DNA subexpressions, we may
assume that E is not equal to such a DNA expression. Now, by Property (DMin.3),
Es has at least two arguments (cf. the proof of Lemma 8.24).

The proof for a proper ↓-subexpression Es of E is analogous.

3. Assume that E is nick free. If E is an l-expression, then the claim follows from
Property (DMin.1).

Now assume that E is an ↑-expression. By Corollary 8.11(1) and (3), E is altern-
ating. Hence, if E has at least two arguments, then at least one of these arguments
is a maximal N -word occurrence. If, on the other hand, E has only one argument,
then by Property (DMin.3), this must be an N -word α.

The proof for a ↓-expression E is analogous.

4. Consider an arbitrary proper DNA subexpression Es of E. Es is minimal and by
Corollary 8.5, Es is nick free. Now this claim follows immediately from the previous
claim.
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5. (a) Consider an arbitrary proper ↑-subexpression Es
2 of E, which is not the first

argument of its parent operator. Let ε1 be the preceding argument (either an
N -word, or a DNA expression) of the parent operator.

By Claim 1a, the parent operator is ↓. By Property (DMin.5), the first argument
of Es

2 is either an N -word α or an l-expression 〈l α〉 for an N -word α. If it
were an N -word α, then by Lemma 4.13(3) and (1), L(S(Es

2)) would be in A+

and ε1 and Es
2 would not fit together by lower strands, which is required by ↓.

Hence, the first argument of Es
2 is an l-expression 〈l α〉 for an N -word α.

The proof for a proper ↓-subexpression of E which is not the first argument of
its parent operator is analogous.

(b) The proof of this subclaim is analogous to that of the previous subclaim.

6. Consider an arbitrary proper ↑-subexpression Es of E. As in the proof of Claim 2,
we may assume that E is not equal to 〈↑ α〉 or 〈↓ α〉 for an N -word α.

By Claim 1a, the parent operator of Es is ↓, and by Property (DMin.3), this operator
↓ has at least two arguments. Hence, either Es is not the first argument, or Es is
not the last argument of its parent operator (or both). By Claim 5, in the former
case, the first argument of Es is 〈l α〉 for an N -word α, and in the latter case, the
last argument of Es is 〈l α〉 for an N -word α.

The proof for a proper ↓-subexpression Es of E is analogous.

7. Consider an arbitrary proper ↑-subexpression Es
1 of E, which is neither the first

argument, nor the last argument of E. By Claim 1a, Es
1 is the argument of a

↓-subexpression Es
0 of E.

If Es
0 = E, then Es

1 is neither the first argument, nor the last argument of its parent
operator ↓. Hence by Claim 5, both the first argument and the last argument of Es

1

are l-expressions 〈l α〉 for N -words α.

If Es
0 6= E, then the outermost operator of Es

0 is an inner occurrence of ↓ in E. By
Property (DMin.5), (the ↑-expression) Es

1 cannot be the first argument or the last
argument of Es

0. Again by Claim 5, both the first argument and the last argument
of Es

1 are l-expressions 〈l α〉 for N -words α.

By Claim 2, Es
1 has at least two arguments, which by Property (DMin.4) are max-

imal N -word occurrences and DNA expressions, alternately. Now the claim follows
immediately.

The proof for a proper ↓-subexpression Es
1 of E is analogous.

It is worth noting that operator-minimal DNA expressions may be characterized by
(variants of) Properties (DMin.1)–(DMin.5). Property (DMin.6), which justifies the use of a
certain outermost operator, is not applicable now. In operator-minimal DNA expressions,
the outermost operator does not have to be justified, because by definition, these DNA
expressions are only compared to equivalent DNA expressions with the same outermost
operator.

In this thesis, we do not work out the characterization of operator-minimal DNA ex-
pressions, because we mainly study them as means to construct minimal DNA expressions
(for expressible formal DNA molecules with nick letters).
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8.4 The structure tree of a minimal DNA expression

As we observed in Section 4.6, each DNA expression has a unique representation as an
ordered, rooted, node-labelled tree: the structure tree. In particular, such a unique tree-
representation exists for every minimal DNA expression. The resulting structure trees are
also called minimal.

In Section 8.3, we have proved that minimal DNA expressions can be characterized
by six properties of the operators occurring in them. These properties can be directly
translated into properties characterizing minimal structure trees. Also other results on
minimal DNA expressions can be translated into tree-terminology. For several results, we
will now give the structure tree versions.

Let t be the structure tree of a DNA expression E.

Corollary 7.3 t is minimal if and only if for every DNA expression E ′ with E ′ ≡ E, the
structure tree of E ′ contains at least as many internal nodes as t.

Lemma 7.4 and Lemma 8.24 t is minimal if and only if each subtree of t rooted in an
internal node of t is minimal.

Theorem 8.26 (and Lemma 8.22) t is minimal if and only if

(DMin.1) each node labelled by l in t has a (single) child labelled by an N -word α,
and

(DMin.2) no node labelled by ↑ in t has a child labelled by ↑, and no node labelled
by ↓ in t has a child labelled by ↓, and

(DMin.3) unless E = 〈↑ α〉 or E = 〈↓ α〉 for an N -word α, each node labelled by
either ↑ or ↓ in t has at least two children, and

(DMin.4) for each non-root labelled by either ↑ or ↓ in t, the children are labelled
by an N -word α or by an operator, alternately, and

(DMin.5) for each non-root labelled by either ↑ or ↓ in t, the first child is labelled
by either an N -word α or the operator l, and also the last child is labelled by
either an N -word α or the operator l, and

(DMin.6) if the root of t is labelled by either ↑ or ↓, then either its first child is
labelled by an N -word α or the operator l, or its last child is labelled by an
N -word α or the operator l, or it has two consecutive children labelled by an
operator.

Lemma 8.27 If t is minimal, then

1. (a) each non-root labelled by ↑ in t has as parent a node labelled by ↓;
(b) each non-root labelled by ↓ in t has as parent a node labelled by ↑;

2. each non-root labelled by either ↑ or ↓ in t has at least two children;

3. if E is nick free, then the root has at least one child labelled by an N -word α;

4. each non-root labelled by an operator in t has at least one child labelled by an
N -word α;

5. (a) each non-root labelled by either ↑ or ↓ in t which is not the first child of
its parent has as its (own) first child a node labelled by l;
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Figure 8.3: Three minimal structure trees. (a) The structure tree of the minimal DNA
expression from Equation (7.7), denoting the nick free formal DNA molecule from (a.o.)
Figure 7.5. (b) The structure tree of the minimal DNA expression Ed from Equation (7.12),
denoting the nick free formal DNA molecule from Figure 7.6. (c) The structure tree of
the minimal DNA expression from Equation (7.28), denoting the formal DNA molecule
from Figure 7.7, which contains four lower nick letters.
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(b) each non-root labelled by either ↑ or ↓ in t which is not the last child of its
parent has as its (own) last child a node labelled by l;

6. for each non-root labelled by either ↑ or ↓ in t, either the first child, or the last
child is labelled by l;

7. each non-root labelled by either ↑ or ↓ in t which is neither the first child nor
the last child of the root, has an odd number of children (at least three), the
first one and the last one of which are labelled by l.

In Figure 8.3, we have drawn the structure trees of three minimal DNA expressions we
have constructed in the course of Chapter 7. One can verify that these structure trees
exhibit all properties we have just listed. Especially the last property, corresponding to
Lemma 8.27(7), comes out clearly.

8.5 The number of (operator-)minimal DNA expres-

sions

In Chapter 7, Section 8.1 and Section 8.3, we have seen examples of formal DNA molecules
for which the minimal DNA expression is unique (e.g., in Lemma 8.18) and examples of
formal DNA molecules for which there exist more than one minimal DNA expression
(e.g., in Example 7.25 and Example 7.26). In this section, we will calculate the number
of minimal DNA expressions denoting an arbitrary expressible formal DNA molecule X.

We first introduce some notation.

Definition 8.29 Let X be an expressible formal DNA molecule. Then

• nmin(X) is the number of minimal DNA expressions denoting X,

• nmin↑(X) is the number of minimal ↑-expressions denoting X,

• nmin↓(X) is the number of minimal ↓-expressions denoting X,

• nminl(X) is the number of minimal l-expressions denoting X,

• nopermin↑(X) is the number of operator-minimal ↑-expressions denoting X,

• nopermin↓(X) is the number of operator-minimal ↓-expressions denoting X,

• noperminl(X) is the number of operator-minimal l-expressions denoting X.

Obviously, nmin(X) = nmin↑(X)+nmin↓(X)+nminl(X). For each type of expressible formal
DNA molecule, we can easily obtain values for (some of) the seven functions and relations
between the functions:

Lemma 8.30 Let X be an expressible formal DNA molecule.

1. If X is double-complete, then

nmin↑(X) = 0, (8.21)

nopermin↑(X) = 1, (8.22)

nmin↓(X) = 0, (8.23)
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nopermin↓(X) = 1, (8.24)

nminl(X) = noperminl(X) = 1 and (8.25)

nmin(X) = 1. (8.26)

2. If X is nick free, contains at least one single-stranded component and B↑(X) =
B↓(X), then

nmin↑(X) = nopermin↑(X) ≥ 1, (8.27)

nmin↓(X) = nopermin↓(X) ≥ 1, (8.28)

nminl(X) = noperminl(X) = 0 and (8.29)

nmin(X) = nmin↑(X) + nmin↓(X). (8.30)

3. If X is nick free and B↑(X) > B↓(X), then

nmin↑(X) = nopermin↑(X) ≥ 1, (8.31)

nmin↓(X) = 0, (8.32)

nopermin↓(X) ≥ 1, (8.33)

nminl(X) = noperminl(X) = 0 and (8.34)

nmin(X) = nmin↑(X). (8.35)

4. If X is nick free and B↓(X) > B↑(X), then

nmin↑(X) = 0,

nopermin↑(X) ≥ 1,

nmin↓(X) = nopermin↓(X) ≥ 1,

nminl(X) = noperminl(X) = 0 and

nmin(X) = nmin↓(X).

5. If X contains at least one lower nick letter, then let Z1△
Z2△

. . .
△
Zm for some m ≥ 2

be the nick free decomposition of X.

nmin↑(X) = nopermin↑(X) = nopermin↑(Z1)× · · · × nopermin↑(Zm) ≥ 1, (8.36)

nmin↓(X) = nopermin↓(X) = 0, (8.37)

nminl(X) = 0 and (8.38)

nmin(X) = nmin↑(X). (8.39)

(a) If X does not contain any single-stranded component, then

noperminl(X) = |Z1| × |Zm|. (8.40)

(b) If X contains at least one single-stranded component, then

noperminl(X) = 0. (8.41)
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6. If X contains at least one upper nick letter, then let Z1
▽Z2

▽ . . . ▽Zm for some m ≥ 2
be the nick free decomposition of X.

nmin↑(X) = nopermin↑(X) = 0,

nmin↓(X) = nopermin↓(X) = nopermin↓(Z1)× · · · × nopermin↓(Zm) ≥ 1,

nminl(X) = 0 and

nmin(X) = nmin↓(X).

(a) If X does not contain any single-stranded component, then

noperminl(X) = |Z1| × |Zm|.

(b) If X contains at least one single-stranded component, then

noperminl(X) = 0.

Proof: As Claim 3 is analogous to Claim 4, and Claim 5 is analogous to Claim 6, so are
the corresponding proofs. Hence, it is sufficient to prove Claims 1, 2, 3 and 5.

It follows immediately from the semantics of a DNA expression that for certain formal
DNA molecules X, there does not exist any ↑-expression, ↓-expression or l-expression
denoting X. Hence, the corresponding number of operator-minimal DNA expressions is
also 0. This is expressed by equations (8.29), (8.34), (8.37) and (8.41).

The correctness of equations (8.21), (8.23), (8.25)–(8.28), (8.30)–(8.32), (8.35), (8.38)
and (8.39) follows directly from Summary 8.16.

We now prove the correctness of the remaining five equations.

1. Assume that X =
(

α1

c(α1)

)
for an N -word α1.

By Theorem 7.42 and Theorem 8.14, we can construct an operator-minimal ↑-
expression denoting X from an arbitrary lower block partitioning of X and there is
no other way to construct an operator-minimal ↑-expression. X obviously does not
contain any lower component, By Lemma 7.19, there exists exactly one lower block
partitioning of X: P = Y0 = X. Hence, there is also exactly one operator-minimal
↑-expression denoting X: E = 〈↑ 〈l α1〉〉, and nopermin↑(X) = 1, which is equation
(8.22).

The proof of equation (8.24) is completely analogous.

3. Assume that X is nick free.

By (the ‘lower analogue’ of) Theorem 7.42, an operator-minimal ↓-expression de-
noting X can be constructed from an arbitrary upper block partitioning of X. By
Lemma 7.22, the number of upper block partitionings of any nick free formal DNA
molecule is positive. Hence, nopermin↓(X) ≥ 1, regardless of the values of B↑(X) and
B↓(X). This gives equation (8.33).

5. Assume that X contains at least one lower nick letter, and let Z1△
Z2△

. . .
△
Zm for

some m ≥ 2 be the nick free decomposition of X.

By Theorem 7.46, Lemma 7.35(1) and Theorem 8.15, we can construct a min-
imal DNA expression denoting X from arbitrary operator-minimal ↑-expressions
E1, . . . , Em denoting Z1, . . . , Zm, respectively, and there is no other way to obtain a
minimal DNA expression.
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For h = 1, . . . ,m, there are nopermin↑(Zh) ≥ 1 operator-minimal ↑-expressions Eh

denoting Zh. Different choices for an Eh yield different minimal DNA expressions,
because we simply copy the arguments of Eh into the minimal DNA expression.
Finally, let 1 ≤ h1 ≤ m. Then the choice of an operator-minimal ↑-expression for
Zh1

is independent of the choices for the other Zh’s. Hence,

nmin(X) = nopermin↑(Z1)× nopermin↑(Z2)× · · · × nopermin↑(Zm) ≥ 1.

Because the resulting minimal DNA expressions are ↑-expressions, we also have
equation (8.36).

(a) Assume that X does not contain any single-stranded component. Then by

Corollary 5.6, X =
(

α1

c(α1)

)
△

(
α2

c(α2)

)
△
. . .

△

(
αm

c(αm)

)
for N -words α1, α2, . . . , αm.

Apparently, for h = 1, . . . ,m, Zh =
(

αh

c(αh)

)
.

By Theorem 8.19 and Theorem 8.20, the (only) operator-minimal l-expressions
denoting X are

〈l 〈↑ α′
1 〈l α′′

1〉 〈l α2〉 〈l α3〉 . . . 〈l αm−1〉 〈l α′
m〉α′′

m〉〉 ,
where α′

1 and α′′
m are (possibly empty) strings over N , and α′′

1 and α′
m are

N -words, such that α1 = α′
1α

′′
1 and αm = α′

mα
′′
m.

Because (the N -word) α′′
1 must be non-empty, the string α′

1 may consist of the
first 0, 1, 2, . . . or |α1| − 1 letters of α1. Hence, there are |α1| = |Z1| possible
pairs (α′

1, α
′′
1). Likewise, there are |αm| = |Zm| possible pairs (α′

m, α
′′
m).

Obviously, the choice for a pair (α′
1, α

′′
1) is independent of the choice for a pair

(α′
m, α

′′
m). Consequently, noperminl(X) = |Z1| × |Zm|, which is equation (8.40).

The only thing we do not know yet, are the (exact) numbers of operator-minimal ↑-
expressions and ↓-expressions denoting a nick free formal DNA molecule which contains
at least one single-stranded component. To achieve these numbers, we will establish a
bijection f〈〉 between these DNA expressions and certain sequences of brackets. As the
number of such sequences is well known in the field of combinatorics, we also have the
desired numbers of operator-minimal DNA expressions.

By Theorem 7.42 and Theorem 8.14, operator-minimal ↑-expressions and ↓-expressions
for a nick free formal DNA molecule X are based on lower block partitionings and upper
block partitionings of (submolecules of) X. In order to prove that the function f〈〉 is really
a bijection, we first establish a bijection between lower (or upper) block partitionings and
certain sequences of numbers, called ordered partitions.

Definition 8.31 Let N ≥ 0 be an integer. An ordered partition of N is a sequence of
positive integers (t1, . . . , tr) for some r ≥ 0 such that t1 + · · ·+ tr = N .

As an illustration of this definition, Table 8.2 contains all ordered partitions for N =
0, 1, 2, 3, 4. Note that there does exist an ordered partition of N = 0. For this partition,
however, r = 0, because the numbers t1, . . . , tr occurring in the definition must be positive.
Obviously, for each ordered partition of a number N ≥ 1, we must have r ≥ 1.

Ordered partitions are well known in combinatorics. As an aside, we consider the
number of ordered partitions of a non-negative integer N . If N ≥ 1, then each ordered
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N Ordered partitions of N
0 ()
1 (1)
2 (1, 1), (2)
3 (1, 1, 1), (1, 2), (2, 1), (3)
4 (1, 1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 3), (2, 2), (3, 1), (4)

Table 8.2: All ordered partitions for N = 0, 1, 2, 3, 4.

partition corresponds to a placing of separators | in a sequence of N 0’s. For example,
the ordered partition (1, 4, 2, 5) of N = 12 (with r = 4) corresponds to the sequence
0|0000|00|00000. There are N − 1 spaces between the N 0’s, and in each space, we may
or may not put a separator. Hence, the total number of ordered partitions of N ≥ 1 is
2N−1. This is a standard result in the theory of partitions, see, e.g., [Hall, 1967, page 29].
When we add the case N = 0, we obtain

Proposition 8.32 Let N ≥ 0 be an integer. Then the number of different ordered parti-
tions of N is

{
1 if N = 0,

2N−1 if N ≥ 1.

We now define functions on lower block partitionings and upper block partitionings,
as follows:

Definition 8.33 Let X be a nick free formal DNA molecule.
For a lower block partitioning P = Y0X1Y1X2Y2 . . . XrYr of X (with r ≥ 0),

fB↓
(P) = (B↓(X1), B↓(X2), . . . , B↓(Xr)).

For an upper block partitioning P = Y0X1Y1X2Y2 . . . XrYr of X (with r ≥ 0),

fB↑
(P) = (B↑(X1), B↑(X2), . . . , B↑(Xr)).

Hence, fB↓
maps a lower block partitioning onto a sequence of numbers, and fB↑

maps an

upper block partitioning onto a sequence of numbers. In particular, if Xj is a lower block
of X, then by Lemma 7.17(2a), B↓(Xj) is equal to the number of primitive lower blocks
of X occurring in Xj. Hence, for a lower block partitioning P = Y0X1Y1 . . . XrYr of X,
fB↓

(P) lists the numbers of primitive lower blocks occurring in X1, . . . , Xr, respectively.
Of course, we have an analogous interpretation of fB↑

(P) for an upper block partitioning
of X.

Note that if B↓(X) = 0 for a nick free formal DNA molecule X, then by Lemma 7.19,
the only lower block partitioning of X is P = X (with r = 0), for which fB↓

(P) = ().
Analogously, if B↑(X) = 0, then the only upper block partitioning of X is P = X, for
which fB↑

(P) = ().
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Example 8.34 When we apply fB↓
and fB↑

to the four lower block partitionings and the
upper block partitioning from Figure 7.3, we obtain

fB↓
(Pa1) = (1, 1, 1),

fB↓
(Pa2) = (1, 2),

fB↓
(Pa3) = (2, 1),

fB↓
(Pa4) = (3) and

fB↑
(Pb) = (1, 1, 2).

Here, the subscript of P refers to the subfigure of Figure 7.3.

In the above example, the four function values of fB↓
are (different) ordered partitions of

B↓(X) = 3. This is not a coincidence:

Lemma 8.35 Let X be a nick free formal DNA molecule.

1. The function fB↓
is a bijection from the lower block partitionings of X onto the

ordered partitions of B↓(X).

2. The function fB↑
is a bijection from the upper block partitionings of X onto the

ordered partitions of B↑(X).

As can be read from Table 8.2, if B↓(X) = 0, then the only ordered partition of B↓(X) is
the empty sequence () (with r = 0). Indeed, as we have just observed, this is the image
under fB↓

of the only lower block partitioning in this case.
We want to emphasize that the function fB↓

(or fB↑
) is a bijection from lower (upper,

respectively) block partitionings onto ordered partitions, only when the formal DNA mo-
lecule X is fixed. For example, there are infinitely many lower block partitionings that
are mapped by fB↓

to the empty sequence (), namely the lower block partitionings of all
nick free formal DNA molecules X with B↓(X) = 0.

Finally, let P be an arbitrary lower block partitioning of X. Then Claim 1 implies in
particular that P is completely characterized by the sequence fB↓

(P).

Proof:

1. Let P = Y0X1Y1 . . . XrYr for some r ≥ 0 be a lower block partitioning of X. By
Lemma 7.17(2b), for j = 1, . . . , r, B↓(Xj) = B↑(Xj)+1 ≥ 1, and by Lemma 7.23(2),
B↓(X1) + · · · + B↓(Xr) = B↓(X). Indeed, fB↓

(P) = (B↓(X1), . . . , B↓(Xr)) is an
ordered partition of B↓(X). Hence, fB↓

is a mapping from the lower block parti-
tionings of X into the set of these ordered partitions.

We will now prove that fB↓
is surjective and injective, and thus is a bijection. Let

P ′ = Y ′
0X

′
1Y

′
1 . . . X

′
r0
Y ′
r0

for some r0 ≥ 0 be the primitive lower block partitioning
of X. By definition, r0 = B↓(X) and X ′

1, . . . , X
′
r0

are precisely all primitive lower
blocks of X.

• Let (t1, t2, . . . , tr) for some r ≥ 0 be an arbitrary ordered partition of B↓(X). Then
consider the following partitioning of X:

P = Y ′
0X1Y

′
t1
X2Y

′
t1+t2

. . . XrY
′
t1+···+tr

. (8.42)
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Since all tj’s are positive and t1+· · ·+tr = B↓(X) = r0, the sequences Y
′
t1
, Y ′

t1+t2
, . . . ,

Y ′
t1+···+tr−1

occurring in (8.42) are different internal maximal upper sequences and
Y ′
t1+···+tr

is the maximal upper suffix Y ′
r0

of X. Hence, by Lemma 7.20, P is a lower
block partitioning of X.

Note that for j = 1, . . . , r, the substring Xj is equal to the alternating subsequence

X ′
t1+···+tj−1+1Y

′
t1+···+tj−1+1 . . . Y

′
t1+···+tj−1X

′
t1+···+tj

of primitive lower blocks and maximal upper sequences of X. Indeed, this is a lower
block.

By Lemma 7.17(2a), for j = 1, . . . , r,

B↓(Xj) = (t1 + · · ·+ tj)− (t1 + · · ·+ tj−1 + 1) + 1 = tj.

Consequently,

fB↓
(P) = (B↓(X1), B↓(X2), . . . , B↓(Xr)) = (t1, t2, . . . , tr).

We have thus constructed a lower block partitioning of X which is mapped by fB↓

onto the ordered partition (t1, t2, . . . , tr). Because this was an arbitrary ordered
partition of B↓(X), fB↓

is surjective.

• Let

P1 = Y1,0X1,1Y1,1 . . . X1,r1Y1,r1 , and

P2 = Y2,0X2,1Y2,1 . . . X2,r2Y2,r2

for some r1, r2 ≥ 0 be two lower block partitionings of X, for which fB↓
(P1) =

fB↓
(P2) = (t1, . . . , tr) for some r ≥ 0. By the definition of fB↓

, r1 = r2 = r.

We now prove that the substrings occurring in the definition of P1 are equal to
the ones occurring in the definition of P2: for j = 0, . . . , r, Y1,j = Y2,j and for
j = 1, . . . , r, X1,j = X2,j . We do this by induction on j.

If j = 0, then by Lemma 7.20, Y1,0 = Y2,0 is the maximal upper prefix Y ′
0 of X.

Let 0 ≤ j ≤ r − 1, and suppose that Y1,j = Y2,j (induction hypothesis). We now
consider X1,j+1, X2,j+1, Y1,j+1 and Y2,j+1.

The lower block X1,j+1 succeeds Y1,j in P1 and the lower block X2,j+1 succeeds Y2,j

in P2. By the definition of a lower block, both X1,j+1 and X2,j+1 are alternating
sequences of primitive lower blocks and maximal upper sequences of X, starting and
ending with a primitive lower block. Because both of them succeed Y1,j = Y2,j in
X, they start with the same primitive lower block. By assumption, B↓(X1,j+1) =
B↓(X2,j+1) = tj+1, and hence, by Lemma 7.17(2a), X1,j+1 and X2,j+1 contain the
same number of primitive lower blocks of X. This implies that they also end with
the same primitive lower block, and thus that they are equal.

Now, if j + 1 < r, then by Lemma 7.20, both Y1,j+1 and Y2,j+1 are the internal
maximal upper sequence succeeding X1,j+1 = X2,j+1 in X. If j + 1 = r, then
Y1,j+1 = Y2,j+1 is the maximal upper suffix Y ′

r0
of X. In both cases, Y1,j+1 = Y2,j+1.

We conclude that P1 and P2 are equal, and thus that fB↓
is injective.
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2. The proof of this claim is analogous to that of the previous claim.

By the above result, in particular, the number of different lower block partitionings
of a certain nick free formal DNA molecule X must be equal to the number of different
ordered partitions of B↓(X). Indeed, by Lemma 7.22, the former number is 2nimus(X),
which, by Lemma 7.9, is equal to

{
20 = 1 if B↓(X) = 0,

2B↓(X)−1 if B↓(X) ≥ 1.

By Proposition 8.32, this equals the number of ordered partitions of B↓(X).
Lemma 8.35 relates lower block partitionings and upper block partitionings of a nick

free formal DNA molecule to ordered partitions. We will now establish a relation between,
on the one hand, operator minimal ↑-expressions and ↓-expressions denoting such mo-
lecules and, on the other hand, certain sequences of brackets.

Definition 8.36 Let p ≥ 0. A sequence of p well-nested pairs of brackets is a string
Z = x1 . . . x2p such that

• for i = 1, . . . , 2p, xi ∈ {〈, 〉}, and

• #〈 (Z) = # 〉(Z), and

• for i = 0, . . . , 2p, #〈 (x1 . . . xi) ≥ # 〉(x1 . . . xi).

The number p, i.e., the number of pairs of brackets in Z, is denoted by npb(Z).

The third condition of the definition intuitively says that, when we read Z from left to
right, the number of closing brackets 〉 we have read so far never exceeds the number of
opening brackets 〈 we have read so far.

Note that the inequality in this third condition is automatically valid for i = 0 and
i = 2p. In the former case, x1 . . . xi = λ, and #〈 (λ) = # 〉(λ) = 0. In the latter case,
x1 . . . xi = Z, and #〈 (Z) = # 〉(Z) = p by the second condition.

Example 8.37 Some sequences of well-nested pairs of brackets are

λ (the empty string, with p = 0),
〈〈〉〉 〈〉 (with p = 3), and
〈〉 〈〉 〈〈〉〉 (with p = 4).

Sequences of well-nested pairs of brackets are well known in the theory of formal languages.
The language containing (all) these sequences can be generated by a simple context-free
grammar, which has axiom S, terminal symbols 〈 and 〉, and productions S −→ λ, S −→
SS, S −→ 〈S〉.

The following result gives two ways to extend sequences of well-nested pairs of brackets.
The result is in accordance with the context-free grammar we just considered, but its
correctness also follows immediately from Definition 8.36:
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Lemma 8.38 Let Z1 and Z2 be two sequences of well-nested pairs of brackets.

1. The concatenation Z1Z2 is a sequence of well-nested pairs of brackets.

2. 〈Z1〉 is a sequence of well-nested pairs of brackets (and of course, so is 〈Z2〉).
The converse of Claim 2 is not true. For example, we can write 〈〈〉〉 〈〉 as 〈Z〉, with
Z = 〈〉〉 〈 . Z is not a sequence of well-nested pairs of brackets, because it violates the
third condition of the definition.

Let Z = x1 . . . x2p for some p ≥ 0 be a sequence of well-nested pairs of brackets. We
just observed that for i = 0 and for i = 2p, the number of opening brackets and the
number of closing brackets in the prefix x1 . . . xi of Z are equal. There may be other
indices i for which this is the case. We use all such indices to partition Z.

Therefore, let 0 = i0 < i1 < · · · < ir = 2p for some r ≥ 0 be all indices i such that
#〈 (x1 . . . xi) = # 〉(x1 . . . xi). Obviously, if p ≥ 1, then also r ≥ 1. Also, all ij’s are
even, which implies in particular that for j = 1, . . . , r, ij−1 + 1 < ij. Consider any j with
1 ≤ j ≤ r. By definition,

#〈 (x1 . . . xij−1
) = # 〉(x1 . . . xij−1

) (also if j = 1, i.e., if ij−1 = i0 = 0),
1 ≤ ij−1 + 1 ≤ 2p and
#〈 (x1 . . . xij−1+1) ≥ # 〉(x1 . . . xij−1+1).

Consequently, xij−1+1 must be an opening bracket 〈 . Analogously, xij is a closing bracket 〉.
Now define Zj as the substring of Z between (and not including) the opening bracket

xij−1+1 and the closing bracket xij :

Zj = xij−1+2 . . . xij−1.

We can then write Z = 〈Z1〉 . . . 〈Zr〉. It is easily verified that each Zj is itself a sequence of
well-nested pairs of brackets and that this partitioning of Z is unique. When we combine
this observation with Lemma 8.38, we obtain

Lemma 8.39 A string Z is a sequence of well-nested pairs of brackets, if and only if there
exist strings Z1, . . . , Zr for some r ≥ 0, such that

• Z = 〈Z1〉 . . . 〈Zr〉, and

• for j = 1, . . . , r, Zj is itself a sequence of well-nested pairs of brackets.

In this case, the partitioning of Z as 〈Z1〉 . . . 〈Zr〉 is unique.
This result explains the term ‘sequence of well-nested pairs of brackets’. Note that in
Lemma 4.8 and Theorem 4.9, we used a similar construction to determine the nested
structure of a DNA expression and identify the arguments of any operator occurring in
it.

Example 8.40 The three sequences of well-nested pairs of brackets from Example 8.37
can be partitioned as follows:

λ = λ (with r = 0),
〈〈〉〉 〈〉 = 〈Z1〉 〈Z2〉 (with r = 2, Z1 = 〈〉 and Z2 = λ), and
〈〉 〈〉 〈〈〉〉 = 〈Z1〉 〈Z2〉 〈Z3〉 (with r = 3, Z1 = Z2 = λ and Z3 = 〈〉).
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p Cp p Cp p Cp p Cp

0 1 5 42 10 16, 796 15 9, 694, 845
1 1 6 132 11 58, 786 16 35, 357, 670
2 2 7 429 12 208, 012 17 129, 644, 790
3 5 8 1, 430 13 742, 900 18 477, 638, 700
4 14 9 4, 862 14 2, 674, 440 19 1, 767, 263, 190

Table 8.3: The Catalan numbers Cp for p = 0, 1, . . . , 19.

Sequences of well-nested pairs of brackets are also well known in combinatorics. The
number of such sequences is one of the many combinatorial interpretations of the Catalan

numbers Cp =
1

p+1

(
2p
p

)
for p ≥ 0:

Proposition 8.41 The number of different sequences of p ≥ 0 well-nested pairs of brack-

ets is 1
p+1

(
2p
p

)
.

[Stanley, 2015] lists a large number of combinatorial interpretations of the Catalan num-
bers. In particular, [Stanley, 2015, Exercise 77] deals with ballot sequences : sequences
of 1’s and −1’s, which are equivalent to our sequences of opening brackets and closing
brackets. A simple and elegant proof of Proposition 8.41 can be found in [Cohen, 1978,
pages 131-132]. In this proof, H’s are substituted for opening brackets and D’s for closing
brackets.

Table 8.3 lists the Catalan numbers Cp for p = 0, 1, . . . , 19. As the table suggests, the
sequence of the Catalan numbers exhibits an exponential growth. In fact, we have for
p ≥ 1,

Cp =
1

p+ 1

(
2p
p

)
=

2p · (2p− 1)

(p+ 1)p
· 1
p

(
2(p− 1)
p− 1

)
= (4− 6

p+ 1
)Cp−1.

Hence, the sequence grows almost as fast as the sequence 4p for p ≥ 0.2

We return to the world of DNA expressions. We define a mapping from operator-
minimal ↑-expressions and ↓-expressions onto sequences of brackets.

Definition 8.42 Let E be an operator-minimal ↑-expression or ↓-expression, denoting a
certain formal DNA molecule X (which may contain nick letters), and let E1, . . . , Er for
some r ≥ 0 be the ↑-arguments and ↓-arguments of E, in the order of their occurrence in
E. Then

f〈〉(E) =
〈
f〈〉(E1)

〉
. . .
〈
f〈〉(Er)

〉
.

The definition of the function f〈〉 is recursive: f〈〉(E) is defined in terms of f〈〉(Ej) for
the ↑-arguments and ↓-arguments Ej of E. The N -word-arguments and l-arguments are
ignored. Because E is operator-minimal, its arguments are minimal. In particular, its
↑-arguments and ↓-arguments Ej are operator-minimal. Indeed, f〈〉 is defined for such

2We could have reached this conclusion also using Stirling’s approximation formula for n! (n! ≈√
2πn

(
n
e

)n
, see, e.g., [Feller, 1968, pages 52-54]). We prefer the derivation above, as it is more ele-

mentary.
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arguments. This implies that the recursion is well defined. If E does not have any ↑-
arguments or ↓-arguments, then f〈〉(E) = λ.

Note that by Lemma 8.1, if E is an ↑-expression, then the arguments Ej occurring in
the above definition are ↓-expressions. Analogously, if E is a ↓-expression, then all Ej’s
are ↑-expressions.

The function f〈〉 is defined for arbitrary operator-minimal ↑-expressions and ↓-expres-
sions. Here, however, we are particularly interested in operator-minimal DNA expressions
denoting nick free formal DNA molecules. Therefore, we use two such DNA expressions
to illustrate the definition of the function.

Example 8.43 Equation (7.7) in Example 7.25 contains a minimal (and thus operator-
minimal) ↑-expression E for the formal DNA molecule depicted in Figure 7.5, correspond-
ing to the lower block partitioning in Figure 7.3(a3). For this DNA expression E, we have
r = 2 and

f〈〉(E) = 〈〈〉〉 〈〉 .

Equation (7.26) in Example 7.44 contains an operator-minimal ↓-expression for the same
formal DNA molecule. It corresponds to the upper block partitioning in Figure 7.3(b).
For this DNA expression E ′, we have r = 3 and

f〈〉(E
′) = 〈〉 〈〉 〈〈〉〉 .

We now prove some properties of the function f〈〉.

Lemma 8.44 Let E be an operator-minimal ↑-expression or ↓-expression, denoting a
certain formal DNA molecule X (which may contain nick letters).

1. f〈〉(E) is a sequence of well-nested pairs of brackets.

2. f〈〉(E) results from E by removing from E all letters except the brackets 〈 and 〉
corresponding to inner occurrences of the operators ↑ and ↓.

3. (a) If E is an ↑-expression, then
npb(f〈〉(E)) = B↓(X).

(b) If E is a ↓-expression, then
npb(f〈〉(E)) = B↑(X).

Recall that for the formal DNA molecule X from (a.o.) Figure 7.3 and Figure 7.5, we have
B↓(X) = 3 and B↑(X) = 4. In Example 8.43, we applied f〈〉 to two (operator-)minimal
DNA expressions E and E ′ denoting this molecule. It is easy to verify that all claims hold
for these two DNA expressions. In particular, concerning Claim 1, we had already seen
the resulting sequences of brackets in Example 8.37 and Example 8.40.

Proof:

1, 2 We simultaneously prove these two claims, by induction on the number p of operators
occurring in E.
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• If p = 1, then E = 〈↑ α〉 or E = 〈↓ α〉 for an N -word α. Indeed, by The-

orem 7.42, E is an operator-minimal DNA expression, denoting
(
α
−
)
or
(−
α

)
,

respectively. In neither case, E has any ↑-arguments or ↓-arguments. Hence,
by definition, in both cases,

f〈〉(E) = λ.

Claim 1 and Claim 2 are obviously valid now.

• Let p ≥ 1, and suppose that for each operator-minimal ↑-expression or ↓-
expression E containing at most p operators, the claims are valid (induction
hypothesis).

Now consider an arbitrary operator-minimal ↑-expression E containing p + 1
operators. By Lemma 8.1, E does not have any ↑-arguments. Let E1, . . . , Er

for some r ≥ 0 be the ↓-arguments of E, in the order of their occurrence in E.

As we observed immediately after Definition 8.42, each Ej is operator-minimal
(even minimal). Consider Ej for an arbitrary j with 1 ≤ j ≤ r. Obviously, Ej

contains at most p operators. By the induction hypothesis, f〈〉(Ej) is a sequence
of well-nested pairs of brackets, and by Lemma 8.38(2), so is

〈
f〈〉(Ej)

〉
.

If r = 0, then by definition, f〈〉(E) = λ, which is a sequence of well-nested
pairs of brackets. If r ≥ 1 and we (iteratively) apply Lemma 8.38(1) to〈
f〈〉(E1)

〉
, . . . ,

〈
f〈〉(Er)

〉
, then we also find that f〈〉(E) =

〈
f〈〉(E1)

〉
. . .
〈
f〈〉(Er)

〉

is a sequence of well-nested pairs of brackets. We thus have Claim 1.

For j = 1, . . . , r, by the induction hypothesis, f〈〉(Ej) results from Ej by remov-
ing from it all letters except the brackets corresponding to inner occurrences of
the operators ↑ and ↓ in Ej. Hence, because Ej is a ↓-expression,

〈
f〈〉(Ej)

〉
res-

ults from Ej by removing from it all letters except the brackets corresponding
to (any occurrence of) the operators ↑ and ↓.
Obviously, a bracket 〈 or 〉 occurring in an argument Ej of E corresponds to
an operator ↑ or ↓ in Ej, if and only if it corresponds to an inner occurrence
of such an operator in E. Further, by Corollary 8.2, each argument of E
that is not a ↓-expression, is either an N -word α or an l-expression 〈l α〉
for an N -word α. Such an argument does not contain brackets corresponding
to an operator ↑ or ↓. Hence, when we remove from E all letters except the
brackets corresponding to inner occurrences of the operators ↑ and ↓, we remove
the outermost operator ↑ of E with its brackets, the arguments of E which
are not a ↓-expression, and all letters in the ↓-expressions E1, . . . , Er which
are not a bracket 〈 or 〉 corresponding to an operator ↑ or ↓. This leaves〈
f〈〉(E1)

〉
. . .
〈
f〈〉(Er)

〉
= f〈〉(E). Consequently, Claim 2 is also valid for E.

The proof for the case that E is an operator-minimal ↓-expression containing
p+ 1 operators is analogous.

3. By Claim 1, the function npb is indeed defined for f〈〉(E).

(a) Assume that E is an ↑-expression. By Corollary 8.17(1), the total number
of occurrences of operators ↑ and ↓ (together) in E is 1 + B↓(X). Hence,
the number of inner occurrences of these operators in E is B↓(X). Now, the
equality npb(f〈〉(E)) = B↓(X) follows from Claim 2.

(b) The proof of this subclaim is analogous to that of the previous one.
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We now restrict ourselves to nick free formal DNA molecules. We use Lemma 8.44 to
prove the main result of this section:

Theorem 8.45 Let X be a nick free formal DNA molecule.

1. The function f〈〉 is a bijection from the operator-minimal ↑-expressions denoting X
onto the sequences of B↓(X) well-nested pairs of brackets.

2. The function f〈〉 is a bijection from the operator-minimal ↓-expressions denoting X
onto the sequences of B↑(X) well-nested pairs of brackets.

Proof: By Lemma 8.44(1) and (3), the function f〈〉 is indeed a mapping from the operator-
minimal ↑-expressions (or ↓-expressions) denoting X into the set of sequences of B↓(X)
(B↑(X), respectively) well-nested pairs of brackets.

Now, we will prove that f〈〉 is a bijection, both for the operator-minimal ↑-expressions
and for the operator-minimal ↓-expressions. Hence, we will prove that

1′ for each sequence Z of B↓(X) well-nested pairs of brackets, there is exactly one
operator-minimal ↑-expression E denoting X such that f〈〉(E) = Z, and

2′ for each sequence Z of B↑(X) well-nested pairs of brackets, there is exactly one
operator-minimal ↓-expression E denoting X such that f〈〉(E) = Z.

We prove Claims 1′ and 2′ simultaneously, by induction on B↓(X) and B↑(X), respectively.

• If B↓(X) = 0, then the only sequence of B↓(X) well-nested pairs of brackets is
Z = λ.

By Lemma 7.19, there is exactly one lower block partitioning of X, namely P =
Y0 = X. Then by Theorem 7.42 and Theorem 8.14, there is exactly one operator-
minimal ↑-expression E denoting X, each of whose arguments is an N -word αi or
an l-expression 〈l αi〉 for an N -word αi. For this ↑-expression E, indeed f〈〉(E) =
Z = λ. Thus, we have proved Claim 1′ for nick free formal DNA molecules X with
B↓(X) = 0.

The proof of Claim 2′ for nick free formal DNA molecules X with B↑(X) = 0 is
analogous.

• Let p ≥ 0, and suppose that Claim 1′ is valid for each nick free formal DNA molecule
X with B↓(X) ≤ p, and that Claim 2′ is valid for each nick free formal DNA molecule
X with B↑(X) ≤ p (induction hypothesis).

Now consider a nick free formal DNA molecule X with B↓(X) = p + 1. Let Z be
an arbitrary sequence of p + 1 well-nested pairs of brackets. We will prove that
there exists exactly one operator-minimal ↑-expression E denoting X, such that
f〈〉(E) = Z. The construction we use for this is schematically depicted in Figure 8.4.

We first prove that there exists at most one operator-minimal ↑-expression E denot-
ing X for which f〈〉(E) = Z. We do this by establishing properties of such a DNA
expression, which, in the end, form a complete characterization. Therefore, assume
that E is an operator-minimal ↑-expression denoting X and that f〈〉(E) = Z.
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Z 〈Z1〉 . . . 〈Zr〉 ↓-expr.
E1 . . . Er

E

ordered partition
(npb(〈Z1〉), . . . , npb(〈Zr〉))
= (B↓(X1), . . . , B↓(Xr))

X
lower block part.
Y0X1Y1 . . . XrYr

α, 〈l α〉

✲
L. 8.39

❆
❆
❆❯

npb

❆
❆
❆
❆
❆❯✲fB↓

(L. 8.35(1))

✲

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✕f〈〉 (ind. hypoth.)

✲T. 7.42

❆
❆
❆
❆
❆
❆
❆❯

✂
✂
✂
✂
✂
✂✍

arguments
(T. 7.42, T. 8.14)

Figure 8.4: Construction of the operator-minimal ↑-expression E denoting a nick free
formal DNA moleculeX, such that f〈〉(E) = Z for a given sequence Z of B↓(X) well-nested
pairs of brackets (see the proof of Theorem 8.45).

We analyse what it means that f〈〉(E) = Z. By Lemma 8.1, E does not have any
↑-arguments. Let E1, . . . , Er for some r ≥ 0 be the ↓-arguments of E, in the order
of their occurrence in E. Because E is operator-minimal, E1, . . . , Er are minimal.
In particular, they are operator-minimal. By definition,

Z = f〈〉(E) =
〈
f〈〉(E1)

〉
. . .
〈
f〈〉(Er)

〉
. (8.43)

In this equation, by Lemma 8.44(1) and Lemma 8.38(2), for j = 1, . . . , r, both
f〈〉(Ej) and

〈
f〈〉(Ej)

〉
are sequences of well-nested pairs of brackets.

By Lemma 8.39, there is a unique partitioning of Z as 〈Z1〉 . . . 〈Zr′〉 for some r′ ≥ 0,3

such that for j = 1, . . . , r′, Zj is a sequence of well-nested pairs of brackets. Because
(8.43) provides such a partitioning, we must have r′ = r and for j = 1, . . . , r,
f〈〉(Ej) = Zj. Now obviously, for j = 1, . . . , r,

npb(
〈
f〈〉(Ej)

〉
) = npb(〈Zj〉) ≥ 1.

Moreover,

npb(
〈
f〈〉(E1)

〉
) + · · ·+ npb(

〈
f〈〉(Er)

〉
) = npb(〈Z1〉) + · · ·+ npb(〈Zr〉)

= npb(Z) = p+ 1 = B↓(X).

Consequently, (npb(
〈
f〈〉(E1)

〉
), . . . , npb(

〈
f〈〉(Er)

〉
)) = (npb(〈Z1〉), . . . , npb(〈Zr〉)) is

an ordered partition of B↓(X), which is uniquely determined by Z.

We proceed with the implications of E being an operator-minimal ↑-expression
denoting X. By Theorem 8.14, E is based on a lower block partitioning P =

3In fact, since p + 1 ≥ 1 and hence Z 6= λ, we have r′ ≥ 1. This is, however, not important for the
proof.
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Y0X1Y1 . . . XrYr of X, as described in Theorem 7.42, such that the ↓-arguments
E1, . . . , Er of E denote the lower blocks X1, . . . , Xr, respectively.

By Lemma 7.17(2b) and Lemma 8.44(3b), for j = 1, . . . , r,

B↓(Xj) = B↑(Xj) + 1 = npb(
〈
f〈〉(Ej)

〉
).

Hence,

fB↓
(P) = (B↓(X1), . . . , B↓(Xr)) = (npb(

〈
f〈〉(E1)

〉
), . . . , npb(

〈
f〈〉(Er)

〉
)).

By Lemma 8.35(1), the function fB↓
is a bijection from the lower block partitionings

of X onto the ordered partitions of B↓(X). This implies that the ordered partition
(npb(

〈
f〈〉(E1)

〉
), . . . , npb(

〈
f〈〉(Er)

〉
)) uniquely determines the lower block partitioning

P of X that E is based on.

Consider an arbitrary j with 1 ≤ j ≤ r. We have observed that f〈〉(Ej) = Zj and
that Ej is an operator-minimal ↓-expression denoting (the nick free submolecule)
Xj. By Lemma 7.23(2), B↑(Xj) = B↓(Xj) − 1 ≤ B↓(X) − 1 = p. Now, by the
induction hypothesis, Claim 2′ is valid for Xj. Hence, Ej is uniquely determined by
Zj .

We have thus proved that the lower block partitioning Y0X1Y1 . . . XrYr of X that E
is based on, is determined by Z and that, in the construction from Theorem 7.42,
also the minimal ↓-expressions E1, . . . , Er denoting X1, . . . , Xr, respectively, are
determined by Z. Because, in this construction, the arguments εi corresponding to
the substrings Y0, Y1, . . . , Yr (N -words αi and l-expressions 〈l αi〉 for N -words αi)
are fixed, E is completely determined by Z. We conclude that there exists at most
one operator-minimal ↑-expression E denoting X, such that f〈〉(E) = Z.

In the construction we described, we did not make any assumptions on Z, apart
from it being a sequence of p+ 1 = B↓(X) well-nested pairs of brackets. Hence, we
can really perform the construction for the sequence Z we consider. It follows from
the construction that the resulting DNA expression E is indeed an operator-minimal
↑-expression denoting X, for which

f〈〉(E) =
〈
f〈〉(E1)

〉
. . .
〈
f〈〉(Er)

〉
= 〈Z1〉 . . . 〈Zr〉 = Z.

In particular, there exists an (at least one) operator-minimal ↑-expression E denoting
X with f〈〉(E) = Z.

Consequently, Claim 1′ is valid for nick free formal DNA molecules X with B↓(X) =
p+ 1.

The proof of Claim 2′ for nick free formal DNA molecules X with B↑(X) = p+ 1 is
analogous.

When we combine Theorem 8.45 with Proposition 8.41, we obtain

Corollary 8.46 Let X be a nick free formal DNA molecule.
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1. The number of operator-minimal ↑-expressions denoting X is 1
p+1

(
2p
p

)
, with p =

B↓(X).

2. The number of operator-minimal ↓-expressions denoting X is 1
p+1

(
2p
p

)
, with p =

B↑(X).

Recall that, when we examined the lengths of ↑-expressions E denoting a formal DNA
molecule X, the value B↓(X) played an important role. For example, it occurs in the
lower bound for |E| from Theorem 6.31(1), a lower bound that is achieved by minimal
and operator-minimal ↑-expressions.

The value B↓(X) shows up, again, in the expression for the number of operator-minimal
↑-expressions denoting a nick free formal DNA molecule X, which is given above.

The connection between the length of an operator-minimal ↑-expression and the num-
ber of such DNA expressions is constituted by the occurrences of operators ↑ and ↓. On
the one hand, they determine the length of an operator-minimal DNA expression denoting
X (given that the number of occurrences of l is fixed); on the other hand, they determ-
ine the number of pairs of brackets in the corresponding sequence of well-nested pairs of
brackets. Indeed, by Corollary 8.17(1), the number of occurrences of operators ↑ and ↓
(together) in an operator-minimal ↑-expression depends (only) on B↓(X) (cf. the proof of
Lemma 8.44(3a)).

In Lemma 8.30, we could not specify values for all numbers of (operator-)minimal
DNA expressions denoting certain types of expressible formal DNA molecules. We now
can:

Corollary 8.47 Let X be an expressible formal DNA molecule.

1. If X is double-complete, then

nmin↑(X) = 0,

nopermin↑(X) = 1,

nmin↓(X) = 0,

nopermin↓(X) = 1,

nminl(X) = noperminl(X) = 1 and

nmin(X) = 1.

2. If X is nick free, contains at least one single-stranded component and B↑(X) =
B↓(X) = p for some p ≥ 1, then

nmin↑(X) = nopermin↑(X) =
1

p+ 1

(
2p
p

)
,

nmin↓(X) = nopermin↓(X) =
1

p+ 1

(
2p
p

)
,

nminl(X) = noperminl(X) = 0 and

nmin(X) =
2

p+ 1

(
2p
p

)
.
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3. If X is nick free, B↑(X) = p1 and B↓(X) = p2 for some p1 and p2 with p1 > p2 ≥ 0,
then

nmin↑(X) = nopermin↑(X) =
1

p2 + 1

(
2p2
p2

)
,

nmin↓(X) = 0,

nopermin↓(X) =
1

p1 + 1

(
2p1
p1

)
,

nminl(X) = noperminl(X) = 0 and

nmin(X) =
1

p2 + 1

(
2p2
p2

)
.

4. If X is nick free, B↑(X) = p1 and B↓(X) = p2 for some p1 and p2 with p2 > p1 ≥ 0,
then

nmin↑(X) = 0,

nopermin↑(X) =
1

p2 + 1

(
2p2
p2

)
,

nmin↓(X) = nopermin↓(X) =
1

p1 + 1

(
2p1
p1

)
,

nminl(X) = noperminl(X) = 0 and

nmin(X) =
1

p1 + 1

(
2p1
p1

)
.

5. If X contains at least one lower nick letter, then let Z1△
Z2△

. . .
△
Zm for some m ≥ 2

be the nick free decomposition of X, and let for h = 1, . . . ,m, ph = B↓(Zh).

nmin↑(X) = nopermin↑(X) =
1

p1 + 1

(
2p1
p1

)
× · · · × 1

pm + 1

(
2pm
pm

)
,

nmin↓(X) = nopermin↓(X) = 0,

nminl(X) = 0 and

nmin(X) =
1

p1 + 1

(
2p1
p1

)
× · · · × 1

pm + 1

(
2pm
pm

)
.

(a) If X does not contain any single-stranded component, then

noperminl(X) = |Z1| × |Zm|.
(b) If X contains at least one single-stranded component, then

noperminl(X) = 0.

6. If X contains at least one upper nick letter, then let Z1
▽Z2

▽ . . . ▽Zm for some m ≥ 2
be the nick free decomposition of X, and let for h = 1, . . . ,m, ph = B↑(Zh).

nmin↑(X) = nopermin↑(X) = 0,

nmin↓(X) = nopermin↓(X) =
1

p1 + 1

(
2p1
p1

)
× · · · × 1

pm + 1

(
2pm
pm

)
,

nminl(X) = 0 and

nmin(X) =
1

p1 + 1

(
2p1
p1

)
× · · · × 1

pm + 1

(
2pm
pm

)
.
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(a) If X does not contain any single-stranded component, then

noperminl(X) = |Z1| × |Zm|.

(b) If X contains at least one single-stranded component, then

noperminl(X) = 0.

Note that in Claim 2, the inequality p ≥ 1 is not restrictive. If p were equal to 0, then by
Lemma 6.13(1), X would not contain any single-stranded component. Note further that
in Claim 3, by Lemma 6.12(1), we must have p1 = p2+1. Likewise in Claim 4, p2 = p1+1.

Example 8.48 Let X =
(
α1

−
)(

α2

c(α2)

)(−
α3

)
. Then X is nick free, contains at least one

single-stranded component andB↑(X) = B↓(X) = p = 1. By Corollary 8.47(2), nmin(X) =

2
1+1

(
2
1

)
= 2. Hence, there do not exist minimal DNA expressions denoting X other than

the ones given in Example 7.2.

Let X be the nick free formal DNA molecule depicted in (a.o.) Figure 7.5, for which

B↑(X) = p1 = 4 and B↓(X) = p2 = 3. By Corollary 8.47(3), nmin(X) = 1
3+1

(
6
3

)
= 5.

Let X be the nick free formal DNA molecule depicted in Figure 7.6, for which B↑(X) =

B↓(X) = p = 2. By Corollary 8.47(2), nmin(X) = 2
2+1

(
4
2

)
= 4. Hence, there do not

exist minimal DNA expressions denoting X other than the ones we have constructed in
Example 7.26.

Let X be the formal DNA molecule depicted in Figure 7.7, which contains four lower
nick letters. The nick free decomposition of X is Z1△

Z2△
Z3△

Z4△
Z5 for the submolecules

Z1, . . . , Z5 from (7.20). We have p1 = B↓(Z1) = 1, p2 = B↓(Z2) = 2, p3 = B↓(Z3) = 0,
p4 = B↓(Z4) = 0 and p5 = B↓(Z5) = 1. By Corollary 8.47(5),

nmin(X) = 1
1+1

(
2
1

)
× 1

2+1

(
4
2

)
× 1

0+1

(
0
0

)
× 1

0+1

(
0
0

)
× 1

1+1

(
2
1

)

= 1× 2× 1× 1× 1 = 2.

Recurrence relation for the number of operator-minimal ↑-expressions and
↓-expressions
In the foregoing, we have determined the number of operator-minimal ↑-expressions (or ↓-
expressions) denoting a certain nick free formal DNA molecule by establishing a bijection
between such DNA expressions and sequences of well-nested pairs of brackets. We could
have chosen another way to achieve the same result, and we will briefly describe this
alternative now. We leave it to the reader to prove the correctness of the alternative.

By Theorem 8.14, an operator-minimal ↑-expression denoting a nick free formal DNA
molecule X is based on a lower block partitioning of X, as described in Theorem 7.42.
By the construction from Theorem 7.42, different lower block partitionings yield different
operator-minimal ↑-expressions. Let P = Y0X1Y1 . . . XrYr for some r ≥ 0 be a lower block
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partitioning of X. A corresponding operator-minimal ↑-expression E has arguments εi for
all components x′

i of a Yj, and arguments E1, . . . , Er that are minimal DNA expressions
denotingX1, . . . , Xr, respectively. By Corollary 7.31(1), E1, . . . , Er are ↓-expressions. The
arguments εi are fixed, but an argument Ej may be any (operator-)minimal ↓-expression
denoting Xj. Because the choice of Ej1 with 1 ≤ j1 ≤ r is independent of the choice of
the other Ej’s, the number of different operator-minimal ↑-expressions corresponding to
P is

nopermin↓(X1)× · · · × nopermin↓(Xr).

Hence, the total number of operator-minimal ↑-expressions denoting X is
∑

lower block part.
Y0X1Y1 . . . XrYr of X

nopermin↓(X1)× · · · × nopermin↓(Xr).

Analogously, an operator-minimal ↓-expression denoting a nick free formal DNA molecule
X ′ is based on an upper block partitioning of X ′, different upper block partitionings of X ′

yield different operator-minimal ↓-expressions, and the total number of operator-minimal
↓-expressions denoting X ′ is

∑

upper block part.

Y ′
0X

′
1Y

′
1 . . . X

′
rY

′
r of X′

nopermin↑(X
′
1)× · · · × nopermin↑(X

′
r).

As we have seen in Lemma 8.35, each lower block partitioning P = Y0X1Y1 . . . XrYr of X
can be identified with the ordered partition (t1, . . . , tr) = fB↓

(P) = (B↓(X1), . . . , B↓(Xr))
of B↓(X), and each upper block partitioning P ′ of X ′ can be identified with the ordered
partition fB↑

(P ′) of B↑(X
′).

Now, we can prove by induction on B↓(X) and B↑(X
′) that the number of operator-

minimal ↑-expressions denoting X only depends on B↓(X), that the number of operator-
minimal ↓-expressions denoting X ′ only depends on B↑(X

′), that these numbers are equal
if B↓(X) = B↑(X

′) = p, say C(p), and that

C(p) =





1 if p = 0,∑

ordered partitions
(t1, . . . , tr) of p

C(t1 − 1)× · · · × C(tr − 1) if p ≥ 1.4 (8.44)

When we recall that, by Lemma 8.39, each sequence of p well-nested pairs of brackets has
a unique partitioning as 〈Z1〉 . . . 〈Zr〉 for some r ≥ 0 and sequences of well-nested pairs
of brackets Z1, . . . , Zr, we find that recurrence relation (8.44) is also applicable to the
number of sequences of p well-nested pairs of brackets. Hence, indeed for every p ≥ 0,

C(p) is equal to this number, which is the Catalan number 1
p+1

(
2p
p

)
.

Recurrence relation (8.44) is also related to trees. Consider an arbitrary ordered,
rooted tree with p+1 nodes for some p ≥ 0. This tree consists of a root and r ≥ 0 ordered
subtrees. Each of the subtrees contains at least one node and together they contain p
nodes. Hence, the respective numbers of nodes in the subtrees form an ordered partition
(t1, . . . , tr) of p. Now it is not hard to see that the number of different ordered, rooted trees

4This summation would also give the right value 1 for p = 0. For the sake of clearness, however, we
mention the case p = 0 separately.
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with p+ 1 nodes satisfies recurrence relation (8.44). Indeed, the number of these trees is

another well-known combinatorial interpretation of the Catalan numbers 1
p+1

(
2p
p

)
(see

[Stanley, 2015, Exercise 6]).



Chapter 9

An Algorithm for Minimality

In Chapter 7, we have described how to construct a minimal DNA expression denoting a
given formal DNA molecule. In Chapter 8, we have derived a characterization of minimal
DNA expressions (Theorem 8.26).

Now, given an arbitrary DNA expression E, we can use the characterization to check
whether or not it is minimal. If it is not, then, in order to save space, we may wish to
replace it by an equivalent, minimal DNA expression, i.e., a minimal DNA expression with
the same semantics. An indirect way to achieve such a minimal DNA expression consists
of first determining the semantics S(E), and then using the applicable construction(s)
from Chapter 7.

In this chapter, we follow a different, more elegant approach. We describe an algorithm
to rewrite E into an equivalent, minimal DNA expression. This algorithm executes local
string manipulations on E directly, based on violations of the properties in the character-
ization. It does not refer to the underlying semantics S(E), at all. Step by step, the DNA
expression obtains all six properties from Lemma 8.22.

In Section 9.1, we describe the algorithm and prove its correctness. We illustrate the
different steps in the algorithm by example DNA expressions, which are DNA subexpres-
sions of a single, large DNA expression. In Section 9.2, we systematically work out the
algorithm for this DNA expression as a whole. We will see that although the individual
steps have small, local effects on (the structure of) the DNA expression, the total effect
of the algorithm may be huge.

The description of the algorithm in Section 9.1 is not entirely complete. In particular,
we sometimes say that certain arguments of a DNA expression must be considered ‘in
some order’. Because the actual order used does not matter for the correctness of the
algorithm, we do not specify one. In addition, at other places, we consider or select
certain types of arguments of a DNA expression, but we do not specify how to find these
types of arguments. We fill in such implementation details and analyse the complexity
of the algorithm in Section 9.3. Finally, in Section 9.4, we relate the time spent by the
algorithm on actual rewriting steps to the resulting decrease of the length of the DNA
expression.

9.1 The algorithm and its correctness

In this section, we describe an algorithm for rewriting an arbitrary DNA expression E into
an equivalent, minimal DNA expression. This algorithm is recursive: we first construct
equivalent, minimal DNA expressions for the expression-arguments of E. The resulting

237
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expression-arguments have the six properties from Lemma 8.22. We use this in the second
phase, where we construct a DNA expression E ′ that is equivalent to E and has these
properties itself. By Theorem 8.26, E ′ must be minimal.

Note that this second phase is not trivial. If the arguments of a DNA expression E
are minimal, then E itself may be far from minimal. For example, if E is an l-expression
with an expression-argument, then by Property (DMin.1), E cannot be minimal, even if
this expression-argument is minimal. Similarly, if E is an ↑-expression with ↑-arguments,
then by Property (DMin.2), E cannot be minimal, even if the ↑-arguments are minimal.

Another important issue is that Properties (DMin.3)–(DMin.6) are more restrictive for
inner occurrences of operators ↑ and ↓ than for the outermost operator of a DNA ex-
pression. For example, by Property (DMin.3), an occurrence of ↑ may only have a single
N -word-argument α, if it is the outermost operator. Also, by Properties (DMin.4) and
(DMin.6), an inner occurrence of an operator ↑ must be alternating, whereas an outermost
operator ↑ may have consecutive expression-arguments. Finally, by Properties (DMin.5)
and (DMin.6), the first (or last) argument of an inner occurrence of ↑ cannot be a ↓-
argument, whereas this is possible for an outermost operator ↑. Of course, there are
analogous differences between an inner occurrence of ↓ and an outermost operator ↓.

Now suppose that E is a DNA expression and that Ei is a minimal ↑-argument of
E. When we view Ei by itself, then its outermost operator ↑0 may have, for example,
consecutive expression-arguments. However, when we view Ei as an argument of E, then
↑0 is an inner occurrence of ↑, which implies that it should be alternating.

Consequently, after we have (recursively) rewritten the expression-arguments of a DNA
expression E into equivalent, minimal expression-arguments, we may still have to perform
a number of rewriting steps to make E minimal itself. We can see this in Figure 9.1,
where we give the pseudo-code of a recursive function MakeMinimal, which implements
the algorithm.

The description of the function contains four instructions in a style like

substitute E by a minimal DNA expression E ′ satisfying E ′ ≡ E; (proc. . . . )

These instructions will be worked out in detail in Sections 9.1.1–9.1.3, by the procedures
mentioned between the brackets. We prove that both the general description of the al-
gorithm and all procedures are correct, i.e., that they indeed produce the type of DNA
expression specified, with the right semantics.

When we have an instruction of the above form, there may be many different minimal
DNA expressions E ′ that satisfy the equivalence. Different choices may result in different
outcomes of the algorithm. At this point, it does not matter which DNA expression we
take. We will prove that regardless of the choice we make, the overall algorithm is correct.
As we work out the procedures, however, we will see that we do not just make a random
choice. For a given DNA expression E, we systematically construct a DNA expression E ′

that satisfies the requirements.
Note that an instruction of the above form bears a notion of semantics in it. The new

DNA expression E ′ must satisfy E ′ ≡ E, i.e., its semantics must be equal to S(E). We
use such formulations, to be able to prove the correctness of the general algorithm without
knowing the ‘implementation’ of the procedures. Again, as we work out the procedures,
we will see that we merely perform local string manipulations on the DNA expression,
based on its properties as a string. Hence, the complete, detailed algorithm does not refer
to the semantics of the DNA expressions involved, at all.
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1. MakeMinimal (E)
// recursively rewrites an arbitrary DNA expression E
// into an equivalent, minimal DNA expression

2. {
3. if (E is an l-expression)
4. then if (the argument of E is a DNA expression E1)
5. then MakeMinimal (E1);

// we proceed with the new (minimal) version of E1

6. if (E1 is an l-expression)
7. then substitute E by E1; (DMin.1)
8. else // E1 is an ↑-expression or a ↓-expression
9. substitute E by a minimal DNA expression E ′

satisfying E ′ ≡ E; (proc. MakelExprMinimal) (DMin.1)
10. fi
11. fi

12. else // E is an ↑-expression or a ↓-expression;
// without loss of generality, assume it is
// an ↑-expression

13. for all expression-arguments Ei of E (in some order)
14. do MakeMinimal (Ei);
15. od

// we proceed with the new (minimal) expression-arguments Ei

16. for all ↓-arguments Ei of E (in some order)
17. do if (Ei is not alternating)
18. then substitute Ei in E by a minimal, nick free

DNA expression E ′
i satisfying E ′

i ≡▽ Ei;
(proc. Denickify) (DMin.4)

19. fi
20. od

// we proceed with the new expression-arguments
21. for all ↓-arguments Ei of E (in some order)
22. do if (the first argument or the last argument of Ei

is an ↑-argument)
23. then substitute Ei in E by a minimal ↑-expression E ′

i

satisfying E ′
i ≡ Ei; (proc. RotateToMinimal) (DMin.5)

24. fi
25. od

// we proceed with the new expression-arguments
26. for all ↑-arguments Ei = 〈↑ εi,1 . . . εi,ni

〉 of E (in some order)
27. do substitute Ei in E by its arguments εi,1 . . . εi,ni

; (DMin.2)
28. od

29. if (E has only one argument ε1)
30. then if (ε1 is a DNA expression E1)
31. then substitute E by E1; (DMin.3)
32. fi
33. else // E has at least two arguments
34. if (E is alternating and both its first argument

and its last argument are ↓-arguments)
35. then substitute E by a minimal ↓-expression E ′

satisfying E ′ ≡ E; (proc. RotateToMinimal) (DMin.6)
36. fi
37. fi
38. fi
39. }

Figure 9.1: Pseudo-code of the recursive function MakeMinimal.
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We want to emphasize that (additional) recursive calls of MakeMinimal itself would not
be appropriate to obtain the minimal DNA expressions E ′ or E ′

i that we need in the four
instructions involved. We really need specialized procedures. For each of the instructions,
we explain now why this is the case.

For the substitution in line 9, we need to find a minimal DNA expression E ′ satisfying
E ′ ≡ E. Although this is exactly what the function MakeMinimal is meant for, a recursive
call MakeMinimal(E) would not work at this point. It would trigger an infinite sequence
of recursive calls of the function, with the same argument E.

The minimal DNA expression E ′
i that we substitute in line 18 is not equivalent to

Ei. As follows from Corollary 8.11, Ei contains nicks, whereas E ′
i must be nick free.

Because the function MakeMinimal yields an equivalent , minimal DNA expression, it is
not applicable. Apart from that, it would not make sense to call the function here, because
we have just done so in line 14.

In line 23, we do not just need any equivalent, minimal DNA expression, but we need
one of a particular type: an ↑-expression E ′

i for a ↓-expression Ei. MakeMinimal does not
make this distinction. In fact, as a result of lines 13-20, the ↓-expression Ei is minimal
already. As we will see later, MakeMinimal(Ei) would simply yield Ei. It would never
produce the desired ↑-expression.

Although the situation in line 35 looks similar, the actual problem is more serious. Just
like in line 9, a call MakeMinimal(E) there would start an infinite sequence of recursive
calls, with the same argument E.

Each substitution in the function MakeMinimal is justified by the violation of a par-
ticular property from Lemma 8.22. Such a violation implies that the DNA expression is
not (yet) minimal. In the pseudo-code, we indicate the properties involved. We briefly
discuss the relation between the different substitutions and the properties violated.

Assume that the DNA expression E is an l-expression. Then MakeMinimal only re-
writes E, if its argument is a DNA expression E1 (in lines 5–11), i.e., not if it is an N -word
α1. This is justified by Theorem 7.5: an l-expression E with an expression-argument is not
minimal. Indeed, such a DNA expression violates (at least) Property (DMin.1), and thus
needs to be rewritten. On the other hand, an l-expression E with an N -word-argument
is minimal already, and there is no reason to rewrite it.

There is not such a clear distinction for ↑-expressions and ↓-expressions. If E is an
↑-expression or a ↓-expression which is minimal already, then we do execute lines 13–37.
However, in Theorem 9.12, we will see that, also in that case, in fact nothing happens.

We consider the action of MakeMinimal for an ↑-expression E. First of all, we recurs-
ively rewrite the expression-arguments Ei of E into equivalent, minimal DNA expressions.
In the second for-loop, we substitute ↓-arguments of E which are not alternating. Let Ei

be such a ↓-argument. Because Ei makes E violate Property (DMin.4), we indeed have
reason to rewrite this expression-argument. By (the analogue for ↓-expressions of) Corol-
lary 8.11(2) and (3), S(Ei) contains upper nick letters. Since these upper nick letters are
removed by the outermost operator ↑ of E anyway, it does not hurt to substitute Ei by a
nick free version E ′

i. That is what we do in this loop.

In the third for-loop, we substitute ↓-arguments Ei for which either the first argu-
ment of the last argument is an ↑-argument. Such ↓-arguments cause a violation of Prop-
erty (DMin.5). If the ↑-expression E has ↑-arguments Ei, then it violates Property (DMin.2).
Therefore, in the last for-loop, we substitute such arguments.

In line 31, we have an ↑-expression E with one argument, which is an expression-
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α1 α2 α3 α4
α5

α6
α7

α8 α9 α10 α11
α12

α13 α14 α15
α16

α17 α18 α19 α20
α21

α22 α23

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷

Figure 9.2: The formal DNA molecule X denoted by the DNA expression E∗
1 in (9.1),

with primitive upper blocks and primitive lower blocks indicated.

argument E1. Hence, E violates Property (DMin.3). As we will see in the proof of The-
orem 9.17, E1 is nick free. This implies that the outermost operator ↑ of E does not have
any effect on the semantics, and E = 〈↑ E1〉 ≡ E1. Therefore, we can safely substitute E
by E1.

Finally, in line 35, we deal with a violation of Property (DMin.6).

We illustrate the different steps in the algorithm by a number of examples. All these
examples are derived from the following DNA expression:

E∗
1 =

〈
↓
〈
↓
〈
↑ 〈l 〈↓ 〈l 〈↑ α1 〈l 〈l α2〉〉α3 〈↓ 〈l α4〉α5〉〉〉 〈l α6〉 α7 〉〉
〈↓ 〈l α8〉 〈↑ 〈l α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉 〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
,

(9.1)

where α1, . . . , α23 are arbitrary N -words. It denotes the formal DNA molecule X depicted
in Figure 9.2. We use the notation E∗

1 to clearly distinguish the DNA expression as a whole
from the parameter E of (a recursive call of) MakeMinimal and the expression-arguments
Ei. We will use the notation E∗

i also in a more general setting, to denote the input to
algorithms on DNA expressions like MakeMinimal and to denote the resulting output.

The DNA expression E∗
1 from (9.1) is far from minimal. In fact, the only property

from Lemma 8.22 that it has, is Property (DMin.6). It requires many steps to rewrite
E∗

1 into an equivalent, minimal DNA expression. Both for the general description of the
algorithm and for each of the procedures, we select some of these steps as an illustration.

We start with examples of the substitutions that are carried out in MakeMinimal, as
it is described in Figure 9.1. As said before, the substitutions in lines 9, 18, 23 and 35 are
phrased in terms of the semantics of the DNA expressions involved, simply because we do
not know yet how the procedures that are mentioned there are implemented. Therefore,
in the corresponding examples, we also refer to these semantics. Later, however, when
we work out the procedures and consider examples of their usage, we will see that the
semantics does not play any explicit role. Hence, as desired, the algorithm merely performs
string manipulations, based on syntactic properties of the DNA expressions.

Moreover, there may be more than one DNA expression E ′ or E ′
i that satisfy the

(semantic) conditions in lines 9, 18, 23 and 35. If this is the case in an example, we give
all possible DNA expressions. Recall, however, that the procedures that are mentioned in
these lines, systematically construct a particular DNA expression E ′ or E ′

i for a given E
or Ei.

Example 9.1 Let E = 〈l 〈l α2〉〉. E is an l-expression, for which S(E) =
(

α2

c(α2)

)
. The

argument of E is the minimal l-expression E1 = 〈l α2〉. Hence, E violates Property
(DMin.1). According to line 7 of MakeMinimal, E is substituted by E1 = 〈l α2〉. Indeed,
E1 is a minimal DNA expression satisfying E1 ≡ E.



242 Ch. 9 An Algorithm for Minimality

By Theorem 7.5, each minimal l-expression E1 is of the form 〈l α2〉 for an N -word α2.
Hence, apart from the particular N -word α2, this example is the only possibility in line 7.

Example 9.2 Let

E = 〈l 〈↑ α1 〈l α2〉α3 〈↓ 〈l α4〉α5〉〉〉 .

E is an l-expression, for which

S(E) =
(
α1α2α3α4c(α5)
c(α1α2α3α4)α5

)
.

The argument of E is a minimal ↑-expression E1. Hence, E violates Property (DMin.1).
In line 9 of MakeMinimal, we substitute E by a minimal DNA expression E ′ that sat-
isfies E ′ ≡ E. By Theorem 7.5, there exists exactly one such DNA expression: E ′ =
〈l α1α2α3α4c(α5)〉.
We now consider the case that E is an ↑-expression. The minimal, nick free DNA expres-
sion E ′

i that we substitute for the non-alternating ↓-argument Ei of E in line 18, may be
again a ↓-expression, but it may also be an ↑-expression or an l-expression. We give two
examples covering these three possibilities.

Example 9.3 Let

E =
〈
↑ 〈↓ 〈l α1α2α3α4c(α5)〉 〈l α6c(α7)〉〉
〈↓ 〈l α8〉 〈↑ 〈l α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉
,

for which

X = S(E) =
(
α1α2α3α4c(α5)α6c(α7)
c(α1α2α3α4)α5c(α6)α7

)
△

(
α8α9

c(α8α9)

)(
α10

−
)(

α11

c(α11)

)( −
α12

)
·

(
α13

c(α13)

)
△

(
α14

c(α14)

)
△

(
α15

c(α15)

)( −
α16

)(
α17

c(α17)

)(
α18

−
)(

α19

c(α19)

)
△

(
α20

c(α20)

)
.

All expression-arguments of E are minimal. The first argument of E is

E1 = 〈↓ 〈l α1α2α3α4c(α5)〉 〈l α6c(α7)〉〉 ,

which is not alternating and for which

S(E1) =
(
α1α2α3α4c(α5)
c(α1α2α3α4)α5

)
▽
(
α6c(α7)
c(α6)α7

)
.

Hence, E1 makes E violate Property (DMin.4). E1 is not nick free. If E ′
1 is a nick free

DNA expression satisfying E ′
1 ≡▽ E1, then

S(E ′
1) =

(
α1α2α3α4c(α5)α6c(α7)
c(α1α2α3α4)α5c(α6)α7

)
.

By Theorem 7.5, there is exactly one minimal DNA expression with this semantics:

E ′
1 = 〈l α1α2α3α4c(α5)α6c(α7)〉 ,

which is an l-expression.
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Example 9.4 Let

E =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈↓ 〈l α8〉 〈↑ 〈l α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉
.

This is the result when we substitute the first ↓-argument E1 of the ↑-expression E from
Example 9.3 by the corresponding l-expression E ′

1. The second argument of E is

E2 = 〈↓ 〈l α8〉 〈↑ 〈l α9〉α10 〈l α11〉〉α12 〈l α13〉〉 ,

which is not alternating and for which

S(E2) =
(

α8

c(α8)

)
▽
(

α9

c(α9)

)(
α10

−
)(

α11

c(α11)

)( −
α12

)(
α13

c(α13)

)
.

Hence, E2 makes E violate Property (DMin.4). E2 is not nick free. If E ′
2 is a nick free

DNA expression satisfying E ′
2 ≡▽ E2 and X ′

2 = S(E ′
2), then

X ′
2 =
(

α8α9

c(α8α9)

)(
α10

−
)(

α11

c(α11)

)( −
α12

)(
α13

c(α13)

)
.

We have B↑(X
′
2) = B↓(X

′
2) = 1. By Summary 8.16(2) and the recursive construction from

Theorem 7.24, there are two different minimal DNA expressions denoting X ′
2:

E ′
2 = 〈↑ 〈l α8α9〉α10 〈↓ 〈l α11〉α12 〈l α13〉〉〉

and

E ′
2 = 〈↓ 〈↑ 〈l α8α9〉α10 〈l α11〉〉α12 〈l α13〉〉 .

In principle, in line 18, we may choose either of these minimal DNA expressions. If we
choose the first one, then E ′

2 is an ↑-expression. If we choose the second one, then E ′
2 is

a ↓-expression.
Note that in the second for-loop (in lines 16–20) of MakeMinimal, we only substitute the
↓-arguments that are not alternating. We ignore the non-alternating ↑-arguments (if these
are present) there. It is only in the fourth for-loop that we substitute the ↑-arguments
of the ↑-expression E (whether they are alternating or not). It would not be very useful
to do this earlier in the function, because the first three for-loops may introduce new
↑-arguments.

The ↓-arguments we substitute in the third for-loop (in lines 21–25) may have been
introduced in the second for-loop, but they may also have been arguments of E from
before that loop. We consider examples of both possibilities now.

Example 9.5 Let

E =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈↓ 〈↑ 〈l α8α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉
.

This is the result when we substitute the second argument E2 of the ↑-expression E from
Example 9.4 by the corresponding ↓-expression E ′

2. The (new) second argument of E is

E2 = 〈↓ 〈↑ 〈l α8α9〉α10 〈l α11〉〉α12 〈l α13〉〉 .
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The first argument of E2 is an ↑-argument. Hence, E2 makes E violate Property (DMin.5).
As we have seen in Example 9.4, there is exactly one minimal ↑-expression E ′

2 satisfying
E ′

2 ≡ E2:

E ′
2 = 〈↑ 〈l α8α9〉α10 〈↓ 〈l α11〉α12 〈l α13〉〉〉 .

Example 9.6 Let

E =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈↑ 〈l α8α9〉α10 〈↓ 〈l α11〉α12 〈l α13〉〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉
.

This is the result when we substitute the second argument E2 of the ↑-expression E from
Example 9.5 by the corresponding ↑-expression E ′

2. The fourth argument of E is

E4 = 〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 ,

for which

X4 = S(E4) =
(

α15

c(α15)

)( −
α16

)(
α17

c(α17)

)(
α18

−
)
.

The last argument of E4 is an ↑-argument. Hence, E4 makes E violate Property (DMin.5).
We have B↑(X4) = B↓(X4) = 1. By Summary 8.16(2) and the recursive construction from
Theorem 7.24, there is exactly one minimal ↑-expression E ′

4 with S(E ′
4) = X4, i.e., with

E ′
4 ≡ E4:

E ′
4 = 〈↑ 〈↓ 〈l α15〉α16 〈l α17〉〉α18〉 .

When we substitute the argument E4 of the ↑-expression E from the last example by
the corresponding ↑-expression E ′

4, E does not have any ↓-argument left. This is not
necessarily the case after the first three for-loops. E may still have (minimal) ↓-arguments
then. These must be alternating (i.e., nick free), and by Properties (DMin.1) and (DMin.2),
both the first argument and the last argument of such a ↓-argument must be either an
N -word α, or an l-expression 〈l α〉 for an N -word α.

Recall that the substitutions in the third for-loop of MakeMinimal were justified by
violations of Property (DMin.5) by an inner occurrence of the operator ↓. Both in Ex-
ample 9.5 and in Example 9.6, we have obtained an ↑-expression E ′

i, whose first argument
or last argument is a ↓-argument. In other words: the outermost operator ↑ of E ′

i (which
is an inner occurrence in E) also violates Property (DMin.5). As we will see shortly, this
is not really a problem. It is, however, good to realize that this is always the case:

Lemma 9.7 Let E ′
i be a minimal ↑-expression that is substituted for a ↓-argument Ei in

the third for-loop of the function MakeMinimal. Then either the first argument, or the last
argument of E ′

i is a ↓-argument.

Proof: As we observed before, either the ↓-argument Ei has been an argument of E
from before the second for-loop, or it has been substituted for another ↓-argument in this
second for-loop. In both cases, Ei is minimal.
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Let Xi = S(Ei) = S(E ′
i). By Summary 8.16, the fact that there exists both a minimal

↓-expression Ei and a minimal ↑-expression E ′
i denoting Xi, implies that Xi is nick free,

contains at least one single-stranded component and B↑(Xi) = B↓(Xi). Both Ei and E ′
i

satisfy the construction from Theorem 7.24.
Now, when we apply Corollary 7.33(2) to E ′

i, we conclude that either the first argu-
ment, or the last argument of E ′

i is a ↓-argument.

The fourth for-loop (in lines 26–28) of the function MakeMinimal deals with violations
of Property (DMin.2). However, it also resolves the violations of Properties (DMin.4) and
(DMin.5) by the outermost operators of (new) ↑-arguments Ei. We proceed with an ex-
ample of the substitutions carried out in that loop.

Example 9.8 Let

E =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈↑ 〈l α8α9〉α10 〈↓ 〈l α11〉α12 〈l α13〉〉〉 〈l α14〉
〈↑ 〈↓ 〈l α15〉α16 〈l α17〉〉α18〉 〈↑ 〈l α19〉 〈l α20〉〉

〉
.

This is the result when we substitute the fourth argument E4 of the ↑-expression E from
Example 9.6 by the corresponding ↑-expression E ′

4. The ↑-expression E has three ↑-
arguments. Hence, it violates Property (DMin.2). In lines 26–28, we substitute these three
↑-arguments by their respective arguments. The result is

E =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈l α8α9〉 α10 〈↓ 〈l α11〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈l α17〉〉 α18 〈l α19〉 〈l α20〉

〉
.

The function MakeMinimal ends with an if-then-else construction (in lines 29–37). De-
pending on the properties of the DNA expression E resulting from the for-loops, the
if-then-else construction does or does not yield one more modification of the DNA expres-
sion. We conclude this series of examples with one example where the DNA expression
remains the same, and two examples (one very simple and one more involved) where it is
modified in the if-then-else construction.

Example 9.9 Let

E =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈l α8α9〉 α10 〈↓ 〈l α11〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈l α17〉〉 α18 〈l α19〉 〈l α20〉

〉
.

This is the result of Example 9.8. E has more than one argument and is not alternating.
According to line 34, E is not modified any further. E denotes the formal DNA molecule
X from Example 9.3. Hence, it is indeed equivalent to the original DNA expression.
Moreover, it is easily verified that E has all six properties from Lemma 8.22 and thus is
minimal.

Example 9.10 Let E = 〈↑ 〈↓ α21〉〉, for which S(E) =
( −
α21

)
. The only argument of the

↑-expression E is the ↓-expression E1 = 〈↓ α21〉. Hence, E violates Property (DMin.3).
E1 is an alternating ↓-argument, whose only argument is the N -word α21. According
to line 31, E is substituted by E1. By Summary 8.16(4) and the construction from
Theorem 7.24(2), this is the only minimal DNA expression denoting S(E).
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Example 9.11 Let

E =
〈
↓
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18 〈l α19α20〉
〉

α21 〈↑ 〈l α22〉α23〉
〉
,

which, like DNA expression E∗
1 from (9.1), denotes the formal DNA molecule X from Fig-

ure 9.2. The ↓-expression E has three arguments: two minimal, alternating ↑-arguments,
separated by an N -word α21. In particular, E itself is also alternating, it violates Property
(DMin.6) and line 35 of the function MakeMinimal is applicable.

The formal DNA molecule X is nick free. As indicated in Figure 9.2, B↑(X) = 3
and B↓(X) = 2. Hence, by Summary 8.16(3) and the recursive construction from The-
orem 7.24, there are two different minimal DNA expressions E ′ denoting X, i.e., with
E ′ ≡ E:

E ′ =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18

〈↓ 〈l α19α20〉α21 〈l α22〉〉 α23

〉

and

E ′ =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10〈

↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈↑ 〈l α17〉α18 〈l α19α20〉〉 α21 〈l α22〉
〉

α23

〉
.

In principle, in line 35 of MakeMinimal, we may choose either of these minimal DNA
expressions.

The recursive function MakeMinimal may be applied to a DNA expression E that is
minimal already. Before we prove the correctness of the function in general, we examine
its effect in this particular case. On page 240, we already observed that the function
MakeMinimal does nothing to a minimal l-expression. We now consider arbitrary minimal
DNA expressions.

Theorem 9.12 Let E be a minimal DNA expression. When the function MakeMinimal

is applied to E, it does not perform any rewriting step.

Hence, MakeMinimal leaves every minimal DNA expression unchanged. The only thing
the function does for such a DNA expression, is checking some conditions and performing
recursive calls for the DNA subexpressions.

Proof: By induction on the number p of operators occurring in E.

• If p = 1, then E is 〈l α1〉, 〈↑ α1〉 or 〈↓ α1〉 for an N -word α1. Indeed, these DNA
expressions are minimal.

It is easily verified that in each of these cases, MakeMinimal leaves E unchanged. In
particular, for an ↑-expression E = 〈↑ α1〉, nothing happens in the four for-loops,
because E has no expression-arguments.

• Let p ≥ 1, and suppose that MakeMinimal leaves all minimal DNA expressions
containing at most p operators unchanged (induction hypothesis). Now let E be a
minimal DNA expression that contains p+ 1 operators.
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Because, by Theorem 7.5, a minimal l-expression contains only one operator, E has
to be an ↑-expression or a ↓-expression. Without loss of generality, assume it is an
↑-expression.
Because E is minimal, each expression-argument of E is also minimal. Because an
expression-argument Ei has at most p operators, by the induction hypothesis, the
recursive calls in the first for-loop of MakeMinimal do not yield any rewriting step.

By Property (DMin.4), each proper ↓-subexpression of E is alternating. In particular,
each ↓-argument of E is alternating. Hence, the second for-loop of MakeMinimal does
not yield any rewriting step, either.

By Property (DMin.5), E does not have any proper ↓-subexpression, for which either
the first argument or the last argument is an ↑-argument. In particular, E does not
have any ↓-argument for which this is the case. Hence, the third for-loop of the
function does not yield any rewriting step, either.

By Property (DMin.2), no occurrence of ↑ in E has an ↑-argument. In particular,
the outermost operator ↑ of E has no ↑-argument. Hence, the fourth for-loop of the
function does not yield any rewriting step, either.

We finally consider the if-then-else construction at the end of the function. If E has
only one argument, then by Property (DMin.3), this is an N -word α. Indeed, in this
case, E is not rewritten.

If on the other hand, E has at least two arguments, then by Property (DMin.6),
either E has consecutive expression-arguments, or its first argument is an N -word
α or an l-expression 〈l α〉 for an N -word α, or its last argument is an N -word α or
an l-expression 〈l α〉 for an N -word α. In each of the three cases, the condition in
line 34 of the function becomes false, and E is not rewritten.

We will come back to the effect of MakeMinimal on minimal DNA expressions, at the
end of Section 9.4. Note that for many formal DNA molecules, there exists more than
one minimal DNA expression, see, e.g., Corollary 8.47. When we apply MakeMinimal to
different equivalent, minimal DNA expressions, the outputs (which equal the inputs) are
also different. This implies in particular that MakeMinimal does not always produce the
same minimal DNA expression, when it is applied to different, equivalent DNA expressions.
To state it formally:

Corollary 9.13 Let E1 and E2 be equivalent DNA expressions. When we apply the func-
tion MakeMinimal to E1 and E2, the resulting minimal DNA expressions are not neces-
sarily equal.

Hence, MakeMinimal does not produce some kind of a ‘normal form version’ of its ar-
gument. We study a (minimal) normal form for DNA expressions in Chapter 10 and
Chapter 11.

We now focus on a particular aspect of MakeMinimal, which is important for its cor-
rectness. This aspect will come back in the implementation of line 18, in procedure
Denickify.

In lines 23 and 35 of MakeMinimal, we need a minimal ↑-expression E ′
i or a minimal

↓-expression E ′ that is equivalent to a certain DNA expression. Obviously, for each DNA
expression, there exist one or more equivalent, minimal DNA expressions. For certain
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DNA expressions, however, there does not exist an equivalent, minimal ↑-expression or
an equivalent, minimal ↓-expression, simply because all minimal DNA expressions are of
another type, see Summary 8.16. We prove that under certain conditions, the desired
equivalent, minimal ↑-expression or ↓-expression does exist.

Lemma 9.14 Let E be an ↑-expression denoting a certain formal DNA molecule X.
If E is nick free, has Properties (DMin.3)–(DMin.5), and either the first argument or

the last argument of E (or both arguments) is a ↓-argument, then there exists a minimal
↓-expression E ′ satisfying E ′ ≡ E.

Proof: Assume that E is nick free, has Properties (DMin.3)–(DMin.5), and either the first
argument or the last argument of E (or both arguments) is a ↓-argument.

Without loss of generality, assume that the first argument of E is a ↓-argument E1.
Let X1 = S(E1). By Property (DMin.4) and Lemma 5.8, X1 is nick free. Hence, the
semantics X of the ↑-expression E starts with ν+(X1) = X1.

By Property (DMin.3), E1 has at least two arguments. By Property (DMin.5), the first
argument of E1 is either an N -word α1, or an l-expression 〈l α1〉 for an N -word α1. In
the latter case, by Property (DMin.4), the second argument of E1 is an N -word α2. In
both cases, X1 = S(E1) has at least one single-stranded component, and the first single-
stranded component of X1 is a lower component. But then also X = S(E) has at least one
single-stranded component, and its first single-stranded component is a lower component.

By Lemma 6.13(3b) and (3d), B↓(X) ≥ B↑(X). Hence, by Theorem 7.24(2), there
exists a minimal ↓-expression E ′ denoting X, i.e., a minimal ↓-expression E ′ satisfying
E ′ ≡ E.

If an ↑-expression E is alternating and has Property (DMin.4), then each occurrence of ↑
or ↓ in E is alternating. By Lemma 5.8, E is nick free. But then we also have

Corollary 9.15 Let E be an ↑-expression denoting a certain formal DNA molecule X.
If E is alternating, has Properties (DMin.3)–(DMin.5), and either the first argument or

the last argument of E (or both arguments) is a ↓-argument, then there exists a minimal
↓-expression E ′ satisfying E ′ ≡ E.

Note that the DNA expression E in Lemma 9.14 and Corollary 9.15 is not necessar-
ily operator-minimal. Hence, Corollary 8.11 is not applicable: the adjectives ‘nick free’
and ‘alternating’ are not equivalent, here. There exist DNA expressions E for which
Lemma 9.14 is applicable, but Corollary 9.15 is not, because they are nick free but not
alternating.

Example 9.16 Consider the ↑-expression
E = 〈↑ 〈↓ α1 〈l α2〉〉 〈↑ α3 〈l α4〉〉〉

for N -words α1, . . . , α4. E is nick free, but not alternating, E has Properties (DMin.3)–
(DMin.5), and its first argument is a ↓-argument. The formal DNA molecule denoted

by E is X =
(−
α1

)(
α2

c(α2)

)(
α3

−
)(

α4

c(α4)

)
, for which B↑(X) = B↓(X) = 1. It follows from

Summary 8.16(2) and the construction from Theorem 7.24 that the (only) minimal ↓-
expression E ′ denoting X is

E ′ = 〈↓ α1 〈↑ 〈l α2〉α3 〈l α4〉〉〉 .
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We now prove that the global algorithm is correct:

Theorem 9.17 Let E∗
1 be an arbitrary DNA expression, and let E∗

2 be the result of ap-
plying the function MakeMinimal to E∗

1 .

1. MakeMinimal is well defined.

2. The string E∗
2 is a minimal DNA expression satisfying E∗

2 ≡ E∗
1 .

3. If E∗
1 is an l-expression, then there exists exactly one minimal DNA expression that

is equivalent to E∗
1 . In particular, in this case, E∗

2 is independent of choices made
in the procedures MakelExprMinimal, Denickify and RotateToMinimal.

Note that in Claim 3, the procedures Denickify and RotateToMinimal are not irrel-
evant for an l-expression E∗

1 . If E∗
1 has ↑-subexpressions or ↓-subexpressions, then the

procedures may be used in the recursive call for such a DNA subexpression.
In the proof, we will see that the equivalence E∗

2 ≡ E∗
1 in Claim 2 relies heavily on

two types of observations. First, sometimes an operator occurring in a DNA expression E
does not contribute to the semantics of E, at all. We can as well skip such an operator.
This is the case in lines 7, 27 and 31 of MakeMinimal. Second, by Lemma 5.11, when
we substitute an expression-argument Ei of E by an equivalent expression-argument, E
remains a DNA expression with the same semantics. This is the case in lines 5, 14 and 23
of MakeMinimal, and the substitution in line 18 is not too different.

Proof: We first discuss some aspects of the well-definedness of MakeMinimal. For each
DNA expression E, there exists at least one equivalent, minimal DNA expression E ′. In
principle, we could use the constructions mentioned in Summary 8.16 to obtain E ′. Hence,
the substitution in line 9 of MakeMinimal is well defined.

For the substitution in line 18, let us consider an arbitrary DNA expression Ei, with
Xi = S(Ei). By definition, the formal DNA molecule X ′

i = ν(Xi) is nick free and satisfies
X ′

i ≡▽ Xi. By Theorem 5.5, X ′
i is expressible. In particular, there exists at least one

minimal DNA expression E ′
i denoting X ′

i, i.e., satisfying E ′
i ≡▽ Ei. This holds for an

arbitrary DNA expression Ei. Then it certainly holds for the ↓-expression Ei we consider
in line 18. Hence, the substitution in this line is also well defined.

Now the only instructions in MakeMinimal that are not obviously well defined, are
the substitutions in lines 23 and 35. These lines presuppose the existence of a minimal
↑-expression or a minimal ↓-expression, which is equivalent to a given DNA expression.
The proof that these minimal DNA expressions indeed exist, exploits some properties of
the DNA expression E which emerge in the proof of Claim 2. Therefore, we combine the
proofs of Claim 1 and Claim 2.

1, 2. We prove these claims by induction on the number p of operators occurring in E∗
1 .

• If p = 1, then E∗
1 is 〈l α1〉, 〈↑ α1〉 or 〈↓ α1〉 for anN -word α1. These DNA expressions are

minimal already. Hence, by Theorem 9.12, MakeMinimal does not perform any rewriting
step on E∗

1 . In particular, the substitutions in lines 23 and 35 are not executed. As a
result, E∗

2 = E∗
1 .

Indeed, in this case, MakeMinimal is well defined, and E∗
2 is a minimal DNA expression

satisfying E∗
2 ≡ E∗

1 .
• Let p ≥ 1, and suppose that both claims are valid for all DNA expressions containing at
most p operators (induction hypothesis). Now let E∗

1 be a DNA expression that contains
p+ 1 operators.
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If E∗
1 is an l-expression, then its argument must be a DNA expression E1, with p

operators. By the induction hypothesis, the recursive call in line 5 yields a minimal
DNA expression E ′

1 satisfying E ′
1 ≡ E1. By Lemma 5.11, the resulting (overall)

string E = 〈l E ′
1〉 is a DNA expression, which satisfies E = 〈l E ′

1〉 ≡ 〈l E1〉 = E∗
1 .

We subsequently execute lines 6–10 of the function. In accordance with the pseudo-
code, we use E1 to denote the (new and minimal) expression-argument E ′

1 of E.

If E1 is an l-expression, then by Theorem 7.5, E1 = 〈l α1〉 for an N -word α1, and
E = 〈l E1〉 = 〈l 〈l α1〉〉. Applying the same operator l to the same argument for
a second time, does not change the result. In this case, we execute line 7, yielding
E∗

2 = E1 = 〈l α1〉. Indeed, this is a minimal DNA expression, which satisfies
E∗

2 ≡ E = 〈l 〈l α1〉〉 ≡ E∗
1 .

If, on the other hand, E1 is an ↑-expression or a ↓-expression, then we execute line 9,
yielding E∗

2 = E ′, where E ′ is a minimal DNA expression satisfying E ′ ≡ E ≡ E∗
1 .

In both subcases, the induction hypothesis is valid for the l-expression E∗
1 .

If E∗
1 is not an l-expression, then without loss of generality, assume it is an ↑-

expression. In this case, lines 13–37 of MakeMinimal are applicable. In accordance
with the pseudo-code, we use E to denote the ‘working DNA expression’ in this part
of the function. We prove that step by step, E becomes minimal.

We first consider the effect of the first for-loop (lines 13–15). We prove that the
following property is an invariant for this loop:

E is an ↑-expression satisfying E ≡ E∗
1 . (9.2)

Note that, because E∗
1 contains at least two operators, it has at least one expression-

argument. Hence, the first for-loop has at least one iteration.

� Initially, before the first iteration of the for-loop, E is equal to E∗
1 . By assump-

tion, the property is valid then.

� Suppose that Property (9.2) is valid before a certain iteration of the for-loop.
In this iteration, we consider an expression-argument Ei of E. Ei contains at
most p operators. By the induction hypothesis, the recursive call MakeMinimal
(Ei) in line 14 yields a minimal DNA expression E ′

i satisfying E ′
i ≡ Ei. When

we apply Lemma 5.11, we find that after substituting Ei by E ′
i, the (overall)

string E is still a DNA expression satisfying E ≡ E∗
1 . Of course, it is still an

↑-expression.

After the loop, all expression-arguments of E are minimal. We proceed with the
second for-loop (lines 16–20). We prove that the following property is an invariant
for this loop:

E is an ↑-expression satisfying E ≡ E∗
1 , and each expression-

argument of E is minimal.
(9.3)

By Lemma 8.22, this property implies that the expression-arguments of E have
Properties (DMin.1)–(DMin.6). Because each occurrence of the operator l in the ↑-
expression E must be in such an expression-argument, Property (DMin.1) is also
valid for E itself. E does not necessarily have Properties (DMin.2)–(DMin.6). For
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example, E may be any of the DNA expressions from Table 8.1, except the first two
(because they do not have Property (DMin.1)) and the fifth one (the second example
for Property (DMin.3)).

� Clearly, before the first iteration of the for-loop, the property is valid.

� Suppose that Property (9.3) is valid before a certain iteration of the for-loop.
Let E = 〈↑ ε1 . . . εn〉 for some n ≥ 1 and N -words and DNA expressions
ε1, . . . , εn, let X = S(E) and for i = 1, . . . , n, let Xi = S+(εi). By definition,

X = ν+(X1)y1ν
+(X2)y2 . . . yn−1ν

+(Xn), (9.4)

where for i = 1, . . . , n−1, yi = △ if R(Xi), L(Xi+1) ∈ A± and yi = λ otherwise.

In the iteration, we consider a ↓-argument Ei. If it is alternating, then E is not
changed, and Property (9.3) is obviously still valid at the end of the iteration.

Now, assume that Ei is not alternating. By (the analogue for ↓-expressions of)
Corollary 8.11, Xi = S(Ei) contains upper nick letters.

In line 18, we substitute Ei by a minimal, nick free DNA expression E ′
i satisfying

E ′
i ≡▽ Ei. Let X

′
i = S(E ′

i). Then X ′
i is nick free and satisfies X ′

i ≡▽ Xi. Hence,
X ′

i = ν(Xi). This is equal to ν+(Xi), because, by Lemma 5.2(1), Xi does not
contain lower nick letters.

By Lemma 5.11, after the substitution of Ei by E ′
i, E is still a DNA expression.

In particular, it is an ↑-expression. Moreover, because ν+(X ′
i) = ν+(ν+(Xi)) =

ν+(Xi), and by Lemma 3.11, L(X ′
i) = L(Xi) and R(X ′

i) = R(Xi), the semantics
of E is the same before and after the substitution (see (9.4)). In particular,
E ≡ E∗

1 after the substitution.

Clearly, because we substitute a minimal expression-argument of E by another
minimal expression-argument, each expression-argument of E is minimal after
the substitution, just like before the substitution.

We conclude that indeed, Property (9.3) is an invariant for the second for-loop.

We zoom in a bit more on the effect of line 18. Here, we substitute a minimal, non-
alternating ↓-argument Ei of E by a minimal, nick free DNA expression E ′

i. If E
′
i is

again a ↓-expression, then by Corollary 8.11, Ei is alternating. This implies that by
every substitution, the number of non-alternating ↓-arguments of E decreases by 1.
After the second for-loop, each (remaining) ↓-argument of E is alternating. When
we add this property to Property (9.3), we obtain

E is an ↑-expression satisfying E ≡ E∗
1 , each expression-argument

of E is minimal and each ↓-argument of E is alternating.
(9.5)

Now, consider an arbitrary inner occurrence ↓1 of ↓ in E. This is either an inner oc-
currence in an expression-argument of E, or the outermost operator of a ↓-argument
of E. If ↓1 is an inner occurrence in an expression-argument of E, then by Prop-
erty (DMin.4) of the (minimal) expression-argument, ↓1 is alternating. If, on the
other hand, ↓1 is the outermost operator of a ↓-argument Ei of E, then by Prop-
erty (9.5), it is also alternating.

Hence, as far as the inner occurrences of ↓ are concerned, E has Property (DMin.4).
However, there may be inner occurrences of ↑ in E that have consecutive expression-
arguments.
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We prove that line 23 of MakeMinimal is well defined and that Property (9.5) is an
invariant for the third for-loop (lines 21–25).

� Clearly, before the first iteration of the for-loop, the property is valid.

� Suppose that Property (9.5) is valid before a certain iteration of the for-loop.
In the iteration, we consider a ↓-argument Ei of E.

By Property (9.5), Ei is minimal and alternating. Then by Property (DMin.6),
either the first argument, or the last argument of Ei (or both) is an N -word α
or an l-expression 〈l α〉 for an N -word α. It is impossible that both arguments
are ↑-arguments.

If neither the first argument, nor the last argument of Ei is an ↑-argument,
then E is not changed. Obviously, in that case, Property (9.5) is still valid at
the end of the iteration.

Now, assume that either the first argument, or the last argument of Ei is an
↑-argument. Because Ei is minimal, it has Properties (DMin.1)–(DMin.6). Then
by Corollary 9.15, there indeed exists a minimal ↑-expression E ′

i satisfying
E ′

i ≡ Ei. In particular, line 23 of MakeMinimal is well defined.

By Lemma 5.11, when we substitute Ei in E by E ′
i, E remains an ↑-expression

with the same semantics. Moreover, after the substitution, each expression-
argument of E is still minimal, and each remaining ↓-argument is the same as
before and thus alternating.

Indeed, Property (9.5) is an invariant for the third for-loop. Clearly, by every substi-
tution in line 23, the number of ↓-arguments of E for which either the first argument
or the last argument is an ↑-expression decreases by 1. After the loop, there are
no such ↓-arguments left. Because the remaining (minimal) ↓-arguments of E have
(a.o.) Properties (DMin.1) and (DMin.2), the following, extended property is valid:

E is an ↑-expression satisfying E ≡ E∗
1 , each expression-argument

of E is minimal, each ↓-argument of E is alternating, and for each
↓-argument of E,

� the first argument is either an N -word α or an l-expression
〈l α〉 for an N -word α, and

� the last argument is either an N -word α or an l-expression
〈l α〉 for an N -word α.

(9.6)

Again, consider an arbitrary inner occurrence ↓1 of ↓ in E. If it is an inner oc-
currence in an expression-argument of E, then by Property (DMin.5) of this (min-
imal) expression-argument, the first argument of ↓1 is either an N -word α or an
l-expression 〈l α〉 for an N -word α, and the last argument of ↓1 is either an N -
word α or an l-expression 〈l α〉 for an N -word α. If, on the other hand, ↓1 is the
outermost operator of an expression-argument of E, then the first argument and the
last argument of ↓1 have the same property by Property (9.6).

Hence, as far as the inner occurrences of ↓ are concerned, E has Property (DMin.5).
However, there may be inner occurrences of ↑ in E, for which either the first argu-
ment, or the last argument (or both) is a ↓-expression. In particular, by Lemma 9.7,
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this is the case for the outermost operator of each ↑-expression E ′
i that we have

substituted for a ↓-argument Ei of E in the third for-loop.

We prove that Property (9.6) is an invariant for the fourth for-loop (lines 26–28).

� Clearly, before the first iteration of the for-loop, the property is valid.

� Suppose that Property (9.6) is valid before a certain iteration of the for-loop.
In the iteration, we substitute an ↑-argument Ei of E by its arguments.

Because E was an ↑-expression before the substitution, by Lemma 5.10, it
is still a DNA expression (and in particular, an ↑-expression) with the same
semantics, after the substitution. The outermost operator ↑ of Ei that we have
skipped, did not really contribute to the semantics of E. Further, because the
expression-arguments of the minimal DNA expression Ei are also minimal, each
expression-argument of E is minimal after the substitution.

Finally, let E ′
j be a new ↓-argument of E after the substitution, i.e., a ↓-

argument that used to be an argument of the ↑-expression Ei we have sub-
stituted. Because Ei is minimal, by Property (DMin.4), its ↓-argument E ′

j is
alternating. Moreover, by Property (DMin.5) of Ei, the first argument of E ′

j is
either an N -word α, or an l-expression 〈l α〉 for an N -word α, and the last
argument of E ′

j is either an N -word α, or an l-expression 〈l α〉 for an N -word
α.

Consequently, each new ↓-argument of E after the substitution has the prop-
erties required by Property (9.6). All other ↓-arguments of E after the sub-
stitution also have these properties, simply because they had them before the
substitution and they have not been changed.

We also zoom in a bit more on the effect of line 27. Here, we substitute a minimal
↑-argument Ei of E by its arguments. By Property (DMin.2) of Ei, none of these
arguments is an ↑-expression. This implies that by every substitution, the number
of ↑-arguments of E decreases by 1. After the fourth for-loop, the ↑-expression E
does not have any ↑-arguments any more.

All occurrences of ↑ in E different from the outermost operator, and all occurrences
of ↓ in E occur in the expression-arguments of E. These expression-arguments
are minimal. Hence, by Property (DMin.2), no occurrence of ↑ in E has an ↑-
argument, and no occurrence of ↓ in E has a ↓-argument. In other words, E itself
has Property (DMin.2).

Earlier in the proof, we deduced from Property (9.3) that E has Property (DMin.1).
As Property (9.3) is implied by Property (9.6), it is still valid and E still has Prop-
erty (DMin.1).

Later, we deduced from Property (9.5) that each inner occurrence of ↓ in E is altern-
ating. Even later, we deduced from Property (9.6) that for each inner occurrence of
↓ in E, the first argument is an N -word α or an l-expression 〈l α〉 for an N -word
α, and the last argument is an N -word α or an l-expression 〈l α〉 for an N -word
α. As both Property (9.5) and Property (9.6) are still valid, the inner occurrences
of ↓ in E still have these properties.

Now, consider an inner occurrence ↑1 of ↑ in E. Because E does not have any
↑-arguments any more, this occurrence of ↑ must be an inner occurrence in an
expression-argument Ei (in fact, in a ↓-argument Ei) of E. This expression-argument
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Ei is minimal. By Property (DMin.4), ↑1 is alternating. By Property (DMin.5), the
first argument of ↑1 is either an N -word α or an l-expression 〈l α〉 for an N -word
α, and the last argument of ↑1 is either an N -word α or an l-expression 〈l α〉 for
an N -word α.

We conclude that E also has Property (DMin.4) and Property (DMin.5).

Note that by Property (DMin.1), Property (DMin.2) and Property (9.5), the argu-
ments of E are N -words α, l-expressions 〈l α〉 for N -words α, and minimal, altern-
ating ↓-expressions. In particular, all arguments of E are nick free.

We finally analyse the if-then-else construction in lines 29–37 of MakeMinimal.
We prove that for every possible case, the resulting string E∗

2 is a minimal DNA
expression satisfying E∗

2 ≡ E∗
1 .

� Assume that E has only one argument, and that this argument is a DNA
expression E1. Then, because E1 is nick free, the outermost operator ↑ of E
has no effect. Hence, in this case, E∗

2 = E1 ≡ 〈↑ E1〉 = E ≡ E∗
1 . Moreover, by

Property (9.3), E∗
2 = E1 is minimal.

� Assume that E has only one argument, and that this argument is an N -word
α1. In this case, E∗

2 = E = 〈↑ α1〉, which is indeed a minimal DNA expression.
Moreover, E∗

2 = E ≡ E∗
1 .

� Assume that E has at least two arguments, that E is alternating and both the
first argument and the last argument of E are ↓-arguments. We must establish
that line 35 of MakeMinimal is well defined.

We first analyse the consequences of E having at least two arguments. Be-
cause the arguments of (the ↑-expression) E fit together by upper strands,
none of these arguments can be a ↓-expression 〈↓ α〉 for an N -word α. By
Property (DMin.2) of E, none of the arguments can be an ↑-expression 〈↑ α〉 for
an N -word α, either. Hence, by Property (DMin.3) of the minimal expression-
arguments of E, each occurrence of ↑ or ↓ in such an argument has at least
two arguments itself. But then each occurrence of ↑ or ↓ in E has at least two
arguments. Hence, in addition to Properties (DMin.1), (DMin.2), (DMin.4) and
(DMin.5), E has Property (DMin.3).

Now by Corollary 9.15, there exists a minimal ↓-expression E ′ satisfying E ′ ≡
E. This implies that line 35 of MakeMinimal is well defined. Clearly, in this
case E∗

2 = E ′ ≡ E ≡ E∗
1 .

� Finally, assume that E has at least two arguments, and that either E is not
alternating, or the first argument of E is not a ↓-argument, or the last argument
of E is not a ↓-argument. Again, because E has at least two arguments, it has
Property (DMin.3).

If the first argument of E is not a ↓-argument, then it is an N -word α or an
l-expression 〈l α〉 for an N -word α. Analogously, if the last argument of E
is not a ↓-argument, then it is an N -word α or an l-expression 〈l α〉 for an
N -word α.

In every case, E has Property (DMin.6). This implies that E∗
2 = E has all

properties from Lemma 8.22, and thus is minimal. Moreover, E∗
2 = E ≡ E∗

1 .
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This completes the proof of Claims 1 and 2.

3. Assume that E∗
1 is an l-expression, and let X = S(E∗

1). By Corollary 5.7, there exist
N -words α1, . . . , αm for some m ≥ 1 and a nick letter y ∈ {▽, △}, such that

X =
(

α1

c(α1)

)
y
(

α2

c(α2)

)
y . . . y

(
αm

c(αm)

)
.

Without loss of generality, assume that y = △.

If m = 1, i.e., if X =
(

α1

c(α1)

)
, then by Theorem 7.5, there is exactly one minimal DNA

expression denoting X. If m ≥ 2, then Lemma 8.18(2) leads us to the same conclusion.
In other words, in both cases, there is exactly one minimal DNA expression E∗

2 sat-
isfying E∗

2 ≡ E∗
1 . Hence, given the l-expression E∗

1 , the resulting DNA expression E∗
2 is

fixed. It is independent of choices made in the procedures MakelExprMinimal, Denickify
and RotateToMinimal.

This completes the proof of Theorem 9.17.

9.1.1 The procedure MakelExprMinimal
Now that we have established the correctness of the global description of the algorithm, we
can start working out the implementation details. In line 9 of MakeMinimal, we have an
l-expression E = 〈l E1〉, for which E1 is a minimal ↑-expression or ↓-expression. We need
a procedure MakelExprMinimal to rewrite E into an equivalent, minimal DNA expression
E ′. In Figure 9.3, we give the pseudo-code of this procedure for the case that E1 is an
↑-expression. The code for a ↓-expression E1 is similar. We address one difference soon.

In the original l-expression E = 〈l E1〉, we first apply ↑ (the outermost operator of
E1) and then l (the outermost operator of E). That is, we first combine the arguments
of E1 into one molecule, and then complement the result. The idea behind the result E ′

of MakelExprMinimal is just the reverse: we first complement the arguments of E1, and
then combine the results into one molecule. Of course, in the first step, we do not have
to complement l-arguments of E1, as these are complemented already.

As we will see in the proof of Theorem 9.20(1), initially each argument of Ê1 = E1 is
either an N -word α1,i or an l-expression 〈l α1,i〉 for an N -word α1,i, or a ↓-expression.
Ê1 does not have ↑-arguments.

In the first for-loop of MakelExprMinimal, we substitute the ↓-arguments E1,i of Ê1

by l-arguments
〈
l αE1,i

〉
. Recall that the N -word αE1,i

is the concatenation of all N -
words (possibly complemented) occurring in E1,i, in the order of their occurrence, see its
definition on page 97. For the moment, it is not important how exactly we determine αE1,i

.
In the proof of Lemma 9.34, where we analyse the time complexity of MakelExprMinimal,
we will describe a straightforward implementation for this.

In the second for-loop of the procedure, we combine N -word-arguments α1,i with
preceding and/or succeeding l-arguments. Indeed, at that point in the procedure, these

are the only types of arguments left. Clearly, if α1,i is the first argument of Ê1, then it is
not preceded by an l-argument 〈l α1,i−1〉 for an N -word α1,i−1. In fact, if we assume that

the N -word-arguments are maximal N -word occurrences in Ê1,
1 then this is the only case

in which α1,i is not preceded by an l-argument 〈l α1,i−1〉. Under the same assumption,
α1,i is not succeeded by an l-argument 〈l α1,i+1〉, if and only if α1,i is the last argument

1This is a very natural assumption, but is not necessary for the correctness of procedure
MakelExprMinimal.
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MlM.1. MakelExprMinimal (E)
// rewrites an l-expression E = 〈l E1〉 whose argument E1

// is a minimal ↑-expression, into a minimal DNA expression E ′

// satisfying E ′ ≡ E;
// for a ↓-expression E1, see the remark before Example 9.18

MlM.2. {
MlM.3. Ê1 = E1;

MlM.4. for all ↓-arguments E1,i of Ê1 (in some order)

MlM.5. do substitute E1,i in Ê1 by
〈
l αE1,i

〉
;

MlM.6. od

// arguments of Ê1 are N-words α1,i and l-expressions 〈l α1,i〉
MlM.7. for all N-word-arguments α1,i of Ê1 (in some order)
MlM.8. do if (α1,i is preceded by an argument 〈l α1,i−1〉)
MlM.9. then if (α1,i is succeeded by an argument 〈l α1,i+1〉)
MlM.10. then substitute 〈l α1,i−1〉α1,i 〈l α1,i+1〉 in Ê1

by 〈l α1,i−1α1,iα1,i+1〉;
MlM.11. else substitute 〈l α1,i−1〉α1,i in Ê1 by 〈l α1,i−1α1,i〉;
MlM.12. fi
MlM.13. else if (α1,i is succeeded by an argument 〈l α1,i+1〉)
MlM.14. then substitute α1,i 〈l α1,i+1〉 in Ê1 by 〈l α1,iα1,i+1〉;
MlM.15. else substitute α1,i in Ê1 by 〈l α1,i〉;
MlM.16. fi
MlM.17. fi
MlM.18. od

// Ê1 = 〈↑ 〈l α1,1〉 . . . 〈l α1,m〉〉 for some m ≥ 1
// and N-words α1,1, . . . , α1,m

MlM.19. if (m == 1)

MlM.20. then substitute Ê1 by 〈l α1,1〉; (DMin.3)
MlM.21. fi

MlM.22. E ′ = Ê1;
MlM.23. }

Figure 9.3: Pseudo-code of the procedure MakelExprMinimal.

of Ê1. Note that in all four cases considered in this loop, the required substitution can
simply be achieved by a few insertions and/or removals of brackets and operators in the
DNA expression.

After the second for-loop, each argument of Ê1 is an l-argument 〈l α1,i〉 for an N -word

α1,i. As we will see in the proof of Theorem 9.20(1), at that point, Ê1 is equivalent to the
original l-expression E. However, it is not necessarily minimal.

If Ê1 = 〈↑ 〈l α1,1〉〉 for an N -word α1,1, then it violates Property (DMin.3). It is not
hard to prove that this will be the case, if and only if the original, minimal ↑-expression
E1 is alternating, i.e., nick free. According to line MlM.20, in this case, we substitute Ê1

by its only argument. If on the other hand Ê1 = 〈↑ 〈l α1,1〉 . . . 〈l α1,m〉〉 for some m ≥ 2,
then it is minimal already (see Lemma 8.18(2)) and we can skip line MlM.20.

If E1 is not an ↑-expression, but a ↓-expression, then lines MlM.8–MlM.17 are a bit
different. In all four cases, the new l-argument does not have α1,i as (part of) its own argu-
ment but c(α1,i). For example, if the N -word-argument α1,i is preceded by an l-argument
〈l α1,i−1〉 and succeeded by an l-argument 〈l α1,i+1〉, then 〈l α1,i−1〉α1,i 〈l α1,i+1〉 must
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be substituted by 〈l α1,i−1c(α1,i)α1,i+1〉.
We illustrate procedure MakelExprMinimal by two examples:

Example 9.18 (cf. Example 9.2) Let

E = 〈l 〈↑ α1 〈l α2〉α3 〈↓ 〈l α4〉α5〉〉〉 .

E is an l-expression, for which

S(E) =
(
α1α2α3α4c(α5)
c(α1α2α3α4)α5

)
.

The argument E1 of E is a minimal, alternating ↑-expression. E1 itself has one ↓-argument,
E1,4 = 〈↓ 〈l α4〉α5〉. In line MlM.5, we substitute it by

〈
l αE1,4

〉
= 〈l α4c(α5)〉, yielding

Ê1 = 〈↑ α1 〈l α2〉α3 〈l α4c(α5)〉〉 .

Subsequently, in lines MlM.7–MlM.18, we substitute the two N -word-arguments α1 and

α3 of Ê1 (in some order). For both possible orders, the result is

Ê1 = 〈↑ 〈l α1α2α3α4c(α5)〉〉 .

Ê1 hasm = 1 argument left, which is an l-argument. Hence, it violates Property (DMin.3).
According to line MlM.20, E ′ is set to this l-argument: E ′ = 〈l α1α2α3α4c(α5)〉. By
Theorem 7.5, E ′ is the only minimal DNA expression with S(E ′) = S(E), i.e., with
E ′ ≡ E.

Example 9.19 (cf. Example 9.3) Let

E = 〈l 〈↓ 〈l α1α2α3α4c(α5)〉 〈l α6〉α7〉〉 .

E is an l-expression, for which

S(E) =
(
α1α2α3α4c(α5)
c(α1α2α3α4)α5

)
▽
(
α6c(α7)
c(α6)α7

)
.

The argument E1 of E is a minimal, non-alternating ↓-expression. E1 does not have
↑-arguments, but it does have an N -word-argument α7. In line MlM.11, we substitute
〈l α6〉α7 by 〈l α6c(α7)〉, yielding

Ê1 = 〈↓ 〈l α1α2α3α4c(α5)〉 〈l α6c(α7)〉〉 .

This time, Ê1 has m = 2 arguments left. Hence, E ′ = Ê1. By (the analogue for upper nick
letters of) Lemma 8.18(2), E ′ is the only minimal DNA expression with S(E ′) = S(E),
i.e., with E ′ ≡ E.

We prove that procedure MakelExprMinimal is correct, not only for the two examples we
considered, but for any l-expression E with a minimal ↑-argument (or ↓-argument) E1.

Theorem 9.20 Let E = 〈l E1〉 be an l-expression whose argument E1 is a minimal
↑-expression, and let E ′ be the result of applying procedure MakelExprMinimal to E.

1. The string E ′ is a minimal DNA expression satisfying E ′ ≡ E.
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2. There exists exactly one minimal DNA expression that is equivalent to E. In par-
ticular, E ′ is independent of the order in which ↓-arguments are considered in
line MlM.4 and independent of the order in which N -word-arguments are considered
in line MlM.7.

Proof:

1. E1 is a minimal ↑-expression. By Corollary 8.2, each argument of E1 is either an
N -word α1,i, or an l-expression 〈l α1,i〉 for an N -word α1,i, or a ↓-expression E1,i.

We prove that the following property of our ‘working DNA expression’ Ê1 is an
invariant for the first for-loop:

Ê1 is a minimal ↑-expression satisfying
〈
l Ê1

〉
≡ E. (9.7)

• Initially, before the first iteration of the for-loop, the property is valid, because

then Ê1 = E1 and thus
〈
l Ê1

〉
= 〈l E1〉 = E.

• Suppose that Property (9.7) is valid before a certain iteration of the for-loop.

Let Ê1 = 〈↑1 ε1,1, . . . , ε1,n〉 for some n ≥ 1 and N -words and DNA expressions
ε1,1, . . . , ε1,n, before the iteration.

In the iteration, we substitute a ↓-argument ε1,i0 = E1,i0 of Ê1 by the l-
expression

〈
l αE1,i0

〉
. By Lemma 4.13(2), L(S(

〈
l αE1,i0

〉
)), R(S(

〈
l αE1,i0

〉
)) ∈

A±. In particular, the upper strand of the new argument covers the lower
strand both to the left and to the right. Because the arguments of ↑1 fitted
together by upper strands before the substitution, they certainly do so after
the substitution. Hence, Ê1 is still a DNA expression after the substitution. In
particular, it is an ↑-expression.
By Theorem 8.26, Ê1 has Properties (DMin.1)–(DMin.6) before the substitution.

It is easily verified that Ê1 still has these properties, and thus is minimal, after
the substitution.

We now consider the semantics of
〈
l Ê1

〉
. In order for the invariant to be

valid, this semantics must be the same before and after the substitution.

For i = 1, . . . , n, let X1,i = S+(ε1,i). By the definition of the semantics of an
l-expression and Lemma 8.7, before the substitution,

S(
〈
l Ê1

〉
) = κ(X1,1 y1 X1,2 y2 . . . yi0−2 X1,i0−1 yi0−1·

S(E1,i0) yi0 X1,i0+1 yi0+1 . . . yn−1 X1,n)
= κ(X1,1) y1 κ(X1,2) y2 . . . yi0−2 κ(X1,i0−1) yi0−1·

κ(S(E1,i0)) yi0 κ(X1,i0+1) yi0+1 . . . yn−1 κ(X1,n),

where for i = 1, . . . , n−1, yi = △ if both ε1,i and ε1,i+1 are expression-arguments,
and yi = λ otherwise.

After the substitution of E1,i0 by
〈
l αE1,i0

〉
,

S(
〈
l Ê1

〉
) = κ(X1,1 y1 X1,2 y2 . . . yi0−2 X1,i0−1 y′i0−1·

S(
〈
l αE1,i0

〉
) y′i0 X1,i0+1 yi0+1 . . . yn−1 X1,n)

= κ(X1,1) y1 κ(X1,2) y2 . . . yi0−2 κ(X1,i0−1) y
′
i0−1·( αE1,i0

c(αE1,i0
)

)
y′i0 κ(X1,i0+1) yi0+1 . . . yn−1 κ(X1,n),
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where the yi’s are as before, and

y′i0−1 =





△ if both ε1,i0−1 and
〈
l αE1,i0

〉

are expression-arguments
λ otherwise,

y′i0 =





△ if both
〈
l αE1,i0

〉
and ε1,i0+1

are expression-arguments
λ otherwise.

We must prove that

yi0−1 κ(S(E1,i0)) yi0 = y′i0−1

( αE1,i0

c(αE1,i0
)

)
y′i0 . (9.8)

Note that if i0 = 1, then yi0−1 and y′i0−1 do not exist, and we have less to check.
Analogously, if i0 = n, then yi0 and y′i0 do not exist, and we have less to check.

Now assume that i0 ≥ 2. Because clearly, the ↓-argument E1,i0 is an expression-
argument, yi0−1 = △, if and only if ε1,i0−1 is an expression-argument. Similarly,
the l-argument

〈
l αE1,i0

〉
is an expression-argument and y′i0−1 = △, if and only

if ε1,i0−1 is an expression-argument. This implies that yi0−1 = y′i0−1.

Analogously, we can prove that if i0 ≤ n− 1, then yi0 = y′i0 .

Finally, by definition, κ(S(E1,i0)) is equal to S(〈l E1,i0〉). We can apply Lemma
5.22 to the l-expression 〈l E1,i0〉:

〈l E1,i0〉 ▽≡
〈
l α〈lE1,i0〉

〉
.

Because, by Lemma 8.4, E1,i0 is nick free, 〈l E1,i0〉 is also nick free and we have
(strict) equivalence here. Clearly, the N -words occurring in 〈l E1,i0〉 and the
ones occurring in E1,i0 are the same, and so are their parent operators. This
implies that α〈lE1,i0〉 = αE1,i0

. When we combine all ingredients, we find

κ(S(E1,i0)) = S(〈l E1,i0〉) = S(
〈
l α〈lE1,i0〉

〉
)

= S(
〈
l αE1,i0

〉
) =
( αE1,i0

c(αE1,i0
)

)

Indeed, Equality (9.8) holds.

We conclude that Property (9.7) is indeed an invariant for the first for-loop. Clearly,

in every iteration of this loop, the number of ↓-arguments of Ê1 decreases by 1.

After the last iteration of the first for-loop, there are no ↓-arguments

left. By then, Ê1 is a minimal ↑-expression satisfying
〈
l Ê1

〉
≡ E, and

each argument of Ê1 is either an N -word α1,i or an l-expression 〈l α1,i〉 for
an N -word α1,i. Hence, the comment after line MlM.6 in Figure 9.3 is correct.

We prove that a relaxed version of this property, by which Ê1 is not necessarily
minimal, is an invariant for the second for-loop of the procedure:

Ê1 is an ↑-expression satisfying
〈
l Ê1

〉
≡ E, and each argument

of Ê1 is either an N -word α1,i or an l-expression 〈l α1,i〉 for an
N -word α1,i.

(9.9)
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It is easily verified that an ↑-expression E, for which each argument is either an
N -word α1,i, or an l-expression 〈l α1,i〉 for an N -word α1,i has Properties (DMin.1),
(DMin.2), (DMin.4), (DMin.5) and (DMin.6). Hence, E is not minimal, if and only if
it violates Property (DMin.3). This is the case, if and only if E = 〈↑ 〈l α1,1〉〉 for
an N -word α1,1. This case is dealt with after the second for-loop, in lines MlM.19–
MlM.21.

A minimal DNA expression is in particular operator-minimal and a DNA expression
of the form 〈↑ 〈l α1,1〉〉 is also operator-minimal. Hence, whether or not our ‘working

DNA expression’ Ê1 is minimal, it is certainly operator-minimal.

As long as Ê1 has N -word-arguments, it cannot be of the form 〈↑ 〈l α1,1〉〉 for an

N -word α1,1. This implies that before any iteration of the second for-loop, Ê1 is
minimal, after all.

The global structure of the proof that Property (9.9) is an invariant for the second
for-loop, is the same as that of the proof of Property (9.7) for the first for-loop.
Because the details are different, especially the ones involved with the semantics of〈
l Ê1

〉
, we give the full proof.

• Clearly, Property (9.9) is valid before the first iteration of the second for-loop.

• Suppose that Property (9.9) is valid before a certain iteration of the for-loop.

Let Ê1 = 〈↑1 ε1,1 . . . ε1,n〉 for some n ≥ 1 and N -words and l-expressions
ε1,1, . . . , ε1,n, before the iteration. Each l-expression is of the form 〈l α1,i〉
for an N -word α1,i.

In the iteration, we substitute an N -word-argument ε1,i0 = α1,i0 and possibly a

preceding l-argument and a succeeding l-argument of Ê1 by a new l-argument

〈l α〉. Again, because L(S(〈l α〉)), R(S(〈l α〉)) ∈ A± and the arguments of Ê1

fitted together before the substitution, they certainly fit together after the sub-
stitution. Hence, Ê1 is indeed an ↑-expression after the substitution. Moreover,
because the new argument is 〈l α〉, the arguments of Ê1 are still of the types oc-

curring in Property (9.9). As we discussed above, Ê1 is still operator-minimal.

The only thing left to be verified is that the semantics of
〈
l Ê1

〉
does not

change by the substitution. We assume that the N -word-argument ε1,i0 = α1,i0

of Ê1 is both preceded by an l-argument ε1,i0−1 = 〈l α1,i0−1〉 and succeeded by
an l-argument ε1,i0+1 = 〈l α1,i0+1〉. If α1,i0 is a maximal N -word occurrence in

Ê1, then this is the case, if and only if 2 ≤ i0 ≤ n − 1. The other three cases
in lines MlM.8–MlM.17 can be checked in a similar way.

For i = 1, . . . , n, let X1,i = S+(ε1,i). Before the substitution,

S(
〈
l Ê1

〉
) = κ(X1,1 y1 X1,2 y2 . . . yi0−2 S(〈l α1,i0−1〉) yi0−1·

S+(α1,i0) yi0 S(〈l α1,i0+1〉) yi0+1 . . . yn−1 X1,n)

= κ(X1,1) y1 κ(X1,2) y2 . . . yi0−2

( α1,i0−1

c(α1,i0−1)

)
yi0−1·( α1,i0

c(α1,i0)

)
yi0
( α1,i0+1

c(α1,i0+1)

)
yi0+1 . . . yn−1 κ(X1,n),

where for i = 1, . . . , n−1, yi = △ if both ε1,i and ε1,i+1 are expression-arguments,
and yi = λ otherwise.
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After the substitution of 〈l α1,i0−1〉α1,i0 〈l α1,i0+1〉 by 〈l α1,i0−1α1,i0α1,i0+1〉,

S(
〈
l Ê1

〉
) = κ(X1,1 y1 X1,2 y2 . . . y′i0−2·

S(〈l α1,i0−1α1,i0α1,i0+1〉) y′i0+1 . . . yn−1 X1,n)
= κ(X1,1) y1 κ(X1,2) y2 . . . y′i0−2·( α1,i0−1α1,i0α1,i0+1

c(α1,i0−1α1,i0α1,i0+1)

)
y′i0+1 . . . yn−1 κ(X1,n),

where the yi’s are as before, and

y′i0−2 =





△ if both ε1,i0−2 and 〈l α1,i0−1α1,i0α1,i0+1〉
are expression-arguments

λ otherwise,

y′i0+1 =





△ if both 〈l α1,i0−1α1,i0α1,i0+1〉 and ε1,i0+2

are expression-arguments
λ otherwise.

We must prove that

yi0−2

( α1,i0−1

c(α1,i0−1)

)
yi0−1

( α1,i0

c(α1,i0)

)
yi0
( α1,i0+1

c(α1,i0+1)

)
yi0+1

= y′i0−2

( α1,i0−1α1,i0α1,i0+1

c(α1,i0−1α1,i0α1,i0+1)

)
y′i0+1.

(9.10)

Clearly, if i0 − 1 = 1, then neither yi0−2, nor y
′
i0−2 exists, and we have less to

check. Analogously, if i0 + 1 = n, then neither yi0+1, nor y
′
i0+1 exists, and we

have less to check. We now assume that 2 ≤ i0 − 1 and i0 + 1 ≤ n− 1.

Because ε1,i0−1 = 〈l α1,i0−1〉 is an expression-argument, ε1,i0 = α1,i0 is an N -
word-argument, and ε1,i0+1 = 〈l α1,i0+1〉 is again an expression-argument, we
have

yi0−2 = △, if and only if ε1,i0−2 is an expression-argument
yi0−1 = yi0 = λ, and
yi0+1 = △, if and only if ε1,i0+2 is an expression-argument.

On the other hand, because obviously 〈l α1,i0−1α1,i0α1,i0+1〉 is an expression-
argument, we have

y′i0−2 = △, if and only if ε1,i0−2 is an expression-argument
y′i0+1 = △, if and only if ε1,i0+2 is an expression-argument.

This implies that

yi0−2 = y′i0−2,( α1,i0−1

c(α1,i0−1)

)
yi0−1

( α1,i0

c(α1,i0)

)
yi0
( α1,i0+1

c(α1,i0+1)

)
=
( α1,i0−1α1,i0α1,i0+1

c(α1,i0−1α1,i0α1,i0+1)

)
, and

yi0+1 = y′i0+1.

Indeed, Equality (9.10) holds, and S(
〈
l Ê1

〉
) is the same before and after the

substitution.

We conclude that Property (9.9) is indeed an invariant for the second for-loop of
procedure MakelExprMinimal. Clearly, in every iteration of this loop, the number

of N -word-arguments of Ê1 decreases by 1.

After the last iteration of the second for-loop, there are no N -word-
arguments left. By then, each argument of Ê1 is an l-expression 〈l α1,i〉
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for an N -word α1,i. Hence, there exist m ≥ 1 and N -words α1,1, . . . , α1,m

such that Ê1 = 〈↑ 〈l α1,1〉 . . . 〈l α1,m〉〉. Indeed, the comment after line MlM.18 in
Figure 9.3 is correct.

Moreover, by the invariant, Ê1 satisfies
〈
l Ê1

〉
≡ E. Because S(Ê1) = S(〈↑ 〈l α1,1〉

. . . 〈l α1,m〉〉) does not contain single-stranded components, the outermost operator

l in
〈
l Ê1

〉
has no effect. This implies that Ê1 ≡

〈
l Ê1

〉
≡ E.

We finally examine the if statement in lines MlM.19–MlM.21. If m = 1, then

Ê1 = 〈↑ 〈l α1,1〉〉. In this case, the outermost operator ↑ has no effect, either.

Hence, E ′ = 〈l α1,1〉 ≡ Ê1 ≡ E. Indeed, E ′ is a minimal DNA expression.

After the formulation of Property (9.9), we deduced that a DNA expression Ê1 with
that property, which is not of the form 〈↑ 〈l α1,1〉〉 for an N -word α1,1 is minimal.

If m ≥ 2, then obviously Ê1 is not of this form. Hence, in this case, E ′ = Ê1 is
minimal. Moreover, E ′ = Ê1 ≡ E.

2. In the proof of the previous claim, we did not make any assumption on the order
in which ↓-arguments and N -word-arguments of Ê1 are considered in lines MlM.4
and MlM.7, respectively. For all possible orders, E ′ is a minimal DNA expression
satisfying E ′ ≡ E = 〈l E1〉.
By Theorem 9.17(3), there exists exactly one such DNA expression E ′ (regardless
of the minimality of E1). Then certainly, E ′ must be independent of the orders in
which ↓-arguments and N -word-arguments are considered.

This completes the proof of Theorem 9.20.

9.1.2 The procedure Denickify

The next instruction from MakeMinimal we refine is the one in line 18. In Figure 9.4 we
describe procedure Denickify. Line Dni.24 of this description will be implemented by
the same procedure RotateToMinimal that we use for lines 23 and 35 of MakeMinimal.
Again, all substitutions can be achieved by a few insertions and removals of brackets and
operators in the DNA expression.

In Lemma 8.7, we have related the presence of consecutive expression-arguments in an
operator-minimal ↑-expression E to the presence of nicks in its semantics S(E). In order to
understand the effect of the while-loop in procedure Denickify (which is meant to remove
nicks), it is useful to establish such a relation for a more general set of ↑-expressions.

Lemma 9.21 Let E = 〈↑ ε1 . . . εn〉, where n ≥ 1 and ε1, . . . , εn are maximal N -word
occurrences and DNA expressions, be an ↑-expression denoting a certain formal DNA
molecule X. For i = 1, . . . , n, let Xi = S+(εi).

If E has Properties (DMin.2), (DMin.4) and (DMin.5), then for i = 1, . . . , n, Xi is nick
free, and

X = X1y1X2y2 . . . yn−1Xn,

where for i = 1, . . . , n− 1, yi = △ if R(Xi), L(Xi+1) ∈ A±, and yi = λ otherwise.
Here, for i = 1, . . . , n − 1, R(Xi), L(Xi+1) ∈ A±, if and only if both εi and εi+1

are expression-arguments. In particular, in this case, E is nick free, if and only if E is
alternating.
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Dni.1. Denickify (Ei)
// rewrites a minimal ↓-expression Ei which is not alternating,
// into a minimal, nick free DNA expression E ′

i

// satisfying E ′
i ≡▽ Ei;

// uses local rearrangements of the DNA expression for this
Dni.2. {
Dni.3. Êi = Ei;

Dni.4. while (Êi is not alternating)
Dni.5. do select two consecutive expression-arguments

ε̂j−1 and ε̂j of Êi;
Dni.6. if (ε̂j−1 is an ↑-expression

〈
↑ . . .

〈
l αj−1,mj−1

〉〉
)

Dni.7. then if (ε̂j is an ↑-expression 〈↑ 〈l αj,1〉 . . .〉)
Dni.8. then substitute ε̂j−1ε̂j in Êi

by
〈
↑ . . .

〈
l αj−1,mj−1

αj,1

〉
. . .
〉
;

Dni.9. else // ε̂j is an l-expression 〈l αj,1〉
Dni.10. substitute ε̂j−1ε̂j in Êi

by
〈
↑ . . .

〈
l αj−1,mj−1

αj,1

〉〉
;

Dni.11. fi
Dni.12. else // ε̂j−1 is an l-expression 〈l αj−1,1〉
Dni.13. if (ε̂j is an ↑-expression 〈↑ 〈l αj,1〉 . . .〉)
Dni.14. then substitute ε̂j−1ε̂j in Êi

by 〈↑ 〈l αj−1,1αj,1〉 . . .〉;
Dni.15. else // ε̂j is an l-expression 〈l αj,1〉
Dni.16. substitute ε̂j−1ε̂j in Êi

by 〈l αj−1,1αj,1〉;
Dni.17. fi
Dni.18. fi
Dni.19. od

// Êi is alternating

Dni.20. if (Êi has only one argument Ei,1 left)

Dni.21. then substitute Êi by Ei,1; (DMin.3)

Dni.22. else // Êi has at least two arguments

Dni.23. if (both the first argument and the last argument of Êi

are ↑-arguments)
Dni.24. then substitute Êi by a minimal ↑-expression Ê ′

i

satisfying Ê ′
i ≡ Êi; (proc. RotateToMinimal) (DMin.6)

Dni.25. fi
Dni.26. fi

Dni.27. E ′
i = Êi;

Dni.28. }

Figure 9.4: Pseudo-code of the procedure Denickify.

Of course, there is an analogous result for ↓-expressions. The proof of this result is similar
to that of Lemma 8.7. At several places in the proof, however, we have to use different
arguments to conclude that a certain property is valid. For the sake of clearness, we give
the full proof.

Proof: Assume that E has Properties (DMin.2), (DMin.4) and (DMin.5). By the definition
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of the semantics of an ↑-expression (equation (4.2)),

X = ν+(X1)y1ν
+(X2)y2 . . . yn−1ν

+(Xn),

where for i = 1, . . . , n − 1, yi = △ if R(Xi), L(Xi+1) ∈ A±, and yi = λ otherwise. By
Property (DMin.4), each occurrence of an operator ↑ or ↓ in an argument εi of E is
alternating. Hence, by Lemma 5.8, for i = 1, . . . , n, Xi = S+(εi) is nick free, and in
particular, ν+(Xi) = Xi. We can thus reduce the semantics to

X = X1y1X2y2 . . . yn−1Xn,

with yi’s as before. This is the first part of the claim.

Next, consider any i with 1 ≤ i ≤ n− 1. By Property (DMin.2), εi is either an N -word
α, or an l-expression, or a ↓-expression.

If εi is an N -word α, then Xi = S+(εi) =
(
α
−
)
and R(Xi) /∈ A±.

If εi an l-expression, then by Lemma 4.13(2), R(Xi) = R(S(εi)) ∈ A±.

Finally, if εi is a ↓-expression, then by Property (DMin.5), the last argument of εi is
either an N -word α, or an l-expression 〈l α〉 for an N -word α. If it were an N -word
α, then by Lemma 4.13(4), R(Xi) = R(S(εi)) = R(S−(α)) ∈ A−. In that case, the
arguments εi and εi+1 would not fit together by upper strands, as is required by the
outermost operator ↑ of E. Hence, the last argument of εi must be an l-expression 〈l α〉
for an N -word α. By Lemma 4.13(4), R(Xi) = R(S(εi)) = R(S(〈l α〉)) ∈ A±.

We conclude that R(Xi) ∈ A±, if and only if εi is an expression-argument. Analog-
ously, we find that L(Xi+1) ∈ A±, if and only if εi+1 is an expression-argument. Con-
sequently, R(Xi), L(Xi+1) ∈ A±, if and only if both εi and εi+1 are expression-arguments.

In the while-loop of procedure Denickify, the ‘working DNA expression’ Êi is a ↓-
expression. Moreover, as we will see in the proof of Theorem 9.24, it then has (among
others) Properties (DMin.2), (DMin.4) and (DMin.5). Hence, the outermost operator ↓ in-
troduces a nick letter between every pair of consecutive expression-arguments, and these
are the only nick letters in S(Êi).

In every iteration of the while-loop, two consecutive expression-arguments of Êi are
substituted by a single expression-argument. In other words, in every iteration, one nick
letter is removed from S(Êi). Step by step, Êi becomes nick free.2 As we will see in
(the proof of) Theorem 9.24(3), the result of the while-loop is independent of the order
in which we select pairs of consecutive expression-arguments.

After the while-loop, Êi is nick free, but it is not necessarily minimal any more. The
if-then-else construction at the end of the procedure ensures that the DNA expression E ′

i

resulting from the procedure is not only nick free, but also minimal. Lines Dni.21 and
Dni.24 tackle violations of Properties (DMin.3) and (DMin.6), respectively.

We illustrate procedure Denickify by two examples. In the first example, Êi is not
minimal after the while-loop, and the DNA expression is modified by the if-then-else
construction. In the second example, Êi is still minimal after the while-loop. Hence, it
does not have to be modified any further.

2We could have reached this conclusion also using Lemma 8.7 instead of Lemma 9.21. For that,
however, we would have to prove that Êi is operator-minimal in the while-loop. It is possible to do that,
but it is more elegant to use Lemma 9.21.
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Example 9.22 (cf. Example 9.3) Let

Ei = 〈↓ 〈l α1α2α3α4c(α5)〉 〈l α6c(α7)〉〉 ,

for which

S(Ei) =
(
α1α2α3α4c(α5)
c(α1α2α3α4)α5

)
▽
(
α6c(α7)
c(α6)α7

)
.

Ei is minimal and not nick free. Its two arguments are expression-arguments. For this
DNA expression, the while-loop has only one iteration, in which the two expression-
arguments are merged according to line Dni.16. The result is:

Êi = 〈↓ 〈l α1α2α3α4c(α5)α6c(α7)〉〉 .

Indeed Êi is nick free, but it is not minimal. It violates Property (DMin.3), as the outermost
operator ↓ has only one argument Ei,1. In this case, line Dni.21 of the procedure is
applicable, and the result of the procedure is

E ′
i = Ei,1 = 〈l α1α2α3α4c(α5)α6c(α7)〉 .

Clearly, E ′
i satisfies E

′
i ≡▽ Ei. Moreover, by Theorem 7.5, E ′

i is minimal.

Example 9.23 (cf. Example 9.8) Let

Ei =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈l α8α9〉 α10 〈↓ 〈l α11〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈l α17〉〉 α18 〈l α19〉 〈l α20〉

〉
,

for which

S(Ei) =
(
α1α2α3α4c(α5)α6c(α7)
c(α1α2α3α4)α5c(α6)α7

)
△

(
α8α9

c(α8α9)

)(
α10

−
)(

α11

c(α11)

)( −
α12

)
·

(
α13

c(α13)

)
△

(
α14

c(α14)

)
△

(
α15

c(α15)

)( −
α16

)(
α17

c(α17)

)(
α18

−
)(

α19

c(α19)

)
△

(
α20

c(α20)

)
.

Ei is minimal and not nick free. It has seven expression-arguments, clustered in three
groups of consecutive expression-arguments, which are separated by theN -word-arguments
α10 and α18. There are four pairs of consecutive expression-arguments. Hence, the while-
loop has four iterations. If in each iteration, we consider the leftmost (remaining) pair of
consecutive expression-arguments ε̂j−1 and ε̂j, then we successively get

Êi =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈l α17〉〉 α18 〈l α19〉 〈l α20〉

〉

(by applying line Dni.16),

Êi =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14〉〉
〈↓ 〈l α15〉α16 〈l α17〉〉 α18 〈l α19〉 〈l α20〉

〉

(by applying line Dni.10),

Êi =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18 〈l α19〉 〈l α20〉
〉
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(by applying line Dni.8), and

Êi =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18 〈l α19α20〉
〉

(by applying line Dni.16 again). The final version of Êi would have been achieved also if
we had considered consecutive expression-arguments in a different order.

Êi is nick free now. It has more than one argument left and neither its first argument,
nor its last argument is a ↓-argument. Hence, the if-then-else construction at the end of
Denickify leaves Êi unchanged, and E ′

i = Êi. We have

S(E ′
i) =

(
α1α2α3α4c(α5)α6c(α7)α8α9

c(α1α2α3α4)α5c(α6)α7c(α8α9)

)(
α10

−
)(

α11

c(α11)

)( −
α12

)
·

(
α13α14α15

c(α13α14α15)

)( −
α16

)(
α17

c(α17)

)(
α18

−
)(

α19α20

c(α19α20)

)
.

Indeed, E ′
i ≡▽ Ei. Moreover, it is easily verified that E ′

i has all six properties from
Lemma 8.22 and thus is minimal.

We have seen two examples for which procedure Denickify works well. We now prove
that the procedure is correct in general.

Theorem 9.24 Let Ei be a minimal ↓-expression which is not alternating, and let E ′
i be

the result of applying procedure Denickify to Ei.

1. Procedure Denickify is well defined.

2. The string E ′
i is a minimal, nick free DNA expression satisfying E ′

i ≡▽ Ei.

3. E ′
i is independent of the order in which pairs of consecutive expression-arguments

ε̂j−1 and ε̂j are selected in line Dni.5.

Proof: The only instruction in procedure Denickify that is not obviously well defined,
is the one in line Dni.24. This instruction presupposes the existence of a minimal ↑-
expression Ê ′

i satisfying Ê ′
i ≡ Êi.

The proof that such an ↑-expression indeed exists uses some properties of Êi which
emerge in the proof of Claim 2. Therefore, we combine the proofs of Claims 1 and 2.

1, 2. We first analyse the while-loop of procedure Denickify. We prove that the
following property is an invariant of the loop:

Êi is a ↓-expression satisfying Êi ≡▽ Ei, Êi has at least one
expression-argument, has Properties (DMin.1), (DMin.2), (DMin.4)

and (DMin.5), and each inner occurrence of ↑ or ↓ in Êi has at least
two arguments.

(9.11)

Before we proceed with the proof, we mention two implications of this property.
Suppose that the property is valid. Then let ε̂j be an arbitrary expression-argument

of Êi. Clearly, ε̂j also has Properties (DMin.1), (DMin.2), (DMin.4) and (DMin.5).

Moreover, each occurrence of ↑ or ↓ in ε̂j is an inner occurrence in Êi and thus has at
least two arguments. Hence, ε̂j has Property (DMin.3). Finally, by Property (DMin.5)

of Êi, ε̂j has Property (DMin.6). This implies that ε̂j has all six properties from
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Lemma 8.22, and thus is minimal. By Property (DMin.4) and Lemma 5.8, ε̂j is nick
free.

Suppose that in addition, Êi is not alternating, i.e., that it has at least two consecut-
ive expression-arguments. Then by definition, Êi has Property (DMin.6). Moreover,

the total number of arguments of (the outermost operator ↓ of) Êi is certainly at

least two. This implies that Êi also has Property (DMin.3). Consequently, in this

case, Êi itself is also minimal.

We now prove Property (9.11):

• Initially, before the first iteration of the while-loop, Êi is equal to the min-
imal ↓-expression Ei. Then obviously, Êi ≡▽ Ei, and by Lemma 8.22, Êi has
Properties (DMin.1)–(DMin.6). In particular, by Lemma 8.27(2), each inner oc-

currence of ↑ or ↓ in Êi has at least two arguments. Finally, because Êi = Ei is
not alternating, it has at least two (consecutive) expression-arguments. Hence,
Property (9.11) is valid.

• Suppose that before a certain operation of the while-loop, Property (9.11) is

valid. Let Êi = 〈↓ ε̂1 . . . ε̂n〉 for some n ≥ 1 and N -words and DNA expressions
ε̂1, . . . , ε̂n.

Êi is not alternating at the start of the iteration. Hence, as we have just ob-
served, Êi is minimal. In the iteration, we substitute two consecutive expression-
arguments ε̂j−1 and ε̂j of Êi by a single expression-argument ε̂′j. By Corol-

lary 8.2, each expression-argument of Êi is either an l-expression 〈l α〉 for an
N -word α, or an ↑-expression. Hence, there are four possible combinations for
the pair of expression-arguments ε̂j−1 and ε̂j. We now assume that both ε̂j−1

and ε̂j are ↑-expressions. The proof for the other three possibilities is similar
(and in fact easier).

In order to prove that after the iteration Êi is still a ↓-expression satisfying
Êi ≡▽ Ei, we could write out the complete semantics of Êi before and after
the iteration. This would, however, give very long formulas. To avoid this, we
will introduce a DNA subexpression 〈↓ ε̂j−1ε̂j〉.
Let ε̂j−1 =

〈
↑ ε̂j−1,1 . . . ε̂j−1,mj−1

〉
and ε̂j =

〈
↑ ε̂j,1 . . . ε̂j,mj

〉
for somemj−1,mj ≥

1 and N -words and DNA expressions ε̂j−1,1, . . . , ε̂j−1,mj−1
and ε̂j,1, . . . , ε̂j,mj

.
In fact, by Property (9.11), mj−1,mj ≥ 2. By Property (DMin.5), the first
argument ε̂j−1,1 of ε̂j−1 is either an N -word α or an l-expression 〈l α〉 for an
N -word α. The same goes for the last argument ε̂j,mj

of ε̂j. By Lemma 8.27(5),
the last argument ε̂j−1,mj−1

of ε̂j−1 is an l-expression
〈
l αj−1,mj−1

〉
for an N -

word αj−1,mj−1
, and the first argument ε̂j,1 of ε̂j is an l-expression 〈l αj,1〉 for

an N -word αj,1. Indeed, ε̂j−1 and ε̂j satisfy the description of the ↑-arguments

in lines Dni.6 and Dni.7 of procedure Denickify. By Property (DMin.4) of Êi,
both ε̂j−1 and ε̂j are alternating.

As we argued after the formulation of Property (9.11), the ↑-arguments ε̂j−1

and ε̂j of Êi are minimal and nick free. Hence, by Corollary 8.10,

S(ε̂j−1) = S+(ε̂j−1,1) . . .S+(ε̂j−1,mj−1−1)
( αj−1,mj−1

c(αj−1,mj−1
)

)
,

S(ε̂j) =
( αj,1

c(αj,1)

)
S+(ε̂j,2) . . .S+(ε̂j,mj

) and
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S(〈↓ ε̂j−1ε̂j〉) = S+(ε̂j−1,1) . . .S+(ε̂j−1,mj−1−1)
( αj−1,mj−1

c(αj−1,mj−1
)

)
▽
( αj,1

c(αj,1)

)
·

S+(ε̂j,2) . . .S+(ε̂j,mj
). (9.12)

Now, let ε̂′j be the string we must substitute for ε̂j−1ε̂j according to line Dni.8:

ε̂′j =
〈
↑ ε̂j−1,1 . . . ε̂j−1,mj−1−1

〈
l αj−1,mj−1

αj,1

〉
ε̂j,2 . . . ε̂j,mj

〉
.

The arguments of ε̂′j fit together by upper strands, because the arguments of
ε̂j−1 and ε̂j do so. Hence, ε̂′j is an ↑-expression. It is easily verified that ε̂′j also
has Properties (DMin.1)–(DMin.6), and thus is minimal. Moreover, ε̂′j is altern-
ating, because ε̂j−1 and ε̂j are. Hence, ε̂

′
j is nick free, and by Corollary 8.10,

S(ε̂′j) = S+(ε̂j−1,1) . . .S+(ε̂j−1,mj−1−1)
( αj−1,mj−1

αj,1

c(αj−1,mj−1
αj,1)

)
·

S+(ε̂j,2) . . .S+(ε̂j,mj
). (9.13)

It follows from (9.12) and (9.13) that ε̂′j ≡▽ 〈↓ ε̂j−1ε̂j〉. In fact, ε̂′j is nick free.
whereas S(〈↓ ε̂j−1ε̂j〉) contains one upper nick letter, between the semantics of
ε̂j−1 and the semantics of ε̂j.

Because L(S(ε̂′j)) = L(S(ε̂j−1)) and R(S(ε̂′j)) = R(S(ε̂j)), the arguments of

Êi still fit together by lower strands when we substitute ε̂j−1ε̂j in Êi by ε̂′j.

Hence, Êi is still a DNA expression after the substitution. In particular, it is a
↓-expression. Moreover, by Lemma 5.11, Lemma 5.10 and Property (9.11),

〈
↓ ε̂1 . . . ε̂j−2ε̂

′
j ε̂j+1 . . . ε̂n

〉
≡▽ 〈↓ ε̂1 . . . ε̂j−2 〈↓ ε̂j−1ε̂j〉 ε̂j+1 . . . ε̂n〉
≡ 〈↓ ε̂1 . . . ε̂j−2ε̂j−1ε̂j ε̂j+1 . . . ε̂n〉
≡▽ Ei. (9.14)

Hence, after the substitution, Êi still satisfies Êi ≡▽ Ei. The upper nick letter

between S(ε̂j−1) and S(ε̂j), which was present in S(Êi) before the substitution,

is no longer present after the substitution. For the rest, S(Êi) is the same before
and after the substitution.

Because ε̂′j is a DNA expression, Êi still has at least one expression-argument
after the substitution.

The outermost operator ↑ of ε̂′j has mj−1 + mj − 1 ≥ 3 arguments. As we
observed before, these are maximal N -word occurrences and DNA expressions,
alternately. Now, it is easily verified, that after the substitution, Êi has Proper-
ties (DMin.1), (DMin.2), (DMin.4) and (DMin.5), and that each inner occurrence

of ↑ or ↓ in Êi has at least two arguments, because this was the case before the
substitution.

We conclude that Property (9.11) is indeed an invariant of the while-loop. In every it-

eration of the loop, we substitute a pair of consecutive expression-arguments of Êi by
a single expression-argument. Thus, the number of pairs of consecutive expression-
arguments decreases by 1. After the last iteration of the loop, Êi is alternating. By
Lemma 9.21, this implies that Êi is nick free.

At the beginning of the proof, we deduced from Property (9.11), that each expression-

argument of Êi is minimal and nick free. Because Êi has become alternating, it does
not necessarily have Property (DMin.3) and Property (DMin.6) any more. Hence,

after the last iteration of the while-loop, Êi itself is not necessarily minimal.
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This is made up for in the if-then-else construction following the while-loop. We
prove that for every possible case, the resulting string E ′

i is a minimal, nick free
DNA expression satisfying E ′

i ≡▽ Ei.

• Assume that Êi has only one argument. By Property (9.11), this must be an
expression-argument Ei,1. This argument is minimal and nick free. Because it

is nick free, the outermost operator ↓ of Êi has no effect. In this case,

E ′
i = Ei,1 ≡ 〈↓ Ei,1〉 = Êi ≡▽ Ei.

• Assume that Êi has at least two arguments, and that both the first argument
and the last argument of Êi are ↑-arguments.

Because Êi has at least two arguments, by Property (9.11), each occurrence

of ↑ or ↓ in Êi has at least two arguments. This implies that, in addition to
Properties (DMin.1), (DMin.2), (DMin.4) and (DMin.5), Êi has Property (DMin.3).

Êi is nick free. Hence, by Lemma 9.14, there exists a minimal ↑-expression Ê ′
i

satisfying Ê ′
i ≡ Êi. In particular, line Dni.24 of the procedure is well defined.

In this case,

E ′
i = Ê ′

i ≡ Êi ≡▽ Ei.

• Finally, assume that Êi has at least two arguments, and that either the first
argument, or the last argument of Êi is not an ↑-argument. Without loss of
generality, assume that the first argument of Êi is not an ↑-argument. As in the
previous case, because Êi has at least two arguments, it has Property (DMin.3).

By Property (DMin.1) and Property (DMin.2), the first argument of Êi must be

either an N -word α or an l-expression 〈l α〉 for an N -word α. Hence, Êi also
has Property (DMin.6).

This implies that Êi has all six properties from Lemma 8.22, and thus is min-
imal. In this case

E ′
i = Êi ≡▽ Ei,

and indeed, E ′
i = Êi is nick free.

3. We prove that the DNA expression Êi that is left after the while-loop is independent of
the order in which pairs of consecutive expression-arguments ε̂j−1 and ε̂j are selected
for substitution in line Dni.5. Then the final result E ′

i of the procedure is certainly
independent of this order. In the remainder of this proof, we call this order the
substitution order .

Let ε1, . . . , εn for some n ≥ 1 be the arguments of the original ↓-expression Ei. In this
sequence of arguments, we can distinguish (maximal) subsequences of expression-
arguments. Such a subsequence is succeeded by a maximal N -word occurrence,
which is in turn succeeded by a (maximal) subsequence of expression-arguments,
and so on. Hence, the different subsequences of expression-arguments are separ-
ated by the maximal N -word occurrences, which are not affected by the while-
loop. The substitution of pairs of consecutive expression-arguments in one sub-
sequence of expression-arguments does not affect the expression-arguments in an-
other subsequence. In fact, the different subsequences are rewritten independently
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in the while-loop. Therefore, we only have to consider the substitution order of the
expression-arguments within the same (maximal) subsequence.

Let εj0 , . . . , εj1 with 1 ≤ j0 ≤ j1 ≤ n be a (maximal) subsequence of expression-
arguments of Ei. If j0 = j1, then the subsequence does not contain any pair of
consecutive expression-arguments, and the subsequence is not affected by the while-
loop. Now assume that j0 < j1. In the course of the while-loop, the subsequence of
expression-arguments εj0 . . . εj1 is rewritten into a single expression-argument ε̂′j1 .

By Corollary 8.2, each expression-argument εj of the minimal ↓-expression Ei is
either an l-expression 〈l αj,1〉 for an N -word αj,1 or an ↑-expression.
We first assume that for j = j0, . . . , j1, εj is an l-expression 〈l αj,1〉 for an N -word
αj,1. Then it is easy to prove by induction on j1 − j0 that

ε̂′j1 = 〈l αj0,1 . . . αj1,1〉 ,

regardless of the substitution order.

From now on, we assume that there is at least one εj with j0 ≤ j ≤ j1 which is
an ↑-expression. We establish three properties of the resulting expression-argument
ε̂′j1 , which are independent of the substitution order. We then prove that these
properties completely determine ε̂′j1 .

• Suppose that in the while-loop in procedure Denickify, two consecutive expres-
sion-arguments ε̂j−1 and ε̂j of Êi are substituted by a single expression-argument
ε̂′j, and that at least one of the two expression-arguments substituted is an ↑-
argument. Then it follows from a simple inspection of the code of the procedure
that ε̂′j is also an ↑-argument. This implies that after any substitution, there
is at least one ↑-argument left in the subsequence of arguments corresponding
to εj0 . . . εj1 . In particular, after the last iteration of the while-loop, when the
subsequence has been reduced to a single expression-argument, this expression-
argument ε̂′j1 is an ↑-argument.

• Suppose again that in the while-loop, two consecutive expression-arguments
ε̂j−1 and ε̂j are substituted by ε̂′j, and that at least one of the two expression-
arguments substituted is an ↑-argument. Then the N -word-arguments and
↓-arguments of the new ↑-argument ε̂′j come straight from ε̂j−1 and ε̂j. There
is just one l-argument of ε̂′j that is new, i.e., that is a combination of two
original, ‘adjacent’ l-arguments. In particular, after any substitution, the ↓-
arguments of the subsequence of arguments corresponding to εj0 , . . . , εj1 are the
same as before the substitution, and they occur at corresponding positions in
the subsequence, in the same order. This is still the case after the last iteration
of the while-loop, when the entire subsequence εj0 . . . εj1 has been rewritten
into the ↑-expression ε̂′j1 . That is, the ↓-arguments of ε̂′j1 are exactly all ↓-
arguments of the original expression-arguments εj0 , . . . , εj1 , in the same order.
This is independent of the substitution order.

• As we have seen in the proof of Claims 1 and 2, ε̂′j1 is minimal and nick
free. Moreover, by a derivation similar to (9.14), we can prove that ε̂′j1 ≡▽

〈↓ εj0 . . . εj1〉. Hence, S(ε̂′j1) = X ′
j1
, where

X ′
j1
= ν(S(〈↓ εj0 . . . εj1〉)).

Again, this is independent of the substitution order.
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We must prove that not just the ↓-arguments, but all the arguments of ε̂′j1 (and
thus ε̂′j1 itself) are independent of the substitution order. For this, we make an
elegant twist, back to the construction of minimal DNA expressions, as described in
Chapter 7 and Chapter 8.

By Theorem 8.13, the ↓-arguments of ε̂′j1 define a lower block partitioning P of X ′
j1
,

and ε̂′j1 satisfies the construction from Theorem 7.24(1) based on P .

Now, because the ↓-arguments of ε̂′j1 (and the order of their occurrence in ε̂′j1) and
the semantics X ′

j1
of ε̂′j1 are independent of the substitution order, so is the lower

block partitioning P . Moreover, in the construction from Theorem 7.24(1), the
arguments corresponding to the lower blocks in P are precisely the ↓-arguments of
ε̂′j1 , which (thus) are independent of the substitution order. Because the arguments
corresponding to the other parts of P (N -words α and l-expressions 〈l α〉 for N -
words α) are fixed by the construction, the entire ↑-expression ε̂′j1 is independent of
the substitution order. We have thus proved the claim.

In fact, it is possible to completely specify ε̂′j1 . For each l-argument εj with j0 ≤
j ≤ j1, let mj = 1. Hence, εj = 〈l αj,1〉 =

〈
l αj,mj

〉
.

For each ↑-argument εj with j0 ≤ j ≤ j1, let εj =
〈
↑ εj,1 . . . εj,mj

〉
for some mj ≥ 1

and N -words and DNA expressions εj,1, . . . , εj,mj
. By Lemma 8.27(2), mj ≥ 2. By

Lemma 8.27(5), if j ≥ j0+1, then εj,1 = 〈l αj,1〉 for an N -word αj,1, and if j ≤ j1−1,
then εj,mj

=
〈
l αj,mj

〉
for an N -word αj,mj

.

One can prove by induction on j1 − j0 that

ε̂′j1 =
〈
↑ εj0,1 . . . εj0,mj0

−1

〈
l αj0,mj0

αj0+1,1

〉

εj0+1,2 . . . εj0+1,mj0+1−1

〈
l αj0+1,mj0+1

αj0+2,1

〉

. . .
〈
l αj1−1,mj1−1

αj1,1

〉
εj1,2 . . . εj1,mj1

〉
.

Here, if for some j with j0 + 1 ≤ j ≤ j1 − 1, εj is an l-argument 〈l αj,1〉 (which is
the case, if and only if mj = 1), then the sequence of arguments

〈
l αj−1,mj−1

αj,1

〉
εj,2 . . . εj,mj−1

〈
l αj,mj

αj+1,1

〉

must be understood as

〈
l αj−1,mj−1

αj,1αj+1,1

〉
.

Otherwise the N -word αj,1 = αj,mj
would occur twice in ε̂′j1 . This interpretation

extends in a natural way to two or more consecutive l-arguments εj.

This completes the proof of Theorem 9.24.

9.1.3 The procedure RotateToMinimal

There are three instructions left in the recursive function MakeMinimal and procedure
Denickify, which have to be worked out in detail.

In line 23 of MakeMinimal, we have to determine a minimal ↑-expression E ′
i satisfying

E ′
i ≡ Ei. Here, Ei is a ↓-expression for which either the first argument or the last argument
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RtM.1. RotateToMinimal (E)
// rewrites an alternating ↓-expression E = 〈↓ ε1 . . . εn〉
// with Properties (DMin.1)-(DMin.5), for which either
// the first argument ε1 or the last argument εn (or both)
// is an ↑-argument, into a minimal ↑-expression E ′

// satisfying E ′ ≡ E;
// uses local rearrangements of the DNA expression for this

RtM.2. {
RtM.3. if (ε1 is an ↑-expression 〈↑ ε1,1 . . . ε1,m1−1ε1,m1

〉)
RtM.4. then if (εn is an ↑-expression 〈↑ εn,1εn,2 . . . εn,mn

〉)
RtM.5. then E ′ = 〈↑ ε1,1 . . . ε1,m1−1 〈↓ ε1,m1

ε2 . . . εn−1εn,1〉 εn,2 . . . εn,mn
〉;

(DMin.6)
RtM.6. else E ′ = 〈↑ ε1,1 . . . ε1,m1−1 〈↓ ε1,m1

ε2 . . . εn−1εn〉〉;
RtM.7. fi
RtM.8. else // εn must be an ↑-expression 〈↑ εn,1εn,2 . . . εn,mn

〉
RtM.9. E ′ = 〈↑ 〈↓ ε1ε2 . . . εn−1εn,1〉 εn,2 . . . εn,mn

〉;
RtM.10. fi
RtM.11. }

Figure 9.5: Pseudo-code of the procedure RotateToMinimal.

is an ↑-argument. In the proof of Theorem 9.17(1) and (2), we have established that in
addition, Ei is minimal and alternating. By Lemma 8.22, Ei has Properties (DMin.1)–
(DMin.6).

The situation in line 35 of MakeMinimal is not too different. We have to determine a
minimal ↓-expression E ′ satisfying E ′ ≡ E. Here, E is an alternating ↑-expression with
at least two arguments, for which both the first argument and the last argument are ↓-
arguments. In the proof of Theorem 9.17(1) and (2), we have established that in addition,
E has Properties (DMin.1)–(DMin.5).

Finally, the situation in line Dni.24 of procedure Denickify is completely analogous to
the previous situation: we have to determine a minimal ↑-expression Ê ′

i satisfying Ê
′
i ≡ Êi.

Here, Êi is an alternating ↓-expression with at least two arguments, for which both the
first argument and the last argument are ↑-arguments. In the proof of Theorem 9.24(1)

and (2), we have established that in addition, Êi has Properties (DMin.1)–(DMin.5).

As the three cases are so similar, it is not surprising that they can be tackled by
the same procedure RotateToMinimal. As usual, ↑-expressions and ↓-expressions are
rewritten in analogous ways. In Figure 9.5, we give the procedure for ↓-expressions. In
fact, the procedure is just a (nested) if-then-else statement. In all cases, the result can be
achieved by a few insertions and removals of brackets and operators in the DNA expression.

The name RotateToMinimal is derived from the procedure’s effect on the structure
trees of the DNA expressions involved. In the proof of Theorem 9.27, we will see that
the procedure is justified by Theorem 5.16 and Theorem 5.21. As we have depicted in
Figure 5.2, Theorem 5.16 corresponds to a rotation in the structure tree. In the present
situation, Theorem 5.21, which is based on Theorem 5.16, corresponds to two rotations
in the structure tree.

We illustrate procedure RotateToMinimal by two examples.

Example 9.25 (cf. Example 9.5) Let

E = 〈↓ 〈↑ 〈l α8α9〉α10 〈l α11〉〉α12 〈l α13〉〉 ,
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for which

S(E) =
(

α8α9

c(α8α9)

)(
α10

−
)(

α11

c(α11)

)( −
α12

)(
α13

c(α13)

)
.

The ↓-expression E is minimal and alternating, its first argument is an ↑-argument and
its last argument is not an ↑-argument. According to line RtM.6,

E ′ = 〈↑ 〈l α8α9〉α10 〈↓ 〈l α11〉α12 〈l α13〉〉〉 .

Indeed, S(E ′) = S(E), i.e., E ′ ≡ E. Moreover, |E ′| = |E|, which implies that E ′ is
minimal just like E.

Example 9.26 (cf. Example 9.11) Let

E =
〈
↓
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18 〈l α19α20〉
〉

α21 〈↑ 〈l α22〉α23〉
〉
,

which denotes the formal DNA molecule X from Figure 9.2. The ↓-expression E is altern-
ating, has Properties (DMin.1)–(DMin.5), and both its first argument and its last argument
are ↑-arguments. Hence, it violates Property (DMin.6). According to line RtM.5,

E ′ =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18

〈↓ 〈l α19α20〉α21 〈l α22〉〉 α23

〉
.

E ′ also denotes X, i.e., E ′ ≡ E. Moreover, it is easily verified that E ′ has all six properties
from Lemma 8.22 and thus is minimal.

Procedure RotateToMinimal is also correct:

Theorem 9.27 Let E be an alternating ↓-expression with Properties (DMin.1)–(DMin.5),
for which either the first argument or the last argument (or both) is an ↑-argument.

Then the string E ′ resulting from procedure RotateToMinimal is a minimal ↑-expres-
sion satisfying E ′ ≡ E.

Proof: Let E = 〈↓ ε1 . . . εn〉 for some n ≥ 1 and N -words and DNA expressions
ε1, . . . , εn. Without loss of generality, assume that the first argument of E is an ↑-
argument: ε1 = 〈↑ ε1,1 . . . ε1,m1−1ε1,m1

〉 for some m1 ≥ 1 and N -words and DNA ex-
pressions ε1,1, . . . , ε1,m1−1, ε1,m1

. This implies that the if-then-else construction in lines
RtM.4–RtM.7 of RotateToMinimal is applicable.

By Property (DMin.3), n,m1 ≥ 2. Because the arguments of the ↓-expression E must
fit together by lower strands, the last argument ε1,m1

of ε1 cannot be an N -word. Hence,
by Property (DMin.5), it is an l-expression 〈l α〉 for an N -word α. By the same property,
the first argument ε1,1 of ε1 is either an N -word α or an l-expression 〈l α〉 for an N -word
α.

Because E is alternating and has Property (DMin.4), each occurrence of ↑ or ↓ in E is
alternating.

By Property (DMin.1) and Property (DMin.2), each argument εi of E is either an N -
word α, or an l-expression 〈l α〉 for an N -word α, or an ↑-expression. The string E ′

resulting from procedure RotateToMinimal depends on whether or not the last argument
εn of E is an ↑-expression, which is tested in line RtM.4. We prove that in both cases, E ′

is a minimal ↑-expression satisfying E ′ ≡ E.
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• Assume that εn is an ↑-argument, which implies in particular that E does not have
Property (DMin.6) and thus is not minimal. Let εn = 〈↑ εn,1εn,2 . . . εn,mn

〉 for some
mn ≥ 1 and N -words and DNA expressions εn,1, εn,2 . . . , εn,mn

. Hence,

E = 〈↓ 〈↑ ε1,1 . . . ε1,m1−1ε1,m1
〉 ε2 . . . εn−1 〈↑ εn,1εn,2 . . . εn,mn

〉〉 .

By Property (DMin.3), mn ≥ 2. When we apply Theorem 5.21(1) and (2) (with
r = 1) to E, we find that

E ′ = 〈↑0 ε1,1 . . . ε1,m1−1 〈↓1 ε1,m1
ε2 . . . εn−1εn,1〉 εn,2 . . . εn,mn

〉

is a DNA expression (and in particular, an ↑-expression) satisfying E ′ ≡ E. Moreover,
each occurrence of ↑ or ↓ in E ′ is alternating. In particular, E ′ has Property (DMin.4).

As we observed before, the first argument ε1,m1
of ↓1 (which used to be the last

argument of ε1) is an l-expression 〈l α〉 for an N -word α. Analogously, the last
argument εn,1 of ↓1 is an l-expression 〈l α〉 for an N -word α. Clearly, ↓1 has at
least two arguments.3 Because m1,mn ≥ 2, the outermost operator ↑0 of E ′ has at
least three arguments. Now, it is easily verified that E ′ has Properties (DMin.1)–
(DMin.3) and (DMin.5), simply because E has these properties.

Finally, because the first argument ε1,1 of ↑0 is either anN -word α, or an l-expression
〈l α〉 for an N -word α, E ′ also has Property (DMin.6). We conclude that E ′ has all
six properties from Lemma 8.22 and thus is minimal.

• Assume that εn is not an ↑-argument. Hence,

E = 〈↓ 〈↑ ε1,1 . . . ε1,m1−1ε1,m1
〉 ε2 . . . εn〉 ,

where εn is either an N -word α or an l-expression 〈l α〉 for an N -word α. This
implies that E also has Property (DMin.6), and thus is minimal itself.

By Theorem 5.16(1) and (2),

E ′ = 〈↑ ε1,1 . . . ε1,m1−1 〈↓ ε1,m1
ε2 . . . εn〉〉

is a DNA expression (and in particular, an ↑-expression) satisfying E ′ ≡ E. Each
occurrence of ↑ or ↓ in E ′ is alternating. Because E is minimal and E ′ is equally
long, E ′ is also minimal.

9.2 The algorithm for an example

In the previous section, we have illustrated each stage of our algorithm by some example
DNA expressions. It is instructive, though, to see the effect of the algorithm as a whole
for a single DNA expression. Therefore, we systematically work out the algorithm for
the DNA expression E∗

1 from (9.1). Step by step, we rewrite this DNA expression into an

3In fact, by Property (DMin.4). the two expression-arguments ε1,m1
and εn,1 of ↓1 must be separated

by at least an N -word-argument. Hence, the operator has at least three arguments.
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equivalent, minimal DNA expression. For simplicity, whenever we have to consider certain
arguments of a DNA expression ‘in some order’, we consider them from left to right. To
visualize the effect of the algorithm on the structure of the DNA expression, we also give
the structure trees of a number of the intermediate DNA expressions.

Recall that the algorithm is recursive: we first rewrite the expression-arguments of a
DNA expression E into equivalent, minimal expression-arguments, and then consider E
as a whole. For the structure tree of E, this means that it is reshaped in a bottom-up
fashion.

Example 9.28 Let E be the DNA expression E∗
1 from (9.1):

E =
〈
↓
〈
↓
〈
↑ 〈l 〈↓ 〈l 〈↑ α1 〈l 〈l α2〉〉α3 〈↓ 〈l α4〉α5〉〉〉 〈l α6〉 α7 〉〉
〈↓ 〈l α8〉 〈↑ 〈l α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉 〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
,

(9.15)

as depicted in Figure 9.6. When we apply the function MakeMinimal to E, we observe a
cascade of recursive calls. The first time that E is actually rewritten, is when MakeMinimal

is called for the DNA subexpression Es = 〈l 〈l α2〉〉. This is an l-expression with a
minimal l-argument. As we have seen in Example 9.1, by line 7 of MakeMinimal, Es is
simply substituted in E by its argument 〈l α2〉, yielding

E =
〈
↓
〈
↓
〈
↑ 〈l 〈↓ 〈l 〈↑ α1 〈l α2〉α3 〈↓ 〈l α4〉α5〉〉〉 〈l α6〉 α7 〉〉
〈↓ 〈l α8〉 〈↑ 〈l α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉 〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
.

We subsequently consider the DNA subexpression

Es = 〈l 〈↑ α1 〈l α2〉α3 〈↓ 〈l α4〉α5〉〉〉 ,

which is an l-expression with a minimal, alternating ↑-argument. As we have seen in Ex-
ample 9.18, by procedure MakelExprMinimal, Es is substituted in E by 〈l α1α2α3α4c(α5)〉.
This yields

E =
〈
↓
〈
↓
〈
↑ 〈l 〈↓ 〈l α1α2α3α4c(α5)〉 〈l α6〉 α7 〉〉
〈↓ 〈l α8〉 〈↑ 〈l α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉 〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
,

(9.16)

as depicted in Figure 9.7.
We subsequently consider the DNA subexpression

Es = 〈l 〈↓ 〈l α1α2α3α4c(α5)〉 〈l α6〉 α7 〉〉 ,

which is an l-expression, with a minimal, non-alternating ↓-argument. Hence, Es violates
Property (DMin.1). As we have seen in Example 9.19, by procedure MakelExprMinimal,
Es is substituted in E by 〈↓ 〈l α1α2α3α4c(α5)〉 〈l α6c(α7)〉〉. This yields

E =
〈
↓
〈
↓
〈
↑ 〈↓ 〈l α1α2α3α4c(α5)〉 〈l α6c(α7)〉〉
〈↓ 〈l α8〉 〈↑ 〈l α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉 〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
,

(9.17)
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Figure 9.6: Structure tree of the example DNA expression E∗
1 for the algorithm for

minimality, (9.15).

as depicted in Figure 9.8.

We subsequently consider the DNA subexpression

Es =
〈
↑ 〈↓ 〈l α1α2α3α4c(α5)〉 〈l α6c(α7)〉〉
〈↓ 〈l α8〉 〈↑ 〈l α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉
,

which is an ↑-expression with five minimal expression-arguments. In the second for-loop of
MakeMinimal, we consider ↓-arguments of Es that are not alternating. There are two such
arguments, viz the first two arguments. As we have seen in Example 9.22, by procedure
Denickify, the first argument

E1 = 〈↓ 〈l α1α2α3α4c(α5)〉 〈l α6c(α7)〉〉
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Figure 9.7: Structure tree of the example DNA expression for the algorithm for minim-
ality, after two substitutions, (9.16). The dashed box encloses the part of the tree that
has changed as compared to Figure 9.6.
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Figure 9.8: Structure tree of the example DNA expression for the algorithm for minim-
ality, after three substitutions, (9.17). The dashed box encloses the part of the tree that
has changed as compared to Figure 9.7.
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is substituted in E by 〈l α1α2α3α4c(α5)α6c(α7)〉, yielding

E =
〈
↓
〈
↓
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈↓ 〈l α8〉 〈↑ 〈l α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉 〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
.

We also apply procedure Denickify to the second argument

E2 = 〈↓ 〈l α8〉 〈↑ 〈l α9〉α10 〈l α11〉〉α12 〈l α13〉〉

of Es. The first two arguments of this minimal ↓-expression are consecutive expression-
arguments. In the only iteration of the while-loop in procedure Denickify, these argu-
ments are merged according to line Dni.14. The result is

Ê2 = 〈↓ 〈↑ 〈l α8α9〉α10 〈l α11〉〉α12 〈l α13〉〉 .

This ↓-expression has more than one argument and its last argument is not an ↑-argument.
Hence, Ê2 is not modified any further in procedure Denickify (cf. Example 9.4). When

we substitute E2 in E by Ê2, we obtain

E =
〈
↓
〈
↓
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈↓ 〈↑ 〈l α8α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉 〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
,

(9.18)

as depicted in Figure 9.9. In this overall DNA expression, the DNA subexpression Es that
we consider has become

Es =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈↓ 〈↑ 〈l α8α9〉α10 〈l α11〉〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉
.

We proceed with the third for-loop of MakeMinimal, in which we consider ↓-arguments Ei

of Es, such that either the first argument, or the last argument of Ei is an ↑-argument.
There are two such arguments, viz the (new) second argument and the fourth argument.
As we have seen in Example 9.25, by procedure RotateToMinimal, the second argument

E2 = 〈↓ 〈↑ 〈l α8α9〉α10 〈l α11〉〉α12 〈l α13〉〉

is substituted in E by

〈↑ 〈l α8α9〉α10 〈↓ 〈l α11〉α12 〈l α13〉〉〉 ,

yielding

E =
〈
↓
〈
↓
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈↑ 〈l α8α9〉α10 〈↓ 〈l α11〉α12 〈l α13〉〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 〈↑ 〈l α19〉 〈l α20〉〉

〉 〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
.

We also apply procedure RotateToMinimal to the fourth argument

E4 = 〈↓ 〈l α15〉α16 〈↑ 〈l α17〉α18〉〉 .
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Figure 9.9: Structure tree of the example DNA expression for the algorithm for minim-
ality, after five substitutions, (9.18). The dashed box encloses the part of the tree that
has changed as compared to Figure 9.8.

The ↓-expression E4 is minimal and alternating, its first argument is not an ↑-argument,
but its last argument is an ↑-argument. According to line RtM.9, E4 is substituted in E
by

〈↑ 〈↓ 〈l α15〉α16 〈l α17〉〉α18〉
(cf. Example 9.6). This yields

E =
〈
↓
〈
↓
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈↑ 〈l α8α9〉α10 〈↓ 〈l α11〉α12 〈l α13〉〉〉 〈l α14〉
〈↑ 〈↓ 〈l α15〉α16 〈l α17〉〉α18〉 〈↑ 〈l α19〉 〈l α20〉〉

〉 〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
,

(9.19)

as depicted in Figure 9.10. In this overall DNA expression, the DNA subexpression Es

that we consider has become

Es =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈↑ 〈l α8α9〉α10 〈↓ 〈l α11〉α12 〈l α13〉〉〉 〈l α14〉
〈↑ 〈↓ 〈l α15〉α16 〈l α17〉〉α18〉 〈↑ 〈l α19〉 〈l α20〉〉

〉
.

We proceed with the fourth for-loop of MakeMinimal. As we have seen in Example 9.8, in
this loop, we substitute the three ↑-arguments of Es by their respective arguments. The
overall DNA expression resulting from these three substitutions is

E =
〈
↓
〈
↓
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈l α8α9〉 α10 〈↓ 〈l α11〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈l α17〉〉 α18 〈l α19〉 〈l α20〉

〉 〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
,

(9.20)
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Figure 9.10: Structure tree of the example DNA expression for the algorithm for minim-
ality, after seven substitutions, (9.19). The dashed box encloses the part of the tree that
has changed as compared to Figure 9.9.

as depicted in Figure 9.11. As we have seen in Example 9.9, the DNA subexpression Es

of E that we consider is not modified any further in its own call of MakeMinimal.
We subsequently consider the DNA subexpression

Es =
〈
↓
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)〉
〈l α8α9〉 α10 〈↓ 〈l α11〉α12 〈l α13〉〉 〈l α14〉
〈↓ 〈l α15〉α16 〈l α17〉〉 α18 〈l α19〉 〈l α20〉

〉 〉
,

which is a ↓-expression whose only argument is a minimal ↑-argument E1 that is not
alternating. Hence, E1 makes Es violate Property (DMin.4). In the second for-loop of
MakeMinimal, we make this argument nick free. In particular, as we have seen in Ex-
ample 9.23, by procedure Denickify, E1 is substituted in E by

〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18 〈l α19α20〉
〉
.

This yields

E =
〈
↓
〈
↓
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18 〈l α19α20〉
〉 〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
,

(9.21)

as depicted in Figure 9.12. In this overall DNA expression, the DNA expression Es that
we consider has become

Es =
〈
↓
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18 〈l α19α20〉
〉 〉

.
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Figure 9.11: Structure tree of the example DNA expression for the algorithm for min-
imality, after ten substitutions, (9.20). The dashed box encloses the part of the tree that
has changed as compared to Figure 9.10.
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Figure 9.12: Structure tree of the example DNA expression for the algorithm for min-
imality, after eleven substitutions, (9.21). The dashed box encloses the part of the tree
that has changed as compared to Figure 9.11.



282 Ch. 9 An Algorithm for Minimality

♥
♥♥
♥♥ ♥ ♥

♥ ♥ ♥

◗
◗
◗
◗
◗◗

✑
✑

✑
✑

✑✑

❆
❆
❆❆

✏✏✏✏✏✏✏✏✏✏✏✏

�
�

��

❅
❅
❅❅

❍❍❍❍❍❍❍❍

❅
❅
❅❅

�
�

��

✁
✁
✁✁

❆
❆
❆❆

❅
❅
❅❅

↓

↑↑

l α23l α10 ↓ α18 l

α21

α22α1α2α3α4c(α5)α6c(α7)α8α9 l α12 l α16 l α19α20

α11 α13α14α15 α17

Figure 9.13: Structure tree of the example DNA expression for the algorithm for min-
imality, after fourteen substitutions, (9.22). The dashed box encloses the part of the tree
that has changed as compared to Figure 9.12.

The third and the fourth for-loop of MakeMinimal do not affect Es. In the if-then-else
construction at the end of the function, we observe that Es still has one argument, which
is a DNA expression. Hence, Es violates Property (DMin.3). According to line 31, Es is
substituted in E by this expression-argument, yielding

E =
〈
↓
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18 〈l α19α20〉
〉

〈↑ 〈↓ α21〉〉 〈↑ 〈l α22〉α23〉
〉
.

We subsequently consider the DNA subexpression Es = 〈↑ 〈↓ α21〉〉, which is an ↑-
expression whose only argument is the minimal, alternating ↓-argument 〈↓ α21〉. The
for-loops of MakeMinimal do not affect Es. As we have seen in Example 9.10, by the
if-then-else construction at the end of the function, Es is substituted in E by its argument
〈↓ α21〉, yielding

E =
〈
↓
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18 〈l α19α20〉
〉

〈↓ α21〉 〈↑ 〈l α22〉α23〉
〉
.

At last, we consider E itself, which is a ↓-expression with three minimal expression-
arguments. The second and the third for-loop of MakeMinimal do not affect E. In the
fourth for-loop, we discover that the second argument of E is the ↓-expression 〈↓ α21〉.
Hence, E violates Property (DMin.2). According to line 27, we substitute 〈↓ α21〉 in E by
its own argument α21. This yields

E =
〈
↓
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18 〈l α19α20〉
〉

α21 〈↑ 〈l α22〉α23〉
〉
,

(9.22)

as depicted in Figure 9.13. In the if-then-else construction at the end of MakeMinimal, we
observe that the ↓-expression E has more than one argument, is alternating and that both
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Figure 9.14: Structure tree of the example DNA expression E∗
2 for the algorithm for

minimality, after all fifteen substitutions, (9.23).

its first argument and its last argument are ↑-arguments. Hence, according to line 35,
we apply procedure RotateToMinimal to E. As we have seen in Example 9.26, E is
substituted by

E ′ =
〈
↑ 〈l α1α2α3α4c(α5)α6c(α7)α8α9〉 α10

〈↓ 〈l α11〉α12 〈l α13α14α15〉α16 〈l α17〉〉 α18

〈↓ 〈l α19α20〉α21 〈l α22〉〉 α23

〉
.

(9.23)

This is the final result E∗
2 of the algorithm, and has been depicted in Figure 9.14.

Note that we encountered the DNA expressions E from (9.22) and E∗
2 = E ′ from (9.23)

also in Example 9.11. There, E∗
2 turned out to be one of the two minimal DNA expressions

that are equivalent to E. However, we obtained these two minimal DNA expressions from
the semantics of E, using the recursive construction from Theorem 7.24. In the present
example, we have simply performed string manipulations on E itself , as prescribed by
procedure RotateToMinimal.

In the above example, when we compare the original DNA expression E∗
1 and its structure

tree (in Figure 9.6) to the final DNA expression E∗
2 and its structure tree (in Figure 9.14),

we can conclude that the latter are not only smaller, but also much better readable.
One may be surprised by some of the differences between the two structure trees. For

example, in the original tree, the N -words α1, . . . , α7 are in one subtree, and the N -words
α8, . . . , α13 are in an adjacent subtree. In the final tree, α8 and α9 have joined α1, . . . , α7,
whereas α10, . . . , α13 have not made this move.

At first sight, one might think that it requires very complex steps to achieve such
changes. This is, however, not the case. Every substitution performed by the algorithm
corresponds to a relatively simple, local rearrangement of the structure tree.

The substitution that probably has the largest effect on the tree, is the one in line
MlM.5 of procedure MakelExprMinimal. There, we substitute a ↓-expression E1,i by the
l-expression

〈
l αE1,i

〉
. The effect on the structure tree is that the subtree corresponding

to E1,i must be replaced by a node labelled by l, with a child node labelled by αE1,i
. This

N -word αE1,i
is the concatenation of all N -words (possibly complemented) in the leaves

of the subtree of E1,i. Since this effect is restricted to a subtree of the total structure tree,
and is uniform for the entire subtree, we may also view this as a local change.

In our running example, we have used line MlM.5 of MakelExprMinimal once, in
Example 9.18. There, we substituted the (small) ↓-expression E1,i = 〈↓ 〈l α4〉α5〉 by
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〈
l αE1,i

〉
= 〈l α4c(α5)〉. Part of the difference between the structure trees in Figure 9.6

and Figure 9.7 can be traced back to this substitution.

9.3 Detailed implementation and complexity of the

algorithm

In Section 9.1, we have described an algorithm for rewriting an arbitrary DNA expression
into an equivalent, minimal DNA expression, and we have proved that the algorithm is
correct. However, we have not specified all details of the algorithm. We now work out these
details in an implementation of the algorithm. The details concerning the data structure
for the DNA expression have immediate consequences for the complexity of the algorithm.
Therefore, we discuss these details in the context of an analysis of the complexity.

The recursive function MakeMinimal contains four successive for-loops. In each for-loop
we consider (some of) the expression-arguments of E ‘in some order.’ Because different
expression-arguments are rewritten independently, the actual orders used within the loops
do not influence the result. We choose to consider the expression-arguments in the order
of their occurrence in the DNA expression, like we did in Example 9.28. This is the most
natural order.

The fact that different expression-arguments are rewritten independently, also implies
that the aggregate effect of the four loops on a particular expression-argument Ei of E
depends only on Ei itself. We can as well perform all operations (at most four) on Ei first,
before proceeding to the next expression-argument. This way, the four for-loops can be
replaced by a single for-loop. The conceptual advantage of this is that each expression-
argument is considered only once, instead of (at most) four times.

When we modify the algorithm in the above way, and also refer to the procedures
MakelExprMinimal, Denickify and RotateToMinimal more directly, we obtain the func-
tion in Figure 9.15.

One may wonder why we did not use a single for-loop in MakeMinimal from the very
beginning. The reason is, that it is easier to formulate invariants for the four separate
loops, than it would be for a single loop with all four types of substitutions. We need such
invariants to prove the correctness of MakeMinimal, see the proof of Theorem 9.17.

We now examine the time complexity of the algorithm. In our analysis, we will fre-
quently use the big O notation. For example, we will say that the time spent in (a specific
part of) the algorithm for a given DNA expression E is in O(|E|). Recall from Section 2.1,
that in this case, in order to conclude that this time really is linear in |E|, we have to
establish that |E| also provides a lower bound for the growth rate.

When we apply the function MakeMinimal to a DNA expression E, all arguments of E
are examined individually. By a cascade of recursive calls of the function, the expression-
arguments of E are examined up to the highest nesting level of the brackets. This way,
in principle every letter of E is considered. Hence, the time required for executing the
function is at least linear in the length of E.

We demonstrate that the function can indeed be executed in linear time, if we use a
proper data structure to store E in. We now discuss two features of a possible, proper
data structure. We later introduce two more features.

First, it is useful to store (the letters of) E in a doubly-linked list. Then letters
can be inserted and removed in constant time. For example, in line 7′ of the function,
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1′. MakeMinimal (E)
// recursively rewrites an arbitrary DNA expression E
// into an equivalent, minimal DNA expression

2′. {
3′. if (E is an l-expression)
4′. then if (the argument of E is a DNA expression E1)
5′. then MakeMinimal (E1);

// we proceed with the new (minimal) version of E1

6′. if (E1 is an l-expression)
7′. then substitute E by E1; (DMin.1)
8′. else // E1 is an ↑-expression or a ↓-expression
9′. substitute E by the result

of procedure MakelExprMinimal; (DMin.1)
10′. fi
11′. fi

12′. else // E is an ↑-expression or a ↓-expression;
// without loss of generality, assume it is
// an ↑-expression 〈↑ ε1 . . . εn〉 for some n ≥ 1
// and N-words and DNA expressions ε1, . . . , εn

13′. for (i = 1 to n)
14′. do if (εi is a DNA expression Ei)
15′. then MakeMinimal (Ei);

// we proceed with the new (minimal) version of Ei

16′. if (Ei is a ↓-expression which is not alternating)
17′. then substitute Ei in E by the result

of procedure Denickify; (DMin.4)
18′. fi

19′. if (Ei is a ↓-expression for which the first argument
or the last argument is an ↑-argument)

20′. then substitute Ei in E by the result
of procedure RotateToMinimal; (DMin.5)

21′. fi

22′. if (Ei is an ↑-expression)
23′. then substitute Ei in E by its arguments; (DMin.2)
24′. fi
25′. fi
26′. od

27′. if (E has only one argument ε1)
28′. then if (ε1 is a DNA expression E1)
29′. then substitute E by E1; (DMin.3)
30′. fi
31′. else // E has at least two arguments
32′. if (E is alternating and both its first argument

and its last argument are ↓-arguments)
33′. then substitute E by the result

of procedure RotateToMinimal; (DMin.6)
34′. fi
35′. fi
36′. fi
37′. }

Figure 9.15: More detailed pseudo-code of the recursive function MakeMinimal (cf. Fig-
ure 9.1).
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〈 ↑ 〈 l 〈 lα1 〉 〉 〈 ↓ 〈 ↑α2〈 lα3 〉 〉α4〈 lα5 〉 〉 〉
(a)

〈 ↑ 〈 lα1 〉 〈 ↓ 〈 ↑α2〈 lα3 〉 〉α4〈 lα5 〉 〉 〉✂ ✁ ✂ ✁ ✂ ✁ ✂ ✁ ✂ ✁✍ ✌ ✍ ✌ ✍ ✌✣ ✢✫ ✪✫ ✪
✻

1

✻
2

✻3

(b)

〈 ↑ 〈 lα1 〉 〈 ↑α2〈 ↓ 〈 lα3 〉α4〈 lα5 〉 〉 〉 〉
(c)

Figure 9.16: First two features of the data structure used in the implementation of
the algorithm for minimality. (a) An example DNA expression, where the letters are
stored in a doubly-linked list (indicated by the dashes). (b) The result after substituting
the l-subexpression 〈l 〈l α1〉〉 by 〈l α1〉. Corresponding brackets are connected, and the
first letter and the last letter of each maximal N -word occurrence are connected. Note
that each of the maximal N -word occurrences α1, . . . , α5 may consist of many more than
one N -letter. We can use connections 1, 2 and 3 as indicated to step through the DNA
expression efficiently, for the substitution of the ↓-subexpression 〈↓ 〈↑ α2 〈l α3〉〉α4 〈l α5〉〉
by 〈↑ α2 〈↓ 〈l α3〉α4 〈l α5〉〉〉. (c) The result after this substitution.

substituting an l-expression E by its (minimal) l-argument E1 corresponds to removing
three redundant letters: an occurrence of l, and the corresponding brackets. We have
depicted this in Figure 9.16(a) and (b) for the DNA subexpression 〈l 〈l α1〉〉 of an example
DNA expression.

As another example, in line 20′ of the function, substituting a ↓-argument

Ei = 〈↓ 〈↑ ε1,1 . . . ε1,m1−1ε1,m1
〉 ε2 . . . εn〉 (9.24)

for some m1, n ≥ 1 and N -words and DNA expressions ε1,1, . . . , ε1,m1
and ε2, . . . , εn by an

equivalent ↑-argument

E ′
i = 〈↑ ε1,1 . . . ε1,m1−1 〈↓ ε1,m1

ε2 . . . εn〉〉 (9.25)

(the result of procedure RotateToMinimal) corresponds to moving the operator ↓, an
opening bracket and a closing bracket to new positions. Moving a letter to a new position
means that we remove it from its old position and insert it at its new position.

It is important that we can easily approach the positions in the DNA expression where
operations like removals and insertions must be performed. In particular, it is useful if
we can step directly from, for example, the first letter to the last letter of an argument,
and vice versa. This is the second feature of the data structure: we connect each opening
bracket to the corresponding closing bracket, and for each N -word-argument of an oper-
ator, we connect the first letter to the last letter. Moreover, if we allow N -word-arguments
of an operator that are not maximal N -word occurrences, then we also connect the first
letter of each maximalN -word occurrence to the last letter. We establish such connections
both from left to right and from right to left.

For example, with these connections it is easy to rewrite the ↓-expression Ei from
(9.24) into the ↑-expression E ′

i from (9.25). Let us use ε1 to denote the first argument
〈↑ ε1,1 . . . ε1,m1−1ε1,m1

〉 of Ei. We can step directly from the end of Ei (where a closing
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bracket must be inserted), via the beginning of Ei (where the operator ↓ and an opening
bracket must be removed), and the end of ε1 (where a closing bracket must be removed),
to the beginning of ε1,m1

(where an opening bracket and an operator ↓ must be inserted).
This way, the entire substitution can be performed in constant time, independent of the
length of Ei or the length of ε1. In Figure 9.16(b) and (c), we carry out this substitution for
the DNA subexpression Ei = 〈↓ 〈↑ α2 〈l α3〉〉α4 〈l α5〉〉 of our example DNA expression.

We can also use the connections to travel efficiently along all arguments of a given
operator. In two steps we can move from the beginning of an argument, via the end
of that argument, to the beginning of the next argument. This requires constant time,
independent of the length of the argument.

All connections can be initialized in linear time. For any (basic) operation applied to
E, the connections can be updated in constant time.4 Hence, the overhead for maintaining
the connections is linear in the time required for the function MakeMinimal itself.

The connections enable us to perform most instructions in the function in constant
time. There are, however, two places in the function, where we may spend more than
constant time. These places are line 9′, where we apply procedure MakelExprMinimal, and
line 17′, where we apply procedure Denickify. Moreover, the test if Ei is not alternating
in line 16′ and the test if E is alternating in line 32′ may be time consuming. We may
have to examine all arguments of a DNA expression, before we can decide whether or not
it is alternating.

If the data structure for the DNA expression E does not have more features than we
have described so far, then the function MakeMinimal requires quadratic time for specific
instances of E. We illustrate this by two examples, one for line 9′ and one for line 17′ of
the function.

The DNA expressions we consider in these examples are not new. In Section 4.4, we
used them to illustrate that a straightforward implementation of the function ComputeSem

would require quadratic time. The careful reader will observe, that the underlying causes
of the quadratic complexity in the following two examples are similar to those in Sec-
tion 4.4. The main difference is, that the analysis in the examples in Section 4.4 focused
at the semantics (the formal DNA molecules denoted), whereas below we stick to the
syntax (the DNA expressions themselves).

In procedure MakelExprMinimal, we first substitute all ↓-arguments of the ‘working

DNA expression’ Ê1, and then substitute all N -word-arguments, see the pseudo-code on
page 256. As it is, in order to find all ↓-arguments (or N -word-arguments) of a given
DNA expression, we have to examine all arguments, and check if they are ↓-arguments
(N -word-arguments, respectively).

Example 9.29 (cf. Example 4.14) Let α be an arbitrary N -word, and let

E1 = 〈l αα〉
E2p = 〈↑ E2p−1 〈l α〉α〉 (p ≥ 1)
E2p+1 = 〈l E2p〉 (p ≥ 1).

Hence,

E1 = 〈l αα〉
4The substitution in line MlM.5 of procedure MakelExprMinimal must be considered a composite

operation. In the proof of Lemma 9.34, we explain how it can be implemented.
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E2 = 〈↑ 〈l αα〉 〈l α〉α〉
E3 = 〈l 〈↑ 〈l αα〉 〈l α〉α〉〉
E4 = 〈↑ 〈l 〈↑ 〈l αα〉 〈l α〉α〉〉 〈l α〉α〉

. . .

It is easy to prove by induction on p, that for any p ≥ 1,

• both E2p and E2p+1 are DNA expressions,

•

S(E2p) =
(

αα
c(αα)

)
△
. . .
(

αα
c(αα)

)
△︸ ︷︷ ︸

p times

(
α

c(α)

)(
α
−
)

S(E2p+1) =
(

αα
c(αα)

)
△
. . .
(

αα
c(αα)

)
△︸ ︷︷ ︸

p times

(
αα

c(αα)

)

• |E2p| = 3 · 3p+ (2p+ 2) · |α| and |E2p+1| = 3 · (3p+ 1) + (2p+ 2) · |α|.

In particular, the lengths of E2p and E2p+1 are linear in p.
Moreover, by Summary 8.16(5), Theorem 7.46 and Theorem 7.42, for p ≥ 1, the only

minimal DNA expression denoting S(E2p), i.e., the only minimal DNA expression that is
equivalent to E2p is

E ′
2p =

〈
↑ 〈l αα〉 . . . 〈l αα〉︸ ︷︷ ︸

p times

〈l α〉α
〉
.

By Lemma 8.18(2), the only minimal DNA expression denoting S(E2p+1) is

E ′
2p+1 =

〈
↑ 〈l αα〉 . . . 〈l αα〉︸ ︷︷ ︸

p times

〈l αα〉
〉
.

Now, let p ≥ 1 and let us apply the function MakeMinimal to the l-expression E2p+1, with
argument E2p. When we call the function recursively for E2p, this argument is rewritten
into E ′

2p, as that is the only minimal DNA expression that is equivalent to E2p. The ↑-
expression E ′

2p has p+ 2 arguments. In procedure MakelExprMinimal, we need time that
is linear in p to examine them all, to see if they are ↓-arguments or N -word-arguments.

Likewise, at a higher level of the recursion, we have had to examine the p + 1, p, p −
1, . . . , 3 arguments of E ′

2(p−1), E
′
2(p−2), E

′
2(p−3), . . . , E

′
2, respectively. Altogether, this takes

time that is quadratic in p, and thus in the length of E2p+1.

In every iteration of the while-loop in procedure Denickify, we select two consecutive
expression-arguments of the ‘working DNA expression’ Êi, and merge them into a single
new argument, see the pseudo-code on page 263. We have not specified how to select
these consecutive expression-arguments. We have not even specified how to find them.
As it is, we must examine all pairs of consecutive arguments of Êi to see if both of them
are expression-arguments. Without further care, this may lead to a quadratic number of
steps, as we see in the next example.
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Example 9.30 (cf. Example 4.15) Let α be an arbitrary N -word, and let

E1 = 〈l αα〉
E2p = 〈↑ E2p−1 α 〈l α〉 〈l α〉〉 (p ≥ 1)
E2p+1 = 〈↓ E2p〉 (p ≥ 1).

Hence,

E1 = 〈l αα〉
E2 = 〈↑ 〈l αα〉α 〈l α〉 〈l α〉〉
E3 = 〈↓ 〈↑ 〈l αα〉α 〈l α〉 〈l α〉〉〉
E4 = 〈↑ 〈↓ 〈↑ 〈l αα〉α 〈l α〉 〈l α〉〉〉α 〈l α〉 〈l α〉〉

. . .

It is easy to prove by induction on p, that for any p ≥ 1,

• both E2p and E2p+1 are DNA expressions,

•

S(E2p) =
(

αα
c(αα)

)(
α
−
)
. . .
(

αα
c(αα)

)(
α
−
)

︸ ︷︷ ︸
p times

(
α

c(α)

)
△

(
α

c(α)

)

S(E2p+1) =
(

αα
c(αα)

)(
α
−
)
. . .
(

αα
c(αα)

)(
α
−
)

︸ ︷︷ ︸
p times

(
αα

c(αα)

)

• |E2p| = 3 · 4p+ (3p+ 2) · |α| and |E2p+1| = 3 · (4p+ 1) + (3p+ 2) · |α|.

In particular, the lengths of E2p and E2p+1 are linear in p.
Moreover, by Summary 8.16(5), Theorem 7.46 and Theorem 7.42, for p ≥ 1, the only

minimal DNA expression denoting S(E2p), i.e., the only minimal DNA expression that is
equivalent to E2p is

E ′
2p =

〈
↑ 〈l αα〉α . . . 〈l αα〉α︸ ︷︷ ︸

p times

〈l α〉 〈l α〉
〉
.

By Lemma 8.18(1), the only minimal DNA expression denoting S(E2p+1) is

E ′
2p+1 =

〈
↑ 〈l αα〉α . . . 〈l αα〉α︸ ︷︷ ︸

p times

〈l αα〉
〉
.

Now, let p ≥ 1 and let us apply the function MakeMinimal to the ↓-expression E2p+1, with
argument E2p. When we call the function recursively for E2p, this argument is rewritten
into E ′

2p, as that is the only minimal DNA expression that is equivalent to E2p. The
↑-expression E ′

2p has 2p + 2 arguments. In procedure Denickify, we need time that is
linear in p to examine them all, to see if there are consecutive expression-arguments.

Likewise, at a higher level of the recursion, we have had to examine the 2p, 2p−2, 2p−
4, . . . , 4 arguments of E ′

2(p−1), E
′
2(p−2), E

′
2(p−3), . . . , E

′
2, respectively. Altogether, this takes

time that is quadratic in p, and thus in the length of E2p+1.
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〈 ↑ 〈 lα1 〉 〈 ↑α2〈 ↓ 〈 lα3 〉α4〈 lα5 〉 〉 〉 〈 l 〈 ↑ 〈 lα6 〉 〈 lα7 〉α8 〉 〉 〈 ↑ 〈 lα9 〉 〉 〉✝ ✆✡ ✠ ✝ ✆✡ ✠ ✂✁✂ ✁✂ ✁✝ ✆✣ ✢✣ ✢✧ ✦
(a)

〈 ↑ 〈 lα1 〉α2〈 ↓ 〈 lα3 〉α4〈 lα5 〉 〉 〈 l 〈 ↑ 〈 lα6 〉 〈 lα7 〉α8 〉 〉 〈 ↑ 〈 lα9 〉 〉 〉✝ ✆✡ ✠ ✝ ✆✡ ✠ ✂✁✒ ✑✂ ✁✒ ✑✖ ✕
(b)

〈 ↑ 〈 lα1 〉α2〈 ↓ 〈 lα3 〉α4〈 lα5 〉 〉 〈 ↑ 〈 lα6 〉 〈 lα7α8〉 〉 〈 ↑ 〈 lα9 〉 〉 〉✝ ✆✡ ✠ ✂✁ ✂✁✒ ✑✂ ✁✒ ✑✖ ✕
(c)

〈 ↑ 〈 lα1 〉α2〈 ↓ 〈 lα3 〉α4〈 lα5 〉 〉 〈 lα6 〉 〈 lα7α8〉 〈 ↑ 〈 lα9 〉 〉 〉✝ ✆✡ ✠ ✂✁✒ ✑✂ ✁✒ ✑✖ ✕
(d)

Figure 9.17: Third feature of the data structure used in the implementation of the
algorithm for minimality. Each occurrence of ↑ or ↓ has a circular, doubly-linked list
of its non-l-arguments. (a) The lists for an example DNA expression. Note that the
list is empty for the last occurrence of ↑. (b) The result after substituting the ↑-
subexpression 〈↑ α2 〈↓ 〈l α3〉α4 〈l α5〉〉〉 by its arguments. (c) The result after using
procedure MakelExprMinimal to substitute the l-argument 〈l 〈↑ 〈l α6〉 〈l α7〉α8〉〉 by
〈↑ 〈l α6〉 〈l α7α8〉〉. As explained in the text, we do not need to insert the resulting
↑-argument into the list of non-l-arguments of the outermost operator ↑. (d) The result
after substituting the ↑-subexpression 〈↑ 〈l α6〉 〈l α7α8〉〉 by its arguments.

In order to avoid the quadratic time consumption of the algorithm due to the execu-
tion of procedures MakelExprMinimal and Denickify, we add two more features to our
data structure, one for each procedure. We first focus on a feature that is useful for
MakelExprMinimal: for each occurrence of ↑ or ↓ in E we maintain a circular, doubly-
linked list of its non-l-arguments. In fact, the list contains (the positions of) the first
letters of the non-l-arguments. This is the third feature of our data structure. In Fig-
ure 9.17(a), we show the lists for all occurrences of ↑ and ↓ in an example DNA expression.

The time required to initialize the lists for all occurrences of ↑ and ↓ in E is linear in
|E|. One can verify that for almost every operation performed on E in the course of the
algorithm, the lists can easily be updated in constant time. For example, in line 23′ of
MakeMinimal, we substitute an ↑-argument Ei of an ↑-expression by its own arguments.
In principle, we can simply substitute Ei (which is a non-l-argument itself) in the list
of non-l-arguments of its parent operator by the list of its own non-l-arguments (see
Figure 9.17(b)).5 As both lists are doubly-linked lists, we can do this in constant time.

The only exception is line 9′ of the recursive function. There, we substitute an l-
5There is a little subtlety one has to consider when implementing this: if Ei is preceded by an N -

word-argument and its own first argument εi,1 is also an N -word-argument, then these N -word-arguments
merge into one maximal N -word occurrence. Hence, instead of two N -word-arguments in the new list of
non-l-arguments, one may have a single maximal N -word occurrence. In the example from Figure 9.17(a),
this would be the case if the first argument of the DNA expression were α1 instead of 〈l α1〉. We may
have an analogous situation with the last argument of Ei and the argument succeeding Ei.
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expression E = 〈l E1〉, where E1 is a minimal ↑-expression or ↓-expression, by the result
of (precisely) procedure MakelExprMinimal. If, for example, E1 is an ↑-expression, then
the result may also be an ↑-expression E ′ = 〈↑ 〈l α1〉 . . . 〈l αm〉〉 for some m ≥ 2 and
N -words α1, . . . , αm. If E is not the entire DNA expression and its parent operator is ↑
or ↓, then E ′ should be inserted into the list of non-l-arguments of the parent operator.

There are ways to do this in constant time, but we may as well omit it. Suppose that
we omit it, like we do in Figure 9.17(c). We examine what the next step of the algorithm
is, after substituting E by E ′.

MakeMinimal had been called recursively for E (as expression-argument of a larger
DNA expression) in line 15′. If the parent operator of E is ↓, then according to lines
16′–18′, the next step of the algorithm is to substitute E ′ (which is not alternating) by the
result of procedure Denickify, which is the nick free l-expression 〈l α1 . . . αm〉. If, on the
other hand, the parent operator is ↑, then according to lines 22′–24′, the next step of the
algorithm is to substitute E ′ by its l-arguments 〈l α1〉 , . . . , 〈l αm〉, as in Figure 9.17(d).
In both cases, it does not hurt that E ′ was not in the list of non-l-arguments of its parent
operator. It is substituted by only l-arguments, after all.

We conclude that for every operation performed on E, we can (sufficiently) update
the lists of non-l-arguments in constant time. Hence, if the total number of operations
performed by the algorithm is in O(|E|), then so is the time spent on updating these lists.

In procedure MakelExprMinimal, both the ↓-arguments and the N -word-arguments
are substituted ‘in some order’. Hence, the order of the non-l-arguments in the lists is not
important. It is, however, natural to have the arguments in the order of their occurrence
in the DNA expression. This property can easily be achieved. In fact, it is very natural to
implement the initialization and updatings of the lists in such a way, that the lists always
have this property.

Example 9.31 In Example 9.29, we defined a series of DNA expressions E1, E2, E3, . . .,
for which the function MakeMinimal spent at least quadratic time in procedure MakelExpr-
Minimal. This complexity was based on the assumption that for p ≥ 1, all p+2 arguments
of the ↑-expression

E ′
2p =

〈
↑ 〈l αα〉 . . . 〈l αα〉︸ ︷︷ ︸

p times

〈l α〉α
〉

have to be examined to see if they are ↓-arguments or N -word-arguments. This requires
time that is linear in p.

Now that we have a list of non-l-arguments for each occurrence of ↑ or ↓, we can do
better. We can simply traverse the list of the outermost operator ↑ of E ′

2p. Because the
only element of this list is the last argument α of E ′

2p, this requires constant time.

We prove that the current features of the data structure are indeed sufficient to execute
procedure MakelExprMinimal efficiently. For this proof and a later proof, we need some
additional notation:

Definition 9.32 Let E be an arbitrary DNA expression.

• nα(E) is the number of maximal N -word occurrences in E.

• nαl(E) is the number of maximal N -word occurrences in E for which the parent
operator is an occurrence of l.
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• nα↑↓(E) is the number of maximal N -word occurrences in E for which the parent
operator is an occurrence of either ↑ or ↓.

• nN↑↓(E) is the number of N -letters occurring in E, for which the parent operator
(of the maximal N -word occurrence that the N -letter is part of) is an occurrence of
either ↑ or ↓.

Let X be an arbitrary formal DNA molecule.

• n↑↓(X) is the number of single-stranded components of X.

Note the difference between nα↑↓(E) and nN↑↓(E): nα↑↓(E) denotes the number of certain
maximal N -word occurrences, whereas nN↑↓(E) denotes their total length. Note also that
in Definition 6.10, we introduced the notation nl(X), for the number of double components
of a formal DNA molecule X. The notation n↑↓(X) is the natural variant for single-
stranded components. Obviously, for each DNA expression E, nα(E) = nαl(E)+nα↑↓(E)
and nα↑↓(E) ≤ nN↑↓(E).

Example 9.33 Let E be the DNA expression E∗
1 from (9.1) and let X = S(E) (see

Figure 9.2). Then

nα(E) = 23,

nαl(E) = 13,

nα↑↓(E) = 10,

nN↑↓(E) = |α1|+ |α3|+ |α5|+ |α7|+ |α10|+ |α12|+ |α16|+ |α18|+ |α21|+ |α23|,
n↑↓(X) = 6.

Lemma 9.34 Let E∗
1 be an arbitrary DNA expression. The total time that the function

MakeMinimal applied to E∗
1 spends in procedure MakelExprMinimal is in O(|E∗

1 |).
Proof: Let Es = 〈l E1〉 be an l-expression whose argument E1 is a minimal ↑-expression,
and let us apply procedure MakelExprMinimal to Es. We first analyse the time required
for this single application of the procedure. We will use the outcome of this analysis
to prove the claim about the total time spent in the procedure during the execution of
MakeMinimal for E∗

1 .
The main part of procedure MakelExprMinimal consists of the two for-loops. The

other instructions of the algorithm require constant time. We assume that we have a list
containing the non-l-arguments of E1.

Clearly, if E1 does not have any non-l-argument, then also the for-loops require con-
stant time. In that case, the total time spent in procedure MakelExprMinimal for Es is
constant.

Now, assume that E1 has at least one non-l-argument. We prove that the number of
non-l-arguments is at most nN↑↓(E

s). 6

6Under the natural assumption that each N -word-argument of E1 is a maximal N -word occurrence,
we could easily derive a tighter upper bound on the number of non-l-arguments, viz nα↑↓(E

s). How-
ever, this would not be sufficient as an upper bound for the total time spent in the call of procedure
MakelExprMinimal for Es. As we will see later in the proof, we have to determine the elementwise

complement of maximal N -word occurrences with parent operator ↓. We cannot do this in time in
O(nα↑↓(E

s)). We come back to this in Section 9.4.
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By Corollary 8.2, the arguments of E1 are N -words α1,i, or l-expressions 〈l α1,i〉 for
N -words α1,i, or ↓-expressions. In particular, the non-l-arguments are N -words α1,i and
↓-expressions. By Lemma 8.4, the expression-arguments of E1 are nick free.

For each N -word-argument α1,i of E1, the parent operator is ↑. Hence, this argument
contributes its length |α1,i| ≥ 1 to nN↑↓(E

s). By definition, an l-argument 〈l α1,i〉 of E1

does not contribute at all to nN↑↓(E
s). Finally, each ↓-argument E1,i of E1 contributes

nN↑↓(E1,i) to nN↑↓(E
s). As all occurrences of N -letters in Es are in arguments of E1, we

have

nN↑↓(E
s) =

∑

N -words α1,i

|α1,i|+
∑

↓-expr. E1,i

nN↑↓(E1,i). (9.26)

Consider a ↓-argument E1,i of E1. E1,i is in particular a proper DNA subexpression of E1.
Hence, by Lemma 8.27(4), it has at least one N -word-argument α. Because the parent
operator of this N -word-argument is ↓, nN↑↓(E1,i) ≥ |α| ≥ 1. This implies that nN↑↓(E

s)
is an upper bound for the number of non-l-arguments of E1.

Because there is a list of the non-l-arguments of E1, the time needed to just iterate
along all ↓-arguments and N -word-arguments is linear in the number of non-l-arguments,
which thus is in O(nN↑↓(E

s)).
We now examine the operations performed for the non-l-arguments.

• Let E1,i be a ↓-argument of E1. In line MlM.5, we substitute E1,i by
〈
l αE1,i

〉
. For

this, we first have to determine αE1,i
. We prove that we can do this in time that is

in O(nN↑↓(E1,i)).

We can determine αE1,i
by traversing E1,i from left to right, skipping the operators

and the brackets, and linking the maximal N -word occurrences we encounter. Those
maximal N -word occurrences that have (an occurrence of) ↓ as their parent oper-
ator, must be complemented first, before they are added to αE1,i

. For the moment,
however, we ignore these complementations.

Each operator occurring in E1,i corresponds to a DNA subexpression of E1,i. This
DNA subexpression is a proper DNA subexpression of E1. Hence, by Lemma 8.27(4)
the total number of operators occurring in E1,i is limited by the number of maximal
N -word occurrences in E1,i, which we denote by nα(E1,i).

As for the maximal N -word occurrences themselves, recall that we can step directly
from the beginning of a maximal N -word occurrence to the end. Therefore, the
upper bound on the number of operators implies that the total time required for
traversing E1,i from left to right, skipping the operators and the brackets, and linking
maximal N -word occurrences is linear in nα(E1,i).

We now relate nα(E1,i) (the total number of maximal N -word occurrences in E1,i)
to nα↑↓(E1,i) (the number of maximal N -word occurrences with parent operator ↑ or
↓). Consider an arbitrary minimal, nick free ↑-expression or ↓-expression E, and let
X = S(E). By Summary 8.16, X contains at least one single-stranded component
and E is constructed according to Theorem 7.24. It is not difficult to prove by
induction on the lower of B↑(X) and B↓(X), that there is a 1–1 correspondence
between components of X and maximal N -word occurrences in E. Each upper

component
(
αi

−
)
(or lower component

(−
αi

)
or double component

(
αi

c(αi)

)
) for an N -

word αi corresponds to a maximal N -word occurrence αi whose parent operator is
↑ (or ↓ or l, respectively).
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This holds in particular for the minimal, nick free ↓-expression E1,i. Let X1,i =
S(E1,i). Then

nα↑↓(E1,i) = n↑↓(X1,i) ≥ 1,

nαl(E1,i) = nl(X1,i).

Because, by Corollary 3.8, double components and single-stranded components al-
ternate in X1,i, we have

nl(X1,i) ≤ n↑↓(X1,i) + 1 ≤ 2 · n↑↓(X1,i).

Combining the above equations, we find that

nα(E1,i) = nα↑↓(E1,i) + nαl(E1,i)

= nα↑↓(E1,i) + nl(X1,i)

≤ nα↑↓(E1,i) + 2 · n↑↓(X1,i)

= 3 · nα↑↓(E1,i).

In words: the total number of maximal N -word occurrences in E1,i is at most 3
times the number of maximal N -word occurrences in E1,i with parent operator ↑
or ↓. Or in other words: at least one third of the maximal N -word occurrences in
E1,i has parent operator ↑ or ↓. This implies that the time required for traversing
E1,i from left to right, skipping the operators and the brackets, and linking maximal
N -word occurrences is linear in nα↑↓(E1,i). Because nα↑↓(E1,i) ≤ nN↑↓(E1,i), this
time is in O(nN↑↓(E1,i)).

We finally examine the time required for complementing the maximalN -word occur-
rences in E1,i that have ↓ as their parent operator. Clearly, these maximal N -word
occurrences contain at most nN↑↓(E1,i) N -letters. Moreover, it does not really cost
time to find these maximal N -word occurrences: we encounter all maximal N -word
occurrences anyway while traversing E1,i from left to right, and it is not difficult to
keep track of their parent operators (a stack of operators that are currently ‘active’
is sufficient). This implies that the additional time needed to determine the ele-
mentwise complements of the maximal N -word occurrences with parent operator ↓
is in O(nN↑↓(E1,i)).

We conclude that the time required for determining αE1,i
is in O(nN↑↓(E1,i)). Having

determined αE1,i
, we can substitute E1,i by

〈
l αE1,i

〉
in constant time. Hence, the

total time requirement for line MlM.5 is also in O(nN↑↓(E1,i)).

• Let α1,i be an N -word-argument of E1. In lines MlM.8–MlM.17 of procedure
MakelExprMinimal, we substitute α1,i (possibly together with a preceding and a
succeeding l-argument) by a new l-argument. We can do this in constant time.
Hence, we can certainly do this in time that is in O(|α1,i|).
Recall that if E1 is not an ↑-expression, but a ↓-expression, then we must comple-
ment the N -word-argument α1,i, before we make it (part of) the argument of l.
Determining the elementwise complement of αi,1 requires time that is linear in |α1,i|.
Also in this case, the total time required for the substitution of αi,1 is in O(|α1,i|).
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When we combine the time requirements for the operations on the two types of arguments,
we find that the total time required for the operations on all non-l-arguments is in

∑

↓-expr. E1,i

O(nN↑↓(E1,i)) +
∑

N -words α1,i

O(|α1,i|).

By (9.26), this is in O(nN↑↓(E
s)). Hence, the total time spent in procedure MakelExpr-

Minimal for the case that E1 has at least one non-l-argument is in O(nN↑↓(E
s)).

For the general case (E1 with or without non-l-arguments), the time spent in the
procedure is in O(1 + nN↑↓(E

s)). The resulting DNA expression Es′ is equal either to
〈l α1,1〉 for an N -word α1,1, or to 〈↑ 〈l α1,1〉 . . . 〈l α1,m〉〉 for some m ≥ 2 and N -words
α1,1, . . . , α1,m. In both cases, nN↑↓(E

s′) = 0. Now, let E be the overall ‘working DNA
expression’ of the algorithm. When we substitute Es in E by Es′, nN↑↓(E) decreases by
an amount of nN↑↓(E

s).

When we use function MakeMinimal to determine an equivalent, minimal DNA ex-
pression for the original DNA expression E∗

1 , there may be several l-subexpressions Es

for which we apply procedure MakelExprMinimal. Let Es
1, . . . , E

s
r for some r ≥ 0 be all

these l-subexpressions. For h = 1, . . . , r, we spend O(1 + nN↑↓(E
s
h)) time in procedure

MakelExprMinimal, and as a result nN↑↓(E) decreases by nN↑↓(E
s
h). The total time spent

in the procedure is in

O(1 + nN↑↓(E
s
1)) + · · ·+O(1 + nN↑↓(E

s
r)),

which is in

O(r + nN↑↓(E
s
1) + · · ·+ nN↑↓(E

s
r)).

In the course of the algorithm, we also perform other operations on DNA subexpres-
sions of E. It is easily verified that none of these operations changes the parent operator of
any N -word α occurring in E. In particular, none of them increases nN↑↓(E). Hence, the
sum of the decreases of nN↑↓(E) caused by the application of procedure MakelExprMinimal
to Es

1, . . . , E
s
r is bounded by the initial value of nN↑↓(E):

nN↑↓(E
s
1) + · · ·+ nN↑↓(E

s
r) ≤ nN↑↓(E

∗
1).

But then the total time spent in procedure MakelExprMinimal is in O(r + nN↑↓(E
∗
1)).

It follows directly from lines 5′–10′ of MakeMinimal, that r is bounded by the number
of recursive calls of MakeMinimal. It is not hard to prove by induction that this number
(including the call for E∗

1 itself) equals the number of operators occurring in E∗
1 , which is

in O(|E∗
1 |). By definition, nN↑↓(E

∗
1) is also in O(|E∗

1 |). We conclude that the total time
spent in procedure MakelExprMinimal while executing function MakeMinimal for E∗

1 is in
O(|E∗

1 |).

This completes the proof of Lemma 9.34.

By introducing lists of non-l-arguments, we have managed to spend at most linear
time in procedure MakelExprMinimal of our rewriting algorithm. We now add a fourth
feature to our data structure to achieve the same result for procedure Denickify. For
each occurrence of ↑ or ↓ in E, we maintain a circular, doubly-linked list of its consec-
utive expression-arguments. To be more precise: for each expression-argument ε̂j of the
operator, which is preceded by another expression-argument ε̂j−1, the list contains the
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〈 ↑ 〈 lα1 〉α2〈 ↓ 〈 lα3 〉α4〈 lα5 〉 〉 〈 ↑ 〈 lα6 〉 〈 lα7 〉α8 〉 〈 ↑ 〈 lα9 〉 〈 lα10〉 〉 〉✂✁ ✝ ✆✡ ✠ ✝ ✆✡ ✠✒ ✑✒ ✑✖ ✕
(a)

〈 ↑ 〈 lα1 〉α2〈 ↓ 〈 lα3 〉α4〈 lα5 〉 〉 〈 lα6 〉 〈 lα7 〉α8〈 ↑ 〈 lα9 〉 〈 lα10〉 〉 〉✂✁ ✝ ✆✡ ✠✒ ✑✒ ✑✖ ✕
(b)

〈 ↑ 〈 lα1 〉α2〈 ↓ 〈 lα3 〉α4〈 lα5 〉 〉 〈 lα6 〉 〈 lα7 〉α8〈 lα9 〉 〈 lα10〉 〉✂✁✒ ✑✒ ✑✒ ✑✖ ✕
(c)

Figure 9.18: Fourth feature of the data structure used in the implementation of the
algorithm for minimality. Each occurrence of ↑ or ↓ has a circular, doubly-linked list of
its consecutive expression-arguments. (a) The lists for an example DNA expression. (b)
The result after substituting the ↑-subexpression 〈↑ 〈l α6〉 〈l α7〉α8〉 by its arguments. (c)
The result after substituting the ↑-subexpression 〈↑ 〈l α9〉 〈l α10〉〉 by its arguments.

position of the first letter of ε̂j (which is an opening bracket). In Figure 9.18(a), we show
the lists for all occurrences of ↑ and ↓ in an example DNA expression.

The time needed to initialize these new lists for all occurrences of ↑ and ↓ in a DNA
expression E is linear in |E|. After any basic operation performed on E, the lists can be
updated in constant time.

As an example, we again consider line 23′ of MakeMinimal, where we substitute an
↑-argument Ei of an ↑-expression by its own arguments. Let Ei = 〈↑1 εi,1 . . . εi,ni

〉 for
some ni ≥ 1 and N -words and DNA expressions εi,1, . . . , εi,ni

. In principle, we can just
remove Ei from the list of consecutive expression-arguments of its parent operator ↑0 (if
it is in that list) and insert the list of consecutive expression-arguments of Ei into that
list. The borders of Ei, however, require a special treatment.

Assume, for example, that the ↑-argument Ei is preceded by another expression-
argument Ei−1. Then (the opening bracket of) Ei is in the list of consecutive expression-
arguments of ↑0. After the substitution, Ei−1 is succeeded by the first argument εi,1 of Ei.
If εi,1 is an N -word, then Ei−1 is no longer succeeded by an expression-argument. Hence,
the parent operator ↑0 loses a pair of consecutive expression-arguments. If, on the other
hand, εi,1 is a DNA expression, then it takes over the role of Ei. Whereas εi,1 was not
in the list of consecutive expression-arguments of ↑1 (because it was not preceded by any
argument in Ei), it must be inserted into the list of ↑0. Similar situations may occur if
Ei is succeeded by another expression-argument Ei+1. This description is illustrated by
Figure 9.18(b).

In the above, either Ei or Ei+1 (or both) used to be in the list of consecutive expression-
arguments of ↑0. In that case, it is natural and easy to insert the list of consecutive
expression-arguments of ↑1 into the list of ↑0 at the position corresponding to Ei. If,
however, Ei is neither preceded, nor succeeded by an expression-argument, then we should
first determine this position. There are ways to do this in constant time, but we may as well
omit it. In fact, we may insert the list of consecutive expression-arguments of ↑1 anywhere
into the list of ↑0, because in procedure Denickify, the order in which we select pairs of
consecutive expression-arguments is not specified. By Theorem 9.24(3), the result of the
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procedure is completely independent of this order. In Figure 9.18(c), we have arbitrarily
inserted the l-argument 〈l α10〉 (which is preceded by another expression-argument), at
the end of the list of consecutive expression-arguments of the outermost operator ↑.

Although we have to distinguish a number of cases to update the lists of consecutive
expression-arguments after substituting the ↑-argument Ei by its own arguments, we can
still do this in constant time.

For the other operations we perform in the course of the algorithm, updating these lists
is relatively easy. A number of operations simply consist of substituting one DNA subex-
pression by another, which does not really affect the occurrence of consecutive expression-
arguments. As we observed in the proof of Theorem 9.27, in procedure RotateToMinimal,
we deal with DNA expressions for which each occurrence of ↑ or ↓ is alternating. For those
operators, the lists are and remain empty.

We can use the lists of consecutive expression-arguments also to check if a DNA ex-
pression Ei or E is alternating, in lines 16′ and 32′ of MakeMinimal, respectively. This
is the case, if and only if the list of consecutive expression-arguments of the outermost
operator is empty. We can check this in constant time.

Example 9.35 In Example 9.30, we defined a series of DNA expressions E1, E2, E3, . . .,
for which the function MakeMinimal spent at least quadratic time in procedure Denickify.
This complexity was based on the assumption that for p ≥ 1, all 2p+ 2 arguments of the
↑-expression

E ′
2p =

〈
↑ 〈l αα〉α . . . 〈l αα〉α︸ ︷︷ ︸

p times

〈l α〉 〈l α〉
〉
.

have to be examined to see if there are consecutive expression-arguments. This requires
time that is linear in p.

Now that we have a list of consecutive expression-arguments for each occurrence of ↑
or ↓, we can do better. We can simply traverse the list of the outermost operator ↑ of E ′

2p.
Because the only element of this list is the last argument 〈l α〉 of E ′

2p (which is preceded
by another argument 〈l α〉), this requires constant time.

We now prove that the lists of consecutive expression-arguments indeed enable us to
execute procedure Denickify efficiently.

Lemma 9.36 Let E∗
1 be an arbitrary DNA expression. The total time that the function

MakeMinimal applied to E∗
1 spends in procedure Denickify is in O(nα(E

∗
1)), which is in

O(|E∗
1 |).

Proof: Let Ei be a minimal ↓-expression which is not alternating, and let us apply
procedure Denickify to Ei. We first analyse the time required for this single application
of the procedure. We will use the outcome of this analysis to prove the claim about the
total time spent in the procedure during the execution of MakeMinimal for E∗

1 .
The main part of procedure Denickify is formed by the while-loop. The other instruc-

tions of the procedure require constant time. We assume that we have a list containing
the consecutive expression-arguments of Ei.

At the beginning of each iteration of the while-loop, we test the condition “Êi is not
alternating.” This is the case, if and only if the list with the consecutive expression-
arguments is not empty. We can test this in constant time.
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In each iteration of the while-loop, we select two consecutive expression-arguments
ε̂j−1 and ε̂j of the ‘working DNA expression’ Êi, and substitute ε̂j−1ε̂j in Êi by a single
expression-argument. Again, because we have a list with the consecutive expression-
arguments, we can perform the selection of ε̂j−1 and ε̂j in constant time. For the substi-
tution, we have to distinguish four different cases. Both the distinction of these cases and
the subsequent substitution can be carried out in constant time. Consequently, each iter-
ation of the while-loop requires constant time, and the total time spent in the while-loop
is linear in the number of iterations.

Let us use niter(Ei) to denote this number of iterations. Then the time spent in
procedure Denickify for Ei (outside and inside the while-loop) is in O(1 + niter(Ei)). As
Ei is not alternating, niter(Ei) ≥ 1. Hence, the time spent in the procedure for Ei is in
O(niter(Ei)). In fact, because niter(Ei) also provides a lower bound, the time is linear in
niter(Ei).

In the course of the execution of MakeMinimal for E∗
1 , procedure Denickify may be

applied to several different DNA subexpressions Ei. If we use niter(E
∗
1) to denote the total

number of iterations of the while-loop in the procedure during all these applications, then
the total time spent in the procedure is linear in niter(E

∗
1).

It is immediate from the pseudo-code of procedure Denickify that the substitution
performed in an iteration of the while-loop leads to a decrease of the number of maximal
N -word occurrences in Êi by 1. Of course, this corresponds to an equal decrease of the
number of maximal N -word occurrences in the overall ‘working DNA expression’ E, which
we denote by nα(E).

Now, it is easily verified that at no point in the algorithm, nα(E) increases.7 Hence,
niter(E

∗
1) ≤ nα(E

∗
1). This implies that the total time spent in procedure Denickify is in

O(nα(E
∗
1)). Obviously, nα(E

∗
1) is in O(|E∗

1 |).

By now, we know the time requirements of procedures MakelExprMinimal and
Denickify. There is one more point we like to make before we determine the total
time complexity of the function MakeMinimal. It is a point we also made in Section 4.4,
when we analysed the recursive function ComputeSem.

The (only) parameter of MakeMinimal is a DNA expression E. When we (recursively)
call the function for an expression-argument Ei of E, we do not have to explicitly copy this
expression-argument as a sequence of individual characters into the actual parameter of
the call. It is sufficient to make a ‘call by reference’, e.g., by passing the starting position
of Ei (the position of its opening bracket) to the call. This implies that both the time
needed to set the actual parameter and the space required to store it are constant for a
single call.

Actually, we should have addressed this issue also when we analysed the time require-
ments of the procedures MakelExprMinimal and Denickify. The fact that we ignored it
there, does not mean that Lemma 9.34 and Lemma 9.36 are not valid. For both procedures,
as with MakeMinimal, the time needed to set the actual parameter (a DNA expression)
can be considered constant. In the proofs of both lemmas, we can simply include this
constant time in the time required by the instructions outside the loop(s). The proofs can
then proceed in the same way.

We now establish the time complexity of MakeMinimal.

7If in procedure MakelExprMinimal, we allow N -word-arguments of E1 that are not maximal N -
word occurrences, then nα(E) may temporarily increase. However, at the end of that procedure, nα(E)
cannot be higher than at the beginning. For example, if E1 = 〈↑ α1,1α1,2 〈l α1,3〉〉, then 〈l E1〉 may be
successively rewritten into 〈l 〈↑ 〈l α1,1〉α1,2 〈l α1,3〉〉〉, 〈l 〈↑ 〈l α1,1α1,2α1,3〉〉〉 and 〈l α1,1α1,2α1,3〉.
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Theorem 9.37 Let E∗
1 be an arbitrary DNA expression. The time required by the function

MakeMinimal for E∗
1 is in O(|E∗

1 |).
Proof: For an arbitrary DNA expression E, let us use TMM(E) to denote the time re-
quired by MakeMinimal for E, except the time spent in procedures MakelExprMinimal and
Denickify. We prove that TMM(E) is in O(|E|). Then the claim follows from Lemma 9.34
and Lemma 9.36.

To analyse TMM(E), we define three positive constants that are upper bounds for the
time spent in specific parts of MakeMinimal:

c1 is the maximum time required by MakeMinimal for an l-expression E, except the time
spent in recursive calls of the function and the time spent in procedure MakelExpr-
Minimal.

Hence, c1 is the maximum time required for setting the actual parameter E in line 1′

and executing lines 3′–11′ and 36′ of the function, except the recursive call in line 5′

and procedure MakelExprMinimal in line 9′.

c2 is the maximum time required by MakeMinimal for an ↑-expression E, except the time
spent for each of its n arguments ε1, . . . , εn.

Hence, c2 is the maximum time required for setting the actual parameter E in line 1′

and executing lines 3′, 12′, 27′–36′ and the initialization of the for-loop in line 13′ of
the function.

c3 is the maximum time spent in MakeMinimal on an argument εi of an ↑-expression
E, except the time spent in recursive calls of the function and the time spent in
procedure Denickify.

Hence, c3 is the maximum time required for executing lines 14′–26′ and the itera-
tion in line 13′ of the function, except the recursive call in line 15′ and procedure
Denickify in line 17′.

It follows from the observations made after the introduction of the first two features and
the fourth feature of our data structure (on pages 287 and 297, respectively) and from
the observation about passing the parameter for a (recursive) call of MakeMinimal (on
page 298), that c1, c2 and c3 are indeed constants. They do not depend on, e.g., the
nesting level, the question whether or not a DNA expression is alternating, or the number
of arguments of a particular DNA expression E.

Note that for most DNA expressions E, we spend less time in MakeMinimal than
specified by the three constants. For example, the constant c1 for l-expressions E is
based on the case that E = 〈l E1〉 for a DNA expression E1. If, however, E = 〈l α〉 for
an N -word α, then we do not have to carry out lines 5′–10′, and thus need much less time.

Now, let the constant c∗ be defined by

c∗ = max

{
c1
3
,
c2 + c3

3
, c3

}
.

We prove by induction on the number p of operators occurring in E, that TMM(E) ≤
c∗ · |E|−c3. Here, we subtract c3, to be prepared for the additional constant time required
for every argument of an ↑-expression E. 8 We will come back to this later. Although

8The reader who is familiar with amortized complexity may view this as a kind of amortization: a
certain part of the time spent on the arguments of an ↑-expression (c3 per argument) is accounted for by
the individual arguments.
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we may assume that N -word-arguments of an ↑-expression or ↓-expression are maximal
N -word occurrences, we do not make that assumption in the proof.

• Assume that p = 1. Then E can only have N -word-arguments, and we do not have
recursive calls of MakeMinimal.

If E is an l-expression, then E = 〈l α1〉 for an N -word α1 and TMM(E) ≤ c1.
Clearly, |E| ≥ 4. We now distinguish two (overlapping) subcases. If c1 ≥ 3c3, then

TMM(E) ≤ c1 = c1 + c3 − c3 ≤
4

3
c1 − c3 ≤ 4c∗ − c3 ≤ c∗ · |E| − c3,

where the third inequality follows from c∗ ≥ c1
3
. If, on the other hand, c1 ≤ 3c3,

then

TMM(E) ≤ c1 ≤ 3c3 = 4c3 − c3 ≤ 4c∗ − c3 ≤ c∗ · |E| − c3,

where the third inequality follows from c∗ ≥ c3.

If E is an ↑-expression, then E = 〈↑ α1 . . . αn〉 for some n ≥ 1 and N -words
α1, . . . , αn. In this case, |E| ≥ n+ 3 and

TMM(E) ≤ c2 + n · c3 ≤ 3c∗ − c3 + n · c∗ ≤ c∗ · |E| − c3,

where the second inequality follows from c∗ ≥ c2+c3
3

(which is equivalent to c2 ≤
3c∗ − c3) and c∗ ≥ c3.

If E is a ↓-expression, then the proof is completely analogous.

• Let p ≥ 1, and suppose that TMM(E) ≤ c∗ · |E| − c3 for all DNA expressions
E containing at most p operators (induction hypothesis). Now let E be a DNA
expression that contains p+ 1 operators.

If E is an l-expression, then E = 〈l E1〉 for a DNA expression E1. We get a recursive
call of MakeMinimal for E1, in line 5′ of the function. Hence, TMM(E) ≤ c1+TMM(E1).
Because E1 contains p operators, we can apply the induction hypothesis to it:

TMM(E) ≤ c1 + TMM(E1) ≤ c1 + c∗ · |E1| − c3

≤ c∗ · (|E1|+ 3)− c3 = c∗ · |E| − c3,

where the third inequality follows from c∗ ≥ c1
3
.

If E is an ↑-expression, then E = 〈↑ ε1 . . . εn〉 for some n ≥ 1 and N -words and DNA
expressions ε1, . . . , εn. We examine the time spent in MakeMinimal on an argument
εi with 1 ≤ i ≤ n. If εi is an N -word αi, then the time spent on this argument is
bounded by

c3 ≤ c∗ ≤ c∗ · |αi|,

because obviously |αi| ≥ 1. If, on the other hand, εi is a DNA expression Ei, then
we have a recursive call of MakeMinimal for Ei, in line 15′ of the function. Hence,
the time spent on this argument is bounded by c3 + TMM(Ei). Because Ei contains
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at most p operators, the induction hypothesis is applicable to it. This implies that
the time spent on Ei is bounded by

c3 + TMM(Ei) ≤ c3 + c∗ · |Ei| − c3 = c∗ · |Ei|.

Note that here we benefit from the term −c3 in the upper bound for TMM(E).

We conclude that both if εi is an N -word αi and if it is a DNA expression Ei, we
spend at most c∗ · |εi| time on it, apart from procedures MakelExprMinimal and
Denickify. Then

TMM(E) ≤ c2 + c∗ · (|ε1|+ · · · |εn|)
≤ 3c∗ − c3 + c∗ · (|ε1|+ · · · |εn|) = c∗ · |E| − c3,

where the second inequality follows from c∗ ≥ c2+c3
3

.

If E is a ↓-expression, then the proof is completely analogous.

At the beginning of this section, we observed that the function MakeMinimal requires
at least linear time. Combining this with Theorem 9.37, we obtain the following result:

Corollary 9.38 Let E∗
1 be an arbitrary DNA expression. The time required by the func-

tion MakeMinimal for E∗
1 is linear in |E∗

1 |.
It is not hard to see that the data structure we propose to achieve this time complexity,
has linear size. For each letter (symbol) in the DNA expression, we need to store (at
most) a constant number of references to other letters.

For example, for the first feature of the data structure, the doubly-linked list containing
the entire DNA expression, we need two references per letter: one to the preceding and one
to the succeeding letter. For the other three features, the space required depends on the
DNA expression at hand. It may be much less than linear, but a single, simple example
suffices to demonstrate that each of these features may really require linear space.

Example 9.39 Let α be an arbitrary N -word, and let Ep be defined by

Ep =

〈
↑ 〈↑ α〉 〈↑ α〉 . . . 〈↑ α〉︸ ︷︷ ︸

p times

〉
(p ≥ 1).

It is easy to see that for any p ≥ 1, Ep is a DNA expression, with |Ep| = 3+ p · (3+ |α|) =
3 + 3p+ p · |α| and S(Ep) =

(
α
−
)(

α
−
)
. . .
(
α
−
)

︸ ︷︷ ︸
p times

. In addition, for any p ≥ 1,

• Ep contains p+ 1 pairs of matching brackets. Hence, the second feature of the data
structure requires p+1 connections (in both directions) between an opening bracket
and the corresponding closing bracket.

• Ep contains p occurrences of the N -word α (in fact, maximal N -word occurrences),
each of which serves as the argument of an operator ↑. Hence, the second feature
of the data structure requires p connections (in both directions) between the first
letter and the last letter of such an N -word-argument.
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• the outermost operator ↑ of Ep has p arguments 〈↑ α〉, which are, in particular,
non-l-arguments. Hence, the third feature of the data structure requires a circular,
doubly-linked list for this operator containing these p arguments.

• Ep contains p inner occurrences of the operator ↑. Each of these inner occurrences
has an N -word-argument α, which is, in particular, a non-l-argument. Hence, the
third feature of the data structure requires p circular, doubly-linked lists for these
operators, each containing the corresponding N -word-argument.

• the outermost operator ↑ of Ep has p arguments 〈↑ α〉, which are, in particular,
consecutive expression-arguments. Hence, the fourth feature of the data structure
requires a circular, doubly-linked list for this operator containing the last p − 1
arguments (each of which is the second of two consecutive expression-arguments).

Each of the specified sets of connections or doubly-linked lists requires space that is linear
in p, and thus in |Ep|.

As we mentioned before the statement of Theorem 9.37 (on page 298), a single call of
the function MakeMinimal requires constant space to pass the (only) parameter, the DNA
expression E. The function is called recursively once for every DNA subexpression of E∗

1 ,
i.e., once for every operator occurring in E∗

1 . Hence, the total space required for passing
the parameter for all recursive calls is at most linear in |E∗

1 |.
We can therefore conclude:

Theorem 9.40 Let E∗
1 be an arbitrary DNA expression. The space required by the func-

tion MakeMinimal for E∗
1 is linear in |E∗

1 |.

Hence, both the time complexity and the space complexity of the function are linear.

9.4 Decrease of length by the algorithm

In the previous section, we proved that the total time required by the function MakeMinimal
is linear in the length of its argument E. We first observed that we need at least linear
time, because we must in principle consider every letter of E. That is, we must simply
read E. We subsequently introduced a proper data structure, which can be initialized in
linear time. We proved that with this data structure, we can perform all rewriting steps in
the function (together) in O(|E|) time. Our analysis did not differentiate between DNA
expressions which are close to minimal and DNA expressions which are far from minimal.

Now, we choose a different approach. We ignore the time needed to read E and to
initialize the data structure. We focus on the actual rewriting steps, and prove that the
time they require is proportional to the improvements they produce, i.e., to the decrease
of |E| resulting from them. For this, however, we need to make an assumption about E,
and to slightly adjust one of the rewriting steps.

So far, in the analysis of our algorithm, we allowed occurrences of operators ↑ and ↓ in
E to have consecutive N -word-arguments. That is, we did not assume N -word-arguments
to be maximalN -word occurrences in E. We sometimes mentioned the possibility to make
such an assumption, but we did not need it to prove that the algorithm is correct and that
it runs in linear time. By Theorem 4.3, however, we can make the assumption without
loss of generality.
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The adjustment of the algorithm deals with complementing N -words. In the proof of
Lemma 9.34, we observed that in procedure MakelExprMinimal, we may have to determine
the elementwise complement of an N -word α. This requires time that is linear in |α|.
Instead of doing this, we can also mark the N -word as a whole, to indicate that it has to
be complemented. For example, we can label its first letter and last letter, as if we write
“c(α)”. 9 That requires constant time.

Note that the issue whether or not the N -word-arguments of an operator are maximal
N -word occurrences may have consequences for the (number of) steps to be performed
in procedure MakelExprMinimal. However, the result of the procedure does not depend
on it. It is not hard to verify this from the pseudo-code of the procedure directly. It also
follows from Theorem 9.20(2), which states that there exists exactly one minimal DNA
expression E ′ with the desired semantics.

For the other operations performed in the course of the algorithm, it does not matter
at all whether or not N -word-arguments are maximal N -word occurrences. Marking N -
words instead of determining their elementwise complement certainly does not change the
resulting DNA expression.

We now have

Theorem 9.41 Let E∗
1 be an arbitrary DNA expression, and let E∗

2 be the result of ap-
plying the function MakeMinimal to E∗

1 . Assume that for each occurrence of ↑ or ↓ in E∗
1 ,

each N -word-argument is a maximal N -word occurrence, and that we simply mark the
N -words that have to be complemented. Then the time required by the rewriting steps in
MakeMinimal is linear in |E∗

1 | − |E∗
2 |.

Proof: Let E be the ‘working DNA expression’ of the function MakeMinimal. In principle,
we prove that each substitution in the function corresponds to a decrease of |E| that is
proportional to the time required by the substitution. As we will see below, there is one
exception to this rule: for the substitution in line 20′, we need to combine the effect with
the effect of another substitution.

• In line 7′ of MakeMinimal, we have an l-expression E = 〈l E1〉, where E1 is a
minimal l-expression. We substitute E by E1. This requires constant time and
yields a decrease of |E| by 3.

• In line 9′ of MakeMinimal, we have an l-expression E = 〈l E1〉, where E1 is either
a minimal ↑-expression, or a minimal ↓-expression. Without loss of generality, as-
sume it is a minimal ↑-expression. We substitute E by the result of procedure
MakelExprMinimal.
This substitution is a bit more involved. For its analysis, we distinguish specific
parts of procedure MakelExprMinimal, and examine how much time we spend and
how much shorter E becomes in each part. To simplify the notation, we do not
consider the length of E directly. Instead, we count (changes in) the number of
operators occurring in E. By Lemma 6.1, this number determines |E|, given that
(the number of A-letters in) the semantics of E is fixed.

– A certain part of procedure MakelExprMinimal is executed once for every DNA
expression E to which the procedure is applied. This part consists of lines

9In this thesis, we often do write c(α) in a DNA expression. This is, however, only meant as a simple
notation for the elementwise complement of α. In particular, |c(α)| = |α|. Indeed, the letters c, ( and )
are not in the alphabet ΣD that our language of DNA expressions is based on (see page 43).
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MlM.1–MlM.3, MlM.19–MlM.23, and the initializations of the two for-loops
in lines MlM.4 and MlM.7.

Let c1 and d1 be the minimum and maximum time spent in this part of the
procedure, respectively. In lines MlM.19–MlM.22, the final rewriting step on
the (total) ‘working DNA expression’

〈
l Ê1

〉
= 〈l 〈↑ 〈l α1,1〉 . . . 〈l α1,m〉〉〉

is performed. As a result, we lose one (if m ≥ 2) or two (if m = 1) operators.

– Another part of the procedure is executed once for each ↓-argument E1,i of E1.
This part consists of lines MlM.5, MlM.6 and the iteration of the for-loop in
line MlM.4.

In line MlM.5, we substitute E1,i by
〈
l αE1,i

〉
. In the proof of Lemma 9.34,

we have observed that we can determine αE1,i
by traversing E1,i from left to

right, skipping operators and brackets, complementing maximal N -word occur-
rences that used to have ↓ as parent operator, and linking consecutive maximal
N -word occurrences. We established that the time required for traversing,
skipping and linking is linear in nα(E1,i).

By assumption, we only mark maximal N -word occurrences that have to be
complemented. This implies that the time required for determining αE1,i

com-
pletely (including the marking of maximal N -word occurrences) is linear in
nα(E1,i). Consequently, the time spent in procedure MakelExprMinimal on
E1,i is also linear in nα(E1,i). Let c2 and d2 be positive constants such that
c2 · nα(E1,i) and d2 · nα(E1,i) are a lower bound and an upper bound for this
time, respectively.

We now examine how many operators we lose by substituting E1,i by
〈
l αE1,i

〉
.

Let us use p to denote the number of operators occurring in E1,i. We de-
rive an upper bound and a lower bound for p. As we observed in the proof
of Lemma 9.34, p ≤ nα(E1,i). On the other hand, let X1,i = S(E1,i). By
Corollary 8.17(2),

p = 1 + B↑(X1,i) + nl(X1,i) ≥ 1 + nl(X1,i). (9.27)

We also observed in the proof of Lemma 9.34 that

nα↑↓(E1,i) = n↑↓(X1,i), (9.28)

nαl(E1,i) = nl(X1,i) (9.29)

Now by Corollary 3.8, double components and single-stranded components al-
ternate in the nick free formal DNA molecule X1,i. By Lemma 8.27(6), either
the first component or the last component ofX1,i is a double component. Hence,
nl(X1,i) ≥ n↑↓(X1,i). Combining this with (9.27)–(9.29), we find

p ≥ 1 + nl(X1,i) ≥ 1 +
1

2
(n↑↓(X1,i) + nl(X1,i))

= 1 +
1

2
(nα↑↓(E1,i) + nαl(E1,i)) = 1 +

1

2
nα(E1,i).

We can conclude that by substituting E1,i by
〈
l αE1,i

〉
, we lose at most

nα(E1,i)− 1 and at least 1
2
nα(E1,i) operators.
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– Finally, a part of the procedure is executed once for each N -word-argument
α1,i of E1. This part consists of lines MlM.8–MlM.18 and the iteration of the
for-loops in lines MlM.4 (given that we do not have a list of ↓-arguments of
E1, but only a list of non-l-arguments) and MlM.7.

Let c3 and d3 be the minimum and maximum time spent in this part of the
procedure for a single N -word-argument, and let k ≥ 0 be the number of N -
word-arguments. By assumption, each N -word-argument of E1 is a maximal
N -word occurrence.

We examine the result of the substitution of the N -word-arguments in lines
MlM.8–MlM.17. At that point in the procedure, the only other arguments of

the ‘working ↑-subexpression’ Ê1 are l-arguments 〈l α1,i〉 for N -words α1,i. Let

us denote the number of operators occurring in Ê1 by Op(Ê1). We distinguish
three cases.

If anN -word-argument α1,i is neither preceded, nor succeeded by an l-argument

(i.e., if it is the only argument of Ê1), then α1,i is substituted by 〈l α1,i〉. In

this case, Op(Ê1) increases by 1. Otherwise, if an N -word-argument α1,i is not
preceded or not succeeded by an l-argument (i.e., if α1,i is the first or the last

argument of Ê1), then the corresponding substitution does not affect Op(Ê1).
Finally, if an N -word-argument α1,i is both preceded and succeeded by an l-
argument, then the corresponding substitution yields a decrease of Op(Ê1) by
1.

Clearly, there are at most two N -word-arguments that are the first or the
last argument of Ê1. Hence, if k ≥ 3, then the substitution of the N -word-
arguments results in a decrease of Op(Ê1) by at least k− 2. In other words, in
that case, we lose at least k − 2 operators.

We now combine the effects of the different parts of procedure MakelExprMinimal
to compute the overall effect for an l-expression E. Let TMlM(E) be the total time
spent in the procedure for E and let δ(E) be the decrease of the number of operators
due to the substitutions in the procedure. Then

c1 + c2 ·
∑

↓-arg E1,i

nα(E1,i) + c3 · k

≤ TMlM(E) ≤ d1 + d2 ·
∑

↓-arg E1,i

nα(E1,i) + d3 · k, (9.30)

where k is (again) the number of N -word-arguments of the ↑-expression E1.

For δ(E), we distinguish three cases, which are related to the three cases for N -
word-arguments we considered above.

If E1 does not have any expression-argument, then because its N -word-arguments
are maximal N -word occurrences, it has only one argument, which is an N -word
α1,1. In this case,

δ(E) = 2 + 0− 1 = 1,
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where the three terms correspond to the three parts of the procedure. If the ↑-
expression E1 has at least one expression-argument and k ≤ 2 N -word-arguments,
then

1 +
1

2

∑

↓-arg E1,i

nα(E1,i) + 0 ≤ δ(E) ≤ 2 +
∑

↓-arg E1,i

(nα(E1,i)− 1) + k. (9.31)

Finally, if the ↑-expression E1 has at least one expression-argument and k ≥ 3 N -
word-arguments,10 then at least k − 2 ≥ 1 N -word-arguments are both preceded
and succeeded by an expression-argument, and

1 +
1

2

∑

↓-arg E1,i

nα(E1,i) + k − 2 ≤ δ(E) ≤ 2 +
∑

↓-arg E1,i

(nα(E1,i)− 1) + k.

In the first case, where E1 only has an N -word-argument α1,1, we have k = 1 and
no ↓-arguments E1,i at all. Hence, the value δ(E) = 1 also satisfies (9.31).

Now, let us define the constants c∗ and d∗ by

c∗ = max

{
2

c1
,
1

c2
,
1

c3

}
and d∗ = min

{
1

d1 + 2d3
,
1

2d2

}
.

If k ≤ 2, then

δ(E) ≥ 1 +
1

2

∑

↓-arg E1,i

nα(E1,i)

≥ d∗ ·


d1 + 2d3 + d2 ·

∑

↓-arg E1,i

nα(E1,i)




≥ d∗ ·


d1 + d2 ·

∑

↓-arg E1,i

nα(E1,i) + d3 · k


 ≥ d∗ · TMlM(E),

where the second inequality follows from d∗ ≤ 1
d1+2d3

and d∗ ≤ 1
2d2

, and the last
inequality follows from (9.30). If, on the other hand, k ≥ 3, then

δ(E) ≥ 1 +
1

2

∑

↓-arg E1,i

nα(E1,i) + k − 2

≥ d∗ ·


d1 + 2d3 + d2 ·

∑

↓-arg E1,i

nα(E1,i) + d3 · (k − 2)


 ≥ d∗ · TMlM(E),

where the second inequality follows from d∗ ≤ 1
d1+2d3

, d∗ ≤ 1
2d2

and d∗ ≤ 1
d1+2d3

≤ 1
d3
,

and the last inequality follows from (9.30).

10Because the N -word-arguments are maximal N -word occurrences, E1 actually has at least k− 1 ≥ 2
expression-arguments.
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Further, for all cases,

δ(E) ≤ 2 +
∑

↓-arg E1,i

(nα(E1,i)− 1) + k

≤ c∗ ·


c1 + c2 ·

∑

↓-arg E1,i

(nα(E1,i)− 1) + c3 · k




≤ c∗ ·


c1 + c2 ·

∑

↓-arg E1,i

nα(E1,i) + c3 · k


 ≤ c∗ · TMlM(E),

where the second inequality follows from c∗ ≥ 2
c1
, c∗ ≥ 1

c2
and c∗ ≥ 1

c3
, and the last

inequality follows from (9.30).

We can conclude that TMlM(E) (the time spent in procedure MakelExprMinimal for
E) is linear in δ(E) (the decrease of the number of operators due to the application
of the procedure to E). Thus TMlM(E) is also linear in the corresponding decrease of
|E|. In other, less formal words: the time we spend in procedure MakelExprMinimal
is payed for with a proportional decrease of |E|.
Note that the above conclusion is valid for the application of the procedure as a
whole. As we have seen when we analysed the substitution of N -word-arguments of
E1, the substitution of an individual N -word-argument does not necessarily yield a
decrease of |E|; it may even lead to an increase of |E|.

• In line 17′ of MakeMinimal, we have an ↑-expression E, with a minimal ↓-argument
Ei that is not alternating. We substitute Ei by the result of procedure Denickify.

In that procedure, the ‘working ↓-expression’ is denoted by Êi. As in the previous
case, we count (changes in) the number of operators occurring in Êi, rather than

examining |Êi| directly. We also use Op(Êi) to denote the number of operators

occurring in Êi.

Let TDni(Ei) be the time we spend in procedure Denickify for Ei, and let δ(Ei) be
the number of operators we lose due to the application of the procedure to Ei.

As we observed in the proof of Lemma 9.36, TDni(Ei) is linear in niter(Ei), the number
of iterations of the while-loop in lines Dni.4–Dni.19 for Ei.

We now examine δ(Ei). In every iteration of the loop, we substitute two consecutive

expression-arguments ε̂j−1 and ε̂j of Êi by a single expression-argument. It is easily
verified from the pseudo-code of the procedure, that this results in a decrease of
Op(Êi) by 1 (if either ε̂j−1 or ε̂j is an l-expression) or 2 (if both ε̂j−1 and ε̂j are

↑-expressions). Hence, the decrease of Op(Êi) as a result of (all iterations of) the
while-loop is linear in niter(Ei).

At the end of procedure Denickify, in lines Dni.20–Dni.26, we distinguish three
cases. If Êi has only one argument left, then we substitute Êi by this argument.
Thus, we lose one more operator. If Êi has two or more arguments, and both its
first argument and its last argument are ↑-arguments, then we substitute Êi by an
↑-expression Ê ′

i, which is the result of procedure RotateToMinimal. It is easy to see
from the pseudo-code of that procedure (on page 272), that in this case, we also lose
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an operator. Finally, if Êi has two or more arguments, and either its first argument
or its last argument is not an ↑-argument, then we do not rewrite Êi any further.

We conclude that we lose either zero or one operator in lines Dni.20–Dni.26 of proced-
ure Denickify. Because the original ↓-expression Ei is not alternating, niter(Ei) ≥ 1.
This implies that δ(Ei), the total number of operators we lose due to the applica-
tion of procedure Denickify (both inside and outside the while-loop), is linear in
niter(Ei).

Because TDni(Ei) is also linear in niter(Ei), TDni(Ei) is linear in δ(Ei). By Lemma 6.1,
TDni(Ei) is also linear in the corresponding decrease of |E|.

• In line 20′ of MakeMinimal, we have an ↑-expression E with a ↓-argument Ei, such
that either the first argument or the last argument of Ei is an ↑-argument. By the
recursive call in line 15′ of the function, and the possible application of procedure
Denickify in line 17′, Ei is minimal and alternating.

We substitute Ei by the result of procedure RotateToMinimal, which is an equi-
valent, minimal ↑-expression E ′

i. Because Ei and E ′
i are equivalent and both of

them are minimal, they are equally long. Hence, the substitution itself does not
yield a decrease of |E|. However, in the next step of the function, in line 23′, the
↑-expression E ′

i is substituted by its arguments. Both substitutions for Ei require
constant time, and the total effect of the substitutions is a decrease of |E| by 3.

• In line 23′ of MakeMinimal, we have an ↑-expression E with an ↑-argument Ei.
Because Ei is not necessarily the product of the substitution in line 20′ (which we
considered in the previous case), we also consider this case separately.

We substitute Ei by its arguments. This requires constant time and yields a decrease
of |E| by 3.

• In line 29′ of MakeMinimal, we have an ↑-expression E with exactly one argument,
which is a DNA expression E1. We substitute E by E1. This requires constant time
and yields a decrease of |E| by 3.

• Finally, in line 33′ of MakeMinimal, we have an alternating ↑-expression E with at
least two arguments, such that both the first argument and the last argument are
↓-arguments.

We substitute E by the result of (the version for ↑-expressions of) procedure Rotate-
ToMinimal. This requires constant time. As was the case for the application of
RotateToMinimal in procedure Denickify, it is easy to see that the substitution
yields a decrease of |E| by 3.

This completes the proof of Theorem 9.41.

If a DNA expression E∗
1 is minimal, then its length is equal to that of the equivalent,

minimal DNA expression E∗
2 produced by MakeMinimal. Now Theorem 9.41 implies that

MakeMinimal spends no time on actual rewriting steps for E∗
1 . In other words, E∗

2 must
be equal to E∗

1 . Thus, Theorem 9.41 yields an alternative proof for Theorem 9.12.
This conclusion does not depend on the assumptions in Theorem 9.41, that each N -

word-argument of an operator ↑ or ↓ is a maximal N -word occurrence and that we simply
mark N -words that need to be complemented. As we have seen in the proof of The-
orem 9.41, each substitution we perform in MakeMinimal corresponds to a decrease of |E|.
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This is also true if the assumptions are not satisfied, because, as we observed before the
theorem, the result of a substitution is independent of the assumptions. If E is minimal
already, then |E| cannot decrease, and we cannot have any substitution, either.





Part III

Minimal Normal Form





Chapter 10

A Minimal Normal Form for DNA
Expressions

DNA expressions can become rather complex, with arbitrarily high nesting levels of
the brackets. For example, if E is a DNA expression, then so are 〈l E〉, 〈l 〈l E〉〉,
〈l 〈l 〈l E〉〉〉, etc. (see the proof of Lemma 4.23). As we have seen in the proof of
Lemma 7.34, even the nesting level of a minimal DNA expression can get arbitrarily high.
Some DNA expressions denoting a formal DNA molecule are easier to parse (for a hu-
man reader) than others for the same molecule. This holds true also for minimal DNA
expressions.

A normal form may be useful to reduce the complexity of DNA expressions. In this
thesis, a normal form is a specific set of properties, such that for each DNA expression,
there is exactly one equivalent DNA expression having these properties. Now, the chal-
lenge is to find a set of properties that ensures that the DNA expression is easy to parse.

A normal form may also suit another purpose. When we want to find out if two
DNA expressions E1 and E2 are equivalent, we can do this in a straightforward way,
by computing their semantics and checking if these are the same. By Theorem 4.18,
computing the semantics S(E) of a DNA expression E takes time that is linear in the
length of E. Moreover, as we observed at the end of Section 4.4, the length of S(E)
is at most linear in the length of E itself. Therefore, the above approach for checking
equivalence takes time that is linear in the length of E1 and E2, which is certainly efficient.

When we have a normal form for our DNA expressions, we can also choose a different
approach. Two DNA expressions E1 and E2 are equivalent, if and only if their normal
form versions are the same. This can be decided, when we manage to rewrite E1 and E2

into these normal form versions. This alternative approach is more elegant, because it
operates at the level of DNA expressions only. It does not refer to the semantics of the
DNA expressions.

Before using a normal form for whatever purpose, we must first decide what the normal
form should look like, i.e., what properties the DNA expressions in normal form should
have. For this, we observe that minimal DNA expressions can be considered as the ‘best’
DNA expressions. They require the smallest number of letters to denote a formal DNA
molecule. Moreover, we know exactly what are the minimal DNA expressions for a given
formal DNA molecule (see Summary 8.16). We also have a useful characterization of
minimal DNA expressions in general (see Lemma 8.22 and Theorem 8.26). Therefore, it
would be desirable that normal form DNA expressions be minimal. In this chapter, we
will describe a normal form which achieves this goal. Because of this, we will refer to it

313
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as the minimal normal form.
We first describe the minimal normal form in a constructive way: for each expressible

formal DNA molecule, we specify how to construct the corresponding DNA expression
in minimal normal form. Next, we give a characterization of the normal form DNA ex-
pressions, by five simple, syntactic properties. From this characterization, we deduce that
the nesting level of the brackets in these DNA expressions is bounded. We subsequently
consider the structure trees of DNA expressions in minimal normal form.

Finally, we consider the language-theoretic complexity of the set of all DNA expressions
in minimal normal form. We give a context-free grammar generating this set and prove
that that grammar is not self-embedding. This implies that the DNA expressions in
minimal normal form constitute a regular language. An advantage of this is, that we
could even use a simple machine like a finite automaton to decide whether or not a string
is a member of this language, i.e., whether or not it is a DNA expression in minimal
normal form. This is not possible for the set of all DNA expressions and for the set of
all minimal DNA expressions, as these languages are not regular, see Lemma 4.23 and
Lemma 7.34.

10.1 Definition of the minimal normal form

As we have seen in Chapter 7 and Chapter 8 (and especially in Section 8.5), for many
formal DNA molecules, there exists more than one minimal DNA expression. Hence,
minimality alone is not sufficient to define a normal form. From among all different
minimal DNA expressions denoting the same formal DNA molecule, we have to choose
one to be the normal form DNA expression. We do this by explicitly fixing the choices
that are made in the construction of a minimal DNA expression.

First, this construction is based on lower block partitionings and upper block par-
titionings of nick free (sub)molecules, see, e.g., the overview in Summary 8.16. If these
partitionings are not unique, then the resulting DNA expression depends on the partition-
ings that we choose. Here, we make a very natural choice: we always use the primitive
lower block partitioning or upper block partitioning.

In addition, if a formal DNA molecule X is nick free, contains at least one single-
stranded component and B↑(X) = B↓(X), then there exist both minimal ↑-expressions
and minimal ↓-expressions. Here, our choice for an ↑-expression or a ↓-expression is
determined by the first single-stranded component of X. An upper component results in
an ↑-expression; a lower component results in a ↓-expression.

We thus have the following definition of the minimal normal form, where EMinNF(X) de-
notes the normal form DNA expression for a formal DNA molecule X (cf. Summary 8.16):

Definition 10.1 Let X be an expressible formal DNA molecule.

1. If X =
(

α1

c(α1)

)
for an N -word α1, then EMinNF(X) = 〈l α1〉.

2. If X is nick free, contains at least one single-stranded component and B↑(X) =
B↓(X), then

(a) if the first single-stranded component of X is an upper component, then
EMinNF(X) is the minimal ↑-expression denoting X based on the primitive lower
block partitioning of X, as described in Theorem 7.24(1);
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(b) if the first single-stranded component of X is a lower component, then
EMinNF(X) is the minimal ↓-expression denoting X based on the primitive upper
block partitioning of X, as described in Theorem 7.24(2).

3. If X is nick free and B↑(X) > B↓(X), then EMinNF(X) is the minimal ↑-expression
denoting X based on the primitive lower block partitioning of X, as described in
Theorem 7.24(1).

4. If X is nick free and B↓(X) > B↑(X), then EMinNF(X) is the minimal ↓-expression
denoting X based on the primitive upper block partitioning of X, as described in
Theorem 7.24(2).

5. If X contains at least one lower nick letter, then let Z1△
Z2△

. . .
△
Zm for some m ≥ 2

be the nick free decomposition of X. For h = 1, . . . ,m, let Eh be the operator-
minimal ↑-expression denoting Zh based on the primitive lower block partitioning of
Zh, as described in Theorem 7.42. EMinNF(X) is the minimal ↑-expression denoting
X based on E1, . . . , Em, as described in Theorem 7.46.

6. If X contains at least one upper nick letter, then let Z1
▽Z2

▽ . . . ▽Zm for some m ≥ 2
be the nick free decomposition of X. For h = 1, . . . ,m, let Eh be the operator-
minimal ↓-expression denoting Zh based on the primitive upper block partitioning
of Zh, analogous to the description in Theorem 7.42. EMinNF(X) is the minimal
↓-expression denoting X based on E1, . . . , Em, analogous to the description in The-
orem 7.46.

Example 10.2 Consider the nick free formal DNA molecule X from Figure 7.5, for which
B↑(X) = 4 and B↓(X) = 3. In Example 7.25, we have used Theorem 7.24 to construct two
minimal DNA expressions denoting X. They were based on the lower block partitionings
of X shown in Figure 7.3(a3) and (a4). By Case 3 of Definition 10.1, EMinNF(X) is based
on the primitive lower block partitioning Y0X1Y1X2Y2X3Y3 of X, which is depicted in
Figure 7.3(a1).

A minimal DNA expression E1 denoting the (primitive) lower block X1, for which
B↓(X1) = 1 > B↑(X1) = 0, is constructed according to the description in Theorem 7.24(2).
By Lemma 7.19, the only upper block partitioning of X1 is P1 = X1. Hence,

E1 = 〈↓ 〈l α2〉α3 〈l α4〉α5 〈l α6〉〉 .

In the same way, we can construct the minimal DNA expressions E2 and E3 denoting the
(primitive) lower blocks X2 and X3, respectively:

E2 = 〈↓ 〈l α8〉α9 〈l α10〉〉 and

E3 = 〈↓ 〈l α14〉α15 〈l α16〉〉 .

Consequently,

EMinNF(X) = 〈↑ α1 E1 α7 E2 α11 〈l α12〉α13 E3 α17 〈l α18〉 〉
= 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉α5 〈l α6〉〉 α7 〈↓ 〈l α8〉α9 〈l α10〉〉

α11 〈l α12〉α13 〈↓ 〈l α14〉α15 〈l α16〉〉 α17 〈l α18〉 〉 .
(10.1)
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Example 10.3 Consider the nick free formal DNA molecule X from Figure 7.6, for which
B↑(X) = B↓(X) = 2 and whose first single-stranded component is an upper component.
In Example 7.26 we have used Theorem 7.24 to construct four minimal DNA expressions
denoting X, one for each upper block partitioning and each lower block partitioning of
X. By Case 2a of Definition 10.1, EMinNF(X) is the ↑-expression based on the primitive
lower block partitioning of X. This partitioning is depicted in Figure 7.6(a). Hence,

EMinNF(X) = Ea

= 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 α5 〈l α6〉α7 〈↓ 〈l α8〉α9 〈l α10〉〉〉 . (10.2)

(see (7.9)).

Example 10.4 Consider the formal DNA molecule X from Figure 7.7, which contains
four lower nick letters. The nick free decomposition of X is Z1△

Z2△
Z3△

Z4△
Z5 for the

submolecules Z1, . . . , Z5 from (7.20).
In Example 7.47, we have constructed a minimal DNA expression E denoting X.

We observed that each of the submolecules Z1, Z3, Z4, Z5 has exactly one lower block
partitioning, which must be the primitive lower block partitioning then. For Z2, there
exist two lower block partitionings, each of which corresponds to an operator-minimal
↑-expression denoting Z2. In the construction, we used the ↑-expression E ′′

2 which was
based on the primitive lower block partitioning of Z2.

Thus, each of the operator-minimal ↑-expressions used in the construction of E was
based on the primitive lower block partitioning of the corresponding nick free submolecule.
Consequently, EMinNF(X) is equal to the minimal DNA expression E from (7.28):

EMinNF(X) = 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉
〈↓ 〈l α5〉α6 〈l α7〉〉α8 〈↓ 〈l α9〉α10 〈l α11〉〉
〈l α12〉α13 〈l α14〉α15 〈l α16〉 〈l α17〉
〈↓ 〈l α18〉α19 〈l α20〉〉α21 〈l α22〉 〉 .

(10.3)

At several places, Definition 10.1 refers to the construction of (operator-)minimal DNA
expressions, as described in Theorem 7.24 and Theorem 7.42. These constructions involve
minimal DNA expressions Ej denoting lower blocks or upper blocksXj. In Definition 10.1,
we do not consider the choice of these Ej’s. Therefore, one may wonder if, for certain
formal DNA molecules X, there might exist different minimal DNA expressions Ej denot-
ing a particular lower block or upper block occurring in the construction of EMinNF(X).
If so, then EMinNF(X) would not be uniquely determined, and the minimal normal form
would not be well defined.

This situation does, however, not occur, just like it did not occur in the examples above.
Because in the constructions from Theorem 7.24 and Theorem 7.42, we use primitive
lower block partitionings (or primitive upper block partitionings), the lower blocks (upper
blocks) Xj are primitive lower blocks (primitive upper blocks). Hence, by Lemma 8.18(1),
the minimal DNA expressions Ej denoting the Xj’s are unique.

We want the normal form DNA expressions to be minimal. By Theorem 7.5, if X =(
α1

c(α1)

)
for an N -word α1, then EMinNF(X) = 〈l α1〉 is the only minimal DNA expression

denoting X. For all other types of expressible formal DNA molecules, the minimality of
EMinNF(X) follows immediately from the definition.

We thus have
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Lemma 10.5 For each expressible formal DNA molecule X,

1. EMinNF(X) is well defined, and

2. EMinNF(X) is a minimal DNA expression denoting X.

10.2 Characterization of the minimal normal form

For a given DNA expression E, we can decide if it is in minimal normal form by first
determining its semantics X = S(E), then constructing the minimal normal form DNA
expression E ′ denoting X according to Definition 10.1, and finally comparing E to E ′. In
this section, we will describe a more elegant way to achieve the same goal.

In Section 8.3, we proved that minimal DNA expressions can be characterized by six
simple properties. This characterizations makes it easy to decide whether or not a given
DNA expression is minimal. We now do something similar for DNA expressions in minimal
normal form. We derive a characterization of these DNA expressions, consisting of five
properties of (the arguments of) the operators occurring in them. Then in order to decide
whether or not a DNA expression is in minimal normal form, we only have to check these
properties.

We first prove that each DNA expression in minimal normal form has these properties.
After that, we prove that each DNA expression with these five properties is indeed in
minimal normal form.

Lemma 10.6 Let E be a DNA expression in minimal normal form.

(DMinNF.1) Each occurrence of the operator l in E has as its argument an N -word α
(i.e., not a DNA expression).

(DMinNF.2) No occurrence of the operator ↑ in E has an ↑-argument, and no occurrence
of the operator ↓ in E has a ↓-argument.

(DMinNF.3) Unless E = 〈↑ α〉 or E = 〈↓ α〉 for an N -word α, each occurrence of an
operator ↑ or ↓ in E has at least two arguments.

(DMinNF.4) For each inner occurrence of an operator ↑ or ↓ in E, the arguments are
maximal N -word occurrences α and l-expressions 〈l α〉 for N -words α, alternately.

(DMinNF.5) If the outermost operator of E is ↑ or ↓, then

• either its first argument is an N -word α or an l-expression 〈l α〉 for an N -word
α,

• or it has two consecutive expression-arguments.

Note that Properties (DMinNF.1), (DMinNF.2) and (DMinNF.3) are equal to Properties
(DMin.1), (DMin.2) and (DMin.3) of minimal DNA expressions in general.

Property (DMinNF.4) includes Properties (DMin.4) and (DMin.5). It is stronger, however,
than these two properties together. As we will see in the proof, this is due to the choice
for primitive lower block partitionings and primitive upper block partitionings in the
definition of the minimal normal form.

Finally, Property (DMinNF.5) is a stronger version of Property (DMin.6). We will see
in the proof that the difference between the two properties is caused by the second choice
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Properties E X = S(E) EMinNF(X)

(DMinNF.4) 〈↓ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉α5 〈l α6〉〉 〈l α7〉〉(
α1

−
)(

α2

c(α2)

)(−
α3

)(
α4

c(α4)

)(
α5

−
)(

α6

c(α6)

)
▽
(

α7

c(α7)

)

〈↓ 〈↑ α1 〈l α2〉〉α3 〈↑ 〈l α4〉α5 〈l α6〉〉 〈l α7〉〉
(DMinNF.4) 〈↑ α1 〈↓ 〈l α2〉α3 〈↑ 〈l α4〉α5 〈l α6〉〉α7〉〉(

α1

−
)(

α2

c(α2)

)(−
α3

)(
α4

c(α4)

)(
α5

−
)(

α6

c(α6)

)(−
α7

)

〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉α5 〈↓ 〈l α6〉α7〉〉
(DMinNF.5) 〈↓ 〈↑ α1 〈l α2〉〉α3〉(

α1

−
)(

α2

c(α2)

)(−
α3

)

〈↑ α1 〈↓ 〈l α2〉α3〉〉
(DMinNF.5) 〈↓ 〈↑ α1 〈l α2〉〉α3 〈↑ 〈l α4〉α5 〈l α6〉〉α7〉(

α1

−
)(

α2

c(α2)

)(−
α3

)(
α4

c(α4)

)(
α5

−
)(

α6

c(α6)

)(−
α7

)

〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉α5 〈↓ 〈l α6〉α7〉〉
(DMinNF.4), (DMinNF.5) 〈↓ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉α5 〈l α6〉〉α7〉(

α1

−
)(

α2

c(α2)

)(−
α3

)(
α4

c(α4)

)(
α5

−
)(

α6

c(α6)

)(−
α7

)

〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉α5 〈↓ 〈l α6〉α7〉〉
(DMinNF.4), (DMinNF.5) 〈↓ 〈↑ α1 〈↓ 〈l α2〉α3 〈↑ 〈l α4〉α5 〈l α6〉〉α7 〈l α8〉〉α9 〈l α10〉〉α11〉(

α1

−
)(

α2

c(α2)

)(−
α3

)(
α4

c(α4)

)(
α5

−
)(

α6

c(α6)

)(−
α7

)(
α8

c(α8)

)(
α9

−
)(

α10

c(α10)

)( −
α11

)

〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉α5 〈↓ 〈l α6〉α7 〈l α8〉〉α9 〈↓ 〈l α10〉α11〉〉

Table 10.1: Examples of minimal DNA expressions which do not have all properties
from Lemma 10.6. The first column mentions the properties that are not valid. Each
entry in the second column contains a corresponding DNA expression E, the formal DNA
molecule X denoted by E, and the DNA expression in minimal normal form EMinNF(X).
As usual, the αi’s occurring represent (arbitrary) N -words.
The DNA expressions in the third case are the ones from Example 7.2. The second, the
fourth and the fifth case deal with the same formal DNA molecule, which is similar to
the molecule from Example 7.26 (but slightly smaller). In fact, the DNA expressions E in
these three cases resemble the minimal DNA expressions Eb, Ec and Ed from this example,
respectively.

we make in the definition of the minimal normal form: if B↑(X) = B↓(X) ≥ 1 for a nick
free formal DNA molecule X, then the first single-stranded component of X determines
whether EMinNF(X) is an ↑-expression or a ↓-expression.

It is easily verified that the DNA expressions in minimal normal form from (10.1),
(10.2) and (10.3) have all five properties. In Table 10.1, we give some examples of minimal
DNA expressions which are not in minimal normal form. Such DNA expressions do have
Properties (DMinNF.1)–(DMinNF.3), simply because all minimal DNA expressions have these
properties. However, they lack Properties (DMinNF.4) and/or (DMinNF.5). We also give the
semantics of the DNA expressions, and the corresponding DNA expressions in minimal
normal form.
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Proof of Lemma 10.6: Let X = S(E), i.e., X is the formal DNA molecule for which
E = EMinNF(X).

By Lemma 10.5(2), E is minimal. Hence, Properties (DMinNF.1), (DMinNF.2) and
(DMinNF.3) are valid for E, simply because, by Lemma 8.22, they are valid for any minimal
DNA expression. The other two properties require some specific considerations.

(DMinNF.4) If E is an l-expression, then by Property (DMinNF.1), E = 〈l α〉 for an N -
word α. In this case, E does not contain any occurrence of ↑ or ↓, which implies
that E trivially has Property (DMinNF.4).

Assume that E is an ↑-expression. Inner occurrences of ↑ and ↓ in E occur in the
arguments of E.

If X is nick free, then either Case 2a or Case 3 of Definition 10.1 is applicable to
E = EMinNF(X). In both cases, E is based on the primitive lower block partitioning
P of X, as described in Theorem 7.24(1).

By the construction from Theorem 7.24(1), the arguments of E are N -words αi,
l-expressions 〈l αi〉 and minimal DNA expressions Ej denoting the lower blocks
Xj occurring in P . Obviously, N -words αi and l-expressions 〈l αi〉 for N -words
αi do not contain occurrences of ↑ and ↓. Hence, the inner occurrences of ↑ and
↓ in E are the occurrences of these operators in the arguments Ej. As we argued
before Lemma 10.5, the lower blocks Xj occurring in P are primitive lower blocks
of X. Hence, by Lemma 8.18(1), each Ej is a ↓-expression, whose arguments are
maximal N -word occurrences α and l-expressions 〈l α〉 for N -words α, alternately.
Clearly, the only occurrence of an operator ↑ or ↓ in Ej is its outermost operator ↓.
Indeed, its arguments are maximal N -word occurrences α and l-expressions 〈l α〉
for N -words α, alternately.

If X contains lower nick letters, then Case 5 of Definition 10.1 is applicable to
E = EMinNF(X). Let Z1△

Z2△
. . .

△
Zm for some m ≥ 2 be the nick free decomposition

ofX. E is based on operator-minimal ↑-expressions E1, . . . , Em denoting Z1, . . . , Zm,
respectively, as described in Theorem 7.46. The arguments of E are precisely the
arguments of E1, . . . , Em.

For h = 1, . . . ,m, the operator-minimal ↑-expression Eh is based on the primitive
lower block partitioning of Zh, as described in Theorem 7.42. Because the construc-
tions from Theorem 7.24(1) and Theorem 7.42 are in fact identical, we can proceed
in exactly the same way as in the case that X is nick free. We conclude that also
now, the only occurrences of operators ↑ or ↓ in an argument of E are the outermost
operators ↓ of the ↓-arguments of E, and that the arguments of such an occurrence
of ↓ are N -words α and l-expressions 〈l α〉 for N -words α, alternately.

Both ifX is nick free and if it contains lower nick letters, we find that E = EMinNF(X)
has Property (DMinNF.4).

The proof for the case that E is a ↓-expression is analogous.

(DMinNF.5) Assume that the outermost operator of E is ↑. Then in particular, by The-
orem 7.5, X is not double-complete.

Assume further that E does not have two consecutive expression-arguments. By
Property (DMinNF.4) and Lemma 5.8, X is nick free. Hence, either Case 2a or
Case 3 of Definition 10.1 is applicable to E = EMinNF(X). In both cases, E is based
on the primitive lower block partitioning of X, as described in Theorem 7.24(1).
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If Case 2a is applicable, then by definition the first single-stranded component of X
is an upper component. If, on the other hand, Case 3 is applicable, then B↑(X) >
B↓(X) and by Lemma 6.13(3), both the first single-stranded component and the
last single-stranded component of X are upper components. In both cases, the first
single-stranded component of X is an upper component.

By Lemma 7.11(3), the maximal upper prefix Y0 of X is not empty, Hence, in the
construction from Theorem 7.24(1), the first argument of E corresponds to the first
component of Y0, and thus is either an N -word α or an l-expression 〈l α〉 for an
N -word α (cf. the proof of Property (DMin.6) in Lemma 8.22).

We conclude that E has Property (DMinNF.5).

The proof for the case that the outermost operator of E is ↓ is analogous.

Let us use DMinNF to denote the set of DNA expressions with Properties (DMinNF.1)–
(DMinNF.5).

Lemma 10.7 Each DNA expression E ∈ DMinNF is in minimal normal form.

Proof: Let E be an arbitrary DNA expression inDMinNF, i.e., E has Properties (DMinNF.1)–
(DMinNF.5).

Properties (DMin.1), (DMin.2) and (DMin.3) from Lemma 8.22 are identical to Prop-
erties (DMinNF.1), (DMinNF.2) and (DMinNF.3), respectively. Both Property (DMin.4) and
Property (DMin.5) follow immediately from Property (DMinNF.4), because they are weaker
versions of this property. Finally, Property (DMin.6) follows immediately from Prop-
erty (DMinNF.5). Thus, E is in DMin and by Theorem 8.26, E is minimal.

Let X = S(E). We distinguish several cases.

1. If X is
(

α1

c(α1)

)
for an N -word α1, then by Theorem 7.5, E = 〈l α1〉. Indeed,

E = EMinNF(X) (see Case 1 of Definition 10.1).

2. If X is nick free, contains at least one single-stranded component and B↑(X) =
B↓(X), then by Summary 8.16(2), E is either an ↑-expression based on a lower
block partitioning of X as described in Theorem 7.24(1), or a ↓-expression based on
an upper block partitioning of X as described in Theorem 7.24(2).

We have to prove that the first single-stranded component of X determines if E
is a an ↑-expression or a ↓-expression, and that the lower (or upper) block parti-
tioning that E is based on, is indeed the primitive lower (upper, respectively) block
partitioning of X.

By Lemma 6.13(3), either the first single-stranded component of X is an upper
component and the last single-stranded component of X is a lower component, or
the other way round: the first single-stranded component of X is a lower component
and the last single-stranded component of X is an upper component.

(a) Assume that the first single-stranded component of X is an upper component
(and hence, that the last single-stranded component of X is a lower compon-
ent). First, we determine if E is an ↑-expression or a ↓-expression. Sub-
sequently, we consider the partitioning of X that is used in the construction
from Theorem 7.24.
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• By Lemma 7.27, the arguments of E are N -words and DNA expressions,
alternately. Hence, by Property (DMinNF.5), the first argument of E is an
N -word α or an l-expression 〈l α〉 for an N -word α. In the latter case, by
Property (DMinNF.3), E has at least two arguments, and the second argument
of E is an N -word α. In both cases, if E were a ↓-expression, then the first
single-stranded component of X would be a lower component. Because the
first single-stranded component of X is an upper component, E must be an
↑-expression.
• E satisfies the construction from Theorem 7.24(1). Let P = Y0X1Y1 . . . XrYr

for some r ≥ 0 be the lower block partitioning that E is based on. By construc-
tion and by Corollary 7.31(1), the ↓-arguments of E are precisely the minimal
DNA expressions Ej denoting the lower blocks Xj occurring in P .

Let Ej with 1 ≤ j ≤ r be an arbitrary ↓-argument of E. By Property
(DMinNF.4), the arguments of Ej are N -words α and l-expressions 〈l α〉 for
N -words α. Hence, Xj = S(Ej) consists only of lower components and double
components.

By definition, the lower block Xj is an alternating sequence of primitive lower
blocks and maximal upper sequences of X, which both starts and ends with a
primitive lower block. By Lemma 7.12(4b), there cannot be any maximal upper
sequence in this sequence, because Xj does not contain upper components.
Hence, Xj starts and ends with the same primitive lower block. In other
words, Xj is equal to a primitive lower block of X.

As the ↓-argument Ej was arbitrary, each lower blockXj occurring in P is equal
to a primitive lower block of X. By the definition of a lower block partitioning,
each primitive lower block of X is contained in one of the Xj’s. Hence, the
lower blocks Xj occurring in P are precisely all primitive lower blocks of X.
This implies that P is the primitive lower block partitioning of X.

We conclude that E = EMinNF(X) (see Case 2a of Definition 10.1).

(b) Analogously, if we assume that the first single-stranded component of X is a
lower component, then we find that E is a ↓-expression, which is based on
the primitive upper block partitioning of X as described in Theorem 7.24(2).
Hence, also in this case, E = EMinNF(X) (see Case 2b of Definition 10.1).

3. IfX is nick free and B↑(X) > B↓(X), then by Summary 8.16(3), E is an ↑-expression
which is based on a lower block partitioning of X, as described in Theorem 7.24(1).
Now, we can prove that this lower block partitioning actually is the primitive lower
block partitioning of X, in the same way that we did in (the second part of) the
proof for Case 2a.

This implies that E = EMinNF(X) (see Case 3 of Definition 10.1).

4. The case that X is nick free and B↓(X) > B↑(X) is analogous to the previous case.
Hence, also in this case, E = EMinNF(X) (see Case 4 of Definition 10.1).

5. If X contains at least one lower nick letter, then let Z1△
Z2△

. . .
△
Zm for some m ≥ 2

be the nick free decomposition of X. By Summary 8.16(5), E is an ↑-expression
which is based on operator-minimal ↑-expressions E1, . . . , Em denoting Z1, . . . , Zm,
respectively, as described in Theorem 7.46. For h = 1, . . . ,m, Eh is in turn based
on a lower block partitioning Ph of Zh, as described in Theorem 7.42.
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Because the arguments of E are precisely the arguments of E1, . . . , Em, and the
constructions from Theorem 7.24(1) and Theorem 7.42 are in fact identical, we can
proceed in the same way as in (the second part of) the proof for Case 2a: for
h = 1, . . . ,m, the ↓-arguments of Eh correspond to the lower blocks occurring in
Ph. Because the arguments of these ↓-arguments are N -words α and l-expressions
〈l α〉 for N -words α, the lower blocks occurring in Ph are precisely the primitive
lower blocks of Zh. Hence, for h = 1, . . . ,m, Eh is based on the primitive lower
block partitioning of Zh.

We conclude that E = EMinNF(X) (see Case 5 of Definition 10.1).

6. The case that X contains at least one upper nick letter is analogous to the pre-
vious case. Hence, also in this case, we find that E = EMinNF(X) (see Case 6 of
Definition 10.1).

When we combine Lemma 10.6 and Lemma 10.7, we obtain

Theorem 10.8 A DNA expression E is in minimal normal form if and only if E ∈
DMinNF.

We can use the properties from Lemma 10.6 to prove other properties of normal form
DNA expressions.

Lemma 10.9 Let E be a DNA expression in minimal normal form.

1. If E is an ↑-expression, then E does not have any inner occurrence of ↑, and the
only occurrences of ↓ in E are the operators governing ↓-arguments of E.

2. If E is a ↓-expression, then E does not have any inner occurrence of ↓, and the only
occurrences of ↑ in E are the operators governing ↑-arguments of E.

Proof:

1. Assume that E is an ↑-expression. Then by definition, each occurrence of ↓ in E is
an inner occurrence.

Suppose that ↑1 is an inner occurrence of ↑ in E, and let E1 be the DNA subex-
pression of E governed by ↑1. By Properties (DMinNF.1) and (DMinNF.2), the parent
operator of E1 is not l or ↑. Hence, it must be ↓. This, however, contradicts
Property (DMinNF.4), as each occurrence of ↓ in E is an inner occurrence.

Let ↓1 be an arbitrary (inner) occurrence of ↓ in E, and let E1 be the DNA subex-
pression of E governed by ↓1. By Properties (DMinNF.1) and (DMinNF.2), the parent
operator of E1 is not l or ↓. Hence, it must be ↑. By the above, the only occurrence
of ↑ in E is the outermost operator. Thus, E1 is a ↓-argument of (the outermost
operator of) E.

2. The proof of this claim is analogous to that of the previous claim.

As mentioned in the introduction to this chapter (on page 313), the nesting level of a
DNA expression, and even of a minimal DNA expression, can get arbitrarily high. For
DNA expressions in minimal normal form, however, the nesting level is bounded:
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Lemma 10.10 Let E be a DNA expression in minimal normal form. The maximal nest-
ing level of E is at most 3.

One of the objectives of a normal form was to reduce the complexity of a DNA expression
(to a human reader). When we consider the maximal nesting level of a DNA expression
as a measure for its complexity, the minimal normal form indeed achieves this objective.

Proof: If E only has N -word-arguments, then by definition, the maximal nesting level
of E is 1.

Now assume that E has at least one expression-argument. By Property (DMinNF.1),
each l-argument of E is equal to 〈l α〉 for an N -word α. The maximal nesting level
of such an argument is 1. Let E1 be an arbitrary ↑-argument or ↓-argument of E. By
Property (DMinNF.4), the only arguments of E1 are maximal N -word occurrences α and
l-expressions 〈l α〉 for N -words α. In fact, by Property (DMinNF.3), at least one of these
arguments is an l-expression 〈l α〉. Then by Lemma 4.7(2), the maximal nesting level of
E1 is 2.

When we subsequently apply the same lemma to E itself, we conclude that its maximal
nesting level is at most 3.

Note that there also exist DNA expressions with maximal nesting level at most 3 that are
not in minimal normal form.

Example 10.11 Let

E1 = 〈l 〈l α1〉〉 ,
E2 = 〈↓ 〈l α1〉α2 〈↓ 〈l α3〉α4〉〉 ,
E3 = 〈↑ 〈↓ α1 〈l α2〉〉α3 〈l α4〉〉

for N -words α1, α2, α3 and α4. E1 has maximal nesting level 2, E2 and E3 have max-
imal nesting level 3. However, none of these DNA expressions is in minimal normal
form. E1 lacks Property (DMinNF.1), E2 lacks Property (DMinNF.2), and E3 lacks Property
(DMinNF.5). E1 and E2 are not even minimal.

The property of the minimal normal form that is mainly responsible for the bounded
nesting level, is Property (DMinNF.4). The following result on minimal DNA expressions
makes this explicit:

Lemma 10.12 Let E be a minimal DNA expression. Then E has maximal nesting level
at most 3, if and only if E has Property (DMinNF.4).

Proof: Because E is minimal, it has Properties (DMinNF.1)–(DMinNF.3), simply because
these properties are equal to Properties (DMin.1)–(DMin.3) of minimal DNA expressions
(see Lemma 8.22 and Lemma 10.6). E also has Properties (DMin.4)–(DMin.6), but not
necessarily Properties (DMinNF.4) and (DMinNF.5).

⇐= If E has Property (DMinNF.4), then we can repeat the argumentation from the
proof of Lemma 10.10 and conclude that the maximal nesting level of E is at most 3.
Note that Property (DMinNF.5) is not used at all in the proof of Lemma 10.10. Therefore,
it does not matter whether E has that property (and thus is in minimal normal form) or
not.

=⇒ If E does not have Property (DMinNF.4), then there must be an inner occurrence
of ↑ or ↓ in E whose arguments are not maximal N -word occurrences α and l-expressions
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〈l α〉, alternately. Without loss of generality, assume that this is an inner occurrence ↑1
of ↑, and let E1 be the DNA subexpression of E governed by ↑1. By Property (DMin.4), ↑1
is alternating, i.e., its arguments are maximal N -word occurrences and DNA expressions,
alternately. This implies that ↑1 must have an expression-argument E2 that is not of
the form 〈l α〉. By Properties (DMin.1)and (DMin.2), E2 must be a ↓-expression. By
Lemma 8.27(6), E2 has at least one argument 〈l α〉 for an N -word α. But then we have
the following situation:

E = 〈. . . 〈↑1 . . . 〈↓ . . . 〈l α〉 . . .〉 . . .〉 . . .〉

In particular, the maximal nesting level of E is at least 4.

10.3 The structure tree of a DNA expression in min-

imal normal form

Many properties of DNA expressions can be directly translated into properties of the
corresponding structure trees, as defined in Section 4.6 (see Section 8.4). This is in
particular true for DNA expressions in minimal normal form. Let t be the structure tree
of a DNA expression E. We say that t is in minimal normal form, if and only if E is in
minimal normal form. We then have

Theorem 10.8 (and Lemma 10.6) t is in minimal normal form if and only if

(DMinNF.1) each node labelled by l in t has a (single) child labelled by an N -word
α, and

(DMinNF.2) no node labelled by ↑ in t has a child labelled by ↑, and no node labelled
by ↓ in t has a child labelled by ↓, and

(DMinNF.3) unless E = 〈↑ α〉 or E = 〈↓ α〉 for an N -word α, each node labelled by
↑ or ↓ in t has at least two children, and

(DMinNF.4) for each non-root labelled by either ↑ or ↓ in t, the children are labelled
by an N -word α or by the operator l, alternately, and

(DMinNF.5) if the root of t is labelled by either ↑ or ↓, then either its first child is
labelled by an N -word α or the operator l, or it has two consecutive children
labelled by an operator.

Lemma 10.9 If t is in minimal normal form, then

1. if the root of t is labelled by ↑, then t does not have any non-roots labelled by
↑, and the only nodes labelled by ↓ are children of the root;

2. if the root of t is labelled by ↓, then t does not have any non-roots labelled by
↓, and the only nodes labelled by ↑ are children of the root.

Lemma 10.10 and Lemma 4.30 If t is in minimal normal form, then the height of t is
at most 4.

As we observed in Example 10.4, the minimal DNA expression from (7.28) is in min-
imal normal form. Hence, the corresponding structure tree, which we have shown in
Figure 8.3(c), is also in minimal normal form. Indeed, it has all properties listed above.
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Figure 10.1: Two structure trees that are in minimal normal form. (a) The structure tree
of the DNA expression EMinNF(X) from (10.1), denoting the nick free formal DNAmolecule
from (a.o.) Figure 7.5. (b) The structure tree of the DNA expression EMinNF(X) = Ea

from (10.2), denoting the nick free formal DNA molecule from Figure 7.6.

On the other hand, although the DNA expression E from (7.7) is minimal, it is not
in minimal normal form. Consequently, the corresponding structure tree in Figure 8.3(a)
is not in minimal normal form, either. It does not satisfy (the tree-version of) Prop-
erty (DMinNF.4). In the tree, the second child of the root, which is labelled by ↓, has a
child which is labelled by ↑. Consequently, the height of the tree is greater than 4.

Likewise, the minimal DNA expression Ed from (7.12) and the corresponding struc-
ture tree in Figure 8.3(b) are not in minimal normal form. They violate both Prop-
erty (DMinNF.4) and Property (DMinNF.5). Again, the height of the tree is greater than 4.

In Example 10.2 and Example 10.3, we have given the DNA expressions in minimal
normal form for the last two cases. The corresponding structure trees are depicted in
Figure 10.1.

10.4 Regularity of DMinNF

Neither the language D of all DNA expressions, nor the language DMin containing only
the minimal DNA expressions is regular (see Lemma 4.23 and Lemma 7.34). The proofs
of these results were based on the fact that in a DNA expression, every opening bracket
must be matched by a closing bracket, while there exist DNA expressions (even minimal
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DNA expressions) with arbitrarily high nesting levels of the brackets.
Of course, in a DNA expression in minimal normal form, the opening brackets and

the closing brackets must still match. However, by Lemma 10.10, the nesting level of
the brackets in such a DNA expression is limited. We cannot get arbitrarily high nesting
levels. This suggests that the language DMinNF of DNA expressions in minimal normal
form is regular, and that indeed turns out to be the case.

There are different ways to demonstrate this. One would be to give a right-linear
grammar and to prove that it generates DMinNF. In this thesis, we follow another strategy.
We describe a context-free grammar G2 and prove that it generates DMinNF. This context-
free grammar is not right-linear. However, as we will see, because the grammar is not
self-embedding, the language generated by it (i.e., DMinNF) is regular, after all.

The new grammar G2 is derived from the grammar G1 that generates D, the language
of all DNA expressions (see Section 4.5). For example, like G1, it has non-terminal symbols
E, U and L (with some subscripts), which represent certain DNA expressions, sequences of
arguments for the operator ↑ and sequences of arguments for the operator ↓, respectively.

However, due to the characteristic properties of the minimal normal form, Properties
(DMinNF.1)–(DMinNF.5), there exist important differences between the two grammars. Be-
fore we describe G2 formally, we explain some of the differences. Most of these differences
give rise to the use of different non-terminal symbols. Because of the symmetry between
↑-expressions and ↓-expressions, we sometimes restrict the explanation to ↑-expressions.

In our explanations, we often refer to the five properties of the minimal normal form.
However, in order for a string to be a DNA expression in minimal normal form, it has to
be a DNA expression in the first place. Therefore, we also sometimes refer to properties
of DNA expressions in general. In particular, we refer to the fact that the arguments of
the operator ↑ must fit together by upper strands.

• By Property (DMinNF.4), the arguments of an inner occurrence of ↑ or ↓ are N -words
α and l-expressions 〈l α〉 for N -words α, alternately. This is not necessarily true for
the arguments of an outermost operator ↑ or ↓. Those arguments satisfy different
(in particular, weaker) conditions.

This difference is reflected by the notation we use for sequences of arguments of ↑ and
↓. For the outermost operator, we use U and L (with some subscript), respectively,
as in G1. For an inner occurrence, we introduce a new non-terminal symbol A (with
some subscripts). We use this symbol both for inner occurrences of ↑ and for inner
occurrences of ↓, because the arguments of these inner occurrences satisfy the same
conditions.

• An outermost operator ↑0 may have ↓-arguments. However, if the first argument is a
↓-argument, then by Property (DMinNF.5), ↑0 must have two consecutive expression-
arguments. Hence, in this case, the second and later arguments of ↑0 have to satisfy
an additional condition.

We use the new non-terminal symbol Û (with some subscript) to denote a sequence
of arguments of ↑0 that must contain two consecutive expression-arguments.

Note that a sequence of arguments represented by U (with some subscript) may also
contain consecutive expression-arguments, but it does not have to.

• By the above, there is an essential difference between the sequence of all arguments
of an outermost operator ↑, and a proper suffix of this sequence. A ↓-argument which
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is the first of all arguments has other consequences for the rest of the sequence than
a ↓-argument which is the first of a proper suffix.

Moreover, by Property (DMinNF.3), the sequence of all arguments cannot be just one
DNA expression, whereas a proper suffix of this sequence may be a DNA expression.

This difference is reflected by the subscript of the non-terminal symbol U . We use
U⋆ to represent the sequence of all arguments of an outermost operator ↑, and we
use U with other subscripts for proper suffices of this sequence.

• In the grammar G1, a non-terminal symbol U (with some subscripts) represents an
arbitrary suffix of the sequence of arguments of an operator ↑. This may be a proper
suffix, but it may also be the entire sequence of arguments. The first subscript of U
denotes whether or not one strand of this suffix of arguments must cover the other
strand to the left.

Now, consider a non-terminal symbol U or Û (with some subscript) in G2, which
is not equal to U⋆. By the above, this non-terminal symbol represents a proper
suffix of the sequence of arguments of an outermost operator ↑, i.e., a subsequence
of arguments which is preceded by at least one other argument.

Because, by definition, the arguments of ↑ must fit together by upper strands, the
upper strand of this subsequence of arguments must (always) cover the lower strand
to the left. It is no use indicating this explicitly by means of a particular subscript.

• Consider again a non-terminal symbol U (with some subscripts) in the grammar G1.
The second subscript denotes whether or not one strand of the suffix of arguments
represented by the symbol must cover the other strand to the right. This is useful
for inner occurrences of ↑. If, for example, the ↑-expression is an argument of an
operator ↓ and it is not the last argument, then the lower strand must cover the
upper strand to the right.

Now, consider any non-terminal symbol U or Û in G2. As mentioned before, this
symbol is used only to represent a suffix of the sequence of arguments of an outermost
operator ↑. It does not matter if one strand of this suffix of arguments strictly covers
the other strand to the right. There are no restrictions of the right-hand side of
the strands, at all. Hence, we do not need a particular subscript to indicate such
restrictions, either.

• In the grammar G2, a non-terminal symbol E with a subscript + represents a DNA
expression that is the argument of an outermost operator ↑. By Property (DMinNF.2),
this DNA expression cannot be an ↑-expression. Hence, it can only be rewritten into
either an l-expression or a ↓-expression.

• In the grammar G1, as soon as we introduce an operator ↑ or ↓, we give it a non-
empty sequence of arguments, represented by a non-terminal symbol U or L (with
some subscripts), respectively.

Now, let E be a DNA expression in minimal normal form. If E contains inner
occurrences of ↑ or ↓, then by Property (DMinNF.3), each inner occurrence of ↑ or
↓ in E has at least two arguments. We do not introduce a special non-terminal
symbol to represent “at least two arguments”. Instead, as soon as we introduce
an inner occurrence of ↑ or ↓, we give it one argument plus a non-empty sequence
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of arguments. As we explained before, this non-empty sequence of arguments is
represented by the non-terminal symbol A (with some subscripts).

• By Property (DMinNF.4), for each inner occurrence of ↑ or ↓, the arguments are
maximal N -word occurrences α or l-expressions 〈l α〉 for N -words α, alternately.
As we just explained, the non-terminal symbols A (with some subscripts) represent
proper suffices of such sequences of arguments.

To enforce the alternation of the arguments, we provide A with a subscript (in fact,
its first subscript) α or l. If it is α, then the suffix of the sequence of arguments
must start with an N -word α. If it is l, then it must start with an l-expression.
The actual value of the subscript depends on the argument (an l-expression or an
N -word) preceding the suffix.

Of course, we might allow consecutive N -word-arguments in the sequence of ar-
guments, because they can be considered as a single N -word. However, since we
have to avoid consecutive l-arguments, anyway, it is more elegant to also avoid
consecutive N -word-arguments.

Moreover, allowing consecutive N -word-arguments would introduce ambiguity in
the grammar. If it were possible to have N -words at consecutive positions in the
sequence of arguments, then an N -word-argument of length 2 or more could be
derived in different ways: both from a single non-terminal symbol α and from two
(or more) consecutive non-terminal symbols α.

• By Lemma 8.27(1b) and Property (DMinNF.4), a proper ↓-subexpression is an argu-
ment of an outermost operator ↑. If it is not the last argument, then by Lemma
8.27(5b), the last argument of the ↓-subexpression is an l-expression 〈l α〉 for an
N -word α. It cannot be an N -word α.

To represent such restrictions, we provide the non-terminal A with a second sub-
script, which is either ⋆ or l. It it is ⋆, then the last argument in the sequence of
arguments may be either an N -word or an l-expression. If it is l, then the last
argument must be an l-expression.

• We do not only avoid consecutive N -word-arguments for inner occurrences of ↑ or
↓. For consistency, we do the same for an outermost operator ↑ or ↓.
For this, consider a non-terminal symbol U or Û which is not equal to U⋆. We provide
this non-terminal, which represents a proper suffix of the sequence of arguments of
an outermost operator ↑, with a subscript α or E. If the subscript is α, then the
suffix must start with an N -word α. If it is E, then the suffix must start with a
DNA expression.1

Now, formally, G2 is a 4-tuple (V2,Σ2, P2, S2), where

V2 = {E⋆, U⋆, Uα, UE, ÛE, E+,+, E+,⋆, L⋆, Lα, LE, L̂E, E−,−, E−,⋆,

Aα,l, Al,l, Aα,⋆, Al,⋆, α}
Σ2 = {A,C,G,T, ↑, ↓, l, 〈 , 〉},
S2 = E⋆

1Actually, we have skipped the non-terminal symbol Ûα, because there would be only one production
for this symbol: Ûα −→ αÛE . We have substituted this production in the right-hand side of two of the
productions for U⋆ and one production for ÛE .
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and P2 is the following set of productions:

1. E⋆ −→ 〈l α〉 | 〈↑ U⋆〉 | 〈↓ L⋆〉
2. U⋆ −→ α | αUE | 〈l α〉Uα | 〈l α〉UE

3. U⋆ −→
〈
↓ αAl,l

〉
αÛE |

〈
↓ αAl,l

〉
UE |

〈
↓ 〈l α〉Aα,l

〉
αÛE |

〈
↓ 〈l α〉Aα,l

〉
UE

4. Uα −→ α | αUE

5. UE −→ E+,⋆ | E+,+Uα | E+,+UE

6. ÛE −→ E+,+αÛE | E+,+UE

7. E+,+ −→ 〈l α〉 |
〈
↓ 〈l α〉Aα,l

〉

8. E+,⋆ −→ 〈l α〉 | 〈↓ 〈l α〉Aα,⋆〉
9. L⋆ −→ α | αLE | 〈l α〉Lα | 〈l α〉LE

10. L⋆ −→
〈
↑ αAl,l

〉
αL̂E |

〈
↑ αAl,l

〉
LE |

〈
↑ 〈l α〉Aα,l

〉
αL̂E |

〈
↑ 〈l α〉Aα,l

〉
LE

11. Lα −→ α | αLE

12. LE −→ E−,⋆ | E−,−Lα | E−,−LE

13. L̂E −→ E−,−αL̂E | E−,−LE

14. E−,− −→ 〈l α〉 |
〈
↑ 〈l α〉Aα,l

〉

15. E−,⋆ −→ 〈l α〉 | 〈↑ 〈l α〉Aα,⋆〉
16. Aα,l −→ α 〈l α〉 | α 〈l α〉Aα,l

17. Al,l −→ 〈l α〉 | 〈l α〉Aα,l

18. Aα,⋆ −→ α | αAl,⋆

19. Al,⋆ −→ 〈l α〉 | 〈l α〉Aα,⋆

20. α −→ A | C | G | T | Aα | Cα | Gα | Tα

As is the case with most of the DNA expressions in this thesis, the DNA expressions we
consider in this section are expressed in terms of general N -words αi, and not in terms
of the actual N -letters A, C, G and T. Therefore, in the examples below, we do not use
the productions from line 20 of the list, for (rewriting) α. When we speak of a leftmost
derivation in G2, we mean that in every derivation step, we rewrite the leftmost non-
terminal symbol unequal to α (with some subscript i). In other words, we treat α as a
terminal symbol, ignoring the productions in line 20.

Example 10.13 Consider the nick free formal DNA molecule X =
(
α1

−
)(

α2

c(α2)

)(−
α3

)
,

for which B↑(X) = B↓(X) = 1 and the first single-stranded component is an upper
component. By Case 2a of Definition 10.1,

EMinNF(X) = 〈↑ α1 〈↓ 〈l α2〉α3〉〉 , (10.4)

which is DNA expression E from Example 7.2 (see also Table 10.1). The following, leftmost
derivation in G2 yields EMinNF(X):

E⋆
1,2
=⇒ 〈↑ U⋆〉
2,2
=⇒ 〈↑ α1UE〉
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5,1
=⇒ 〈↑ α1E+,⋆〉
8,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉Aα,⋆〉〉
18,1
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3〉〉
= EMinNF(X).

As in earlier derivations, numbers i, j above an arrow indicate that we have used produc-
tion (i, j).

Example 10.14 Consider the minimal normal form DNA expression EMinNF(X) from
(10.1), which denotes the nick free formal DNA molecule X from (a.o.) Figure 7.3 and
Figure 7.5. The following, leftmost derivation in G2 yields EMinNF(X):

E⋆
1,2
=⇒ 〈↑ U⋆ 〉
2,2
=⇒ 〈↑ α1UE 〉
5,2
=⇒ 〈↑ α1E+,+Uα 〉
7,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉Aα,l 〉Uα 〉
16,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉Aα,l 〉Uα 〉
16,1
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉α5 〈l α6〉〉Uα 〉
4,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉α5 〈l α6〉〉α7UE 〉
5,2
=⇒ · · · 7,2

=⇒ · · · 16,1
=⇒ · · · 4,2

=⇒ · · ·
5,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉α5 〈l α6〉〉α7 〈↓ 〈l α8〉α9 〈l α10〉〉α11E+,+Uα 〉
7,1
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉α5 〈l α6〉〉α7 〈↓ 〈l α8〉α9 〈l α10〉〉

α11 〈l α12〉Uα 〉
4,2
=⇒ · · · 5,2

=⇒ · · · 7,2
=⇒ · · · 16,1

=⇒ · · ·
4,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉α5 〈l α6〉〉α7 〈↓ 〈l α8〉α9 〈l α10〉〉

α11 〈l α12〉α13 〈↓ 〈l α14〉α15 〈l α16〉〉α17UE 〉
5,1
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉α5 〈l α6〉〉α7 〈↓ 〈l α8〉α9 〈l α10〉〉

α11 〈l α12〉α13 〈↓ 〈l α14〉α15 〈l α16〉〉α17E+,⋆ 〉
8,1
=⇒ EMinNF(X).

Example 10.15 Consider the minimal normal form DNA expression EMinNF(X) from
(10.3). This DNA expression denotes the formal DNA molecule X from Figure 7.7, which
contains four lower nick letters. The following, leftmost derivation in G2 yields EMinNF(X):

E⋆
1,2
=⇒ 〈↑ U⋆ 〉
2,2
=⇒ 〈↑ α1UE 〉
5,3
=⇒ 〈↑ α1E+,+UE 〉
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7,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉Aα,l 〉UE 〉
16,1
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉UE 〉
5,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉E+,+Uα 〉
7,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 〈↓ 〈l α5〉Aα,l 〉Uα 〉
16,1
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 〈↓ 〈l α5〉α6 〈l α7〉〉Uα 〉
4,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 〈↓ 〈l α5〉α6 〈l α7〉〉α8UE 〉
5,3
=⇒ · · · 7,2

=⇒ · · · 16,1
=⇒ · · ·

5,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 〈↓ 〈l α5〉α6 〈l α7〉〉α8 〈↓ 〈l α9〉α10 〈l α11〉〉

E+,+Uα 〉
7,1
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 〈↓ 〈l α5〉α6 〈l α7〉〉α8 〈↓ 〈l α9〉α10 〈l α11〉〉

〈l α12〉Uα 〉
4,2
=⇒ · · · 5,2

=⇒ · · · 7,1
=⇒ · · · 4,2

=⇒ · · ·
5,3
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 〈↓ 〈l α5〉α6 〈l α7〉〉α8 〈↓ 〈l α9〉α10 〈l α11〉〉

〈l α12〉α13 〈l α14〉α15E+,+UE 〉
7,1
=⇒ · · · 5,3

=⇒ · · · 7,1
=⇒ · · ·

5,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 〈↓ 〈l α5〉α6 〈l α7〉〉α8 〈↓ 〈l α9〉α10 〈l α11〉〉

〈l α12〉α13 〈l α14〉α15 〈l α16〉 〈l α17〉E+,+Uα 〉
7,2
=⇒ · · · 16,1

=⇒ · · ·
4,2
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 〈↓ 〈l α5〉α6 〈l α7〉〉α8 〈↓ 〈l α9〉α10 〈l α11〉〉

〈l α12〉α13 〈l α14〉α15 〈l α16〉 〈l α17〉 〈↓ 〈l α18〉α19 〈l α20〉〉α21UE 〉
5,1
=⇒ 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉 〈↓ 〈l α5〉α6 〈l α7〉〉α8 〈↓ 〈l α9〉α10 〈l α11〉〉

〈l α12〉α13 〈l α14〉α15 〈l α16〉 〈l α17〉 〈↓ 〈l α18〉α19 〈l α20〉〉α21E+,⋆ 〉
8,1
=⇒ EMinNF(X).

Example 10.16 Consider the formal DNA molecule

X =
(
α1

−
)(

α2

c(α2)

)(−
α3

)(
α4

c(α4)

)
▽
(

α5

c(α5)

)
,

which contains one upper nick letter. The nick free decomposition of X is Z1
▽Z2, where

Z1 =
(
α1

−
)(

α2

c(α2)

)(−
α3

)(
α4

c(α4)

)

and Z2 =
(

α5

c(α5)

)
. The primitive upper block partitioning of Z1 is Y0X1Y1, where Y0 =

λ, X1 =
(
α1

−
)(

α2

c(α2)

)
and Y1 =

(−
α3

)(
α4

c(α4)

)
. By (the analogue for ↓-expressions of)

Theorem 7.42, we can use this primitive upper block partitioning to construct an operator-
minimal ↓-expression E1 denoting Z1:

E1 = 〈↓ 〈↑ α1 〈l α2〉〉α3 〈l α4〉〉 .
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It is not hard to see that the only operator-minimal ↓-expression denoting Z2 is E2 =
〈↓ 〈l α5〉〉. By Case 6 of Definition 10.1, EMinNF(X) is the ↓-expression based on E1 and
E2 analogous to the description in Theorem 7.46:

EMinNF(X) = 〈↓ 〈↑ α1 〈l α2〉〉α3 〈l α4〉 〈l α5〉〉 .

The following, leftmost derivation in G2 yields EMinNF(X):

E⋆
1,3
=⇒ 〈↓ L⋆〉
10,1
=⇒

〈
↓
〈
↑ α1Al,l

〉
α3L̂E

〉

17,1
=⇒

〈
↓ 〈↑ α1 〈l α2〉〉α3L̂E

〉

13,2
=⇒ 〈↓ 〈↑ α1 〈l α2〉〉α3E−,−LE〉
14,1
=⇒ 〈↓ 〈↑ α1 〈l α2〉〉α3 〈l α4〉LE〉
12,1
=⇒ 〈↓ 〈↑ α1 〈l α2〉〉α3 〈l α4〉E−,⋆〉
15,1
=⇒ 〈↓ 〈↑ α1 〈l α2〉〉α3 〈l α4〉 〈l α5〉〉
= EMinNF(X).

The DNA expressions in minimal normal form from the four examples above can indeed
be derived in the context-free grammar G2. We now consider the situation in general.
We prove that the language generated by G2 is exactly the language DMinNF of DNA
expressions in minimal normal form. Step by step, we analyse which languages can be
derived from certain non-terminal symbols or after applying a certain production. Starting
from ‘low-level’ non-terminal symbols, which generate a relatively simple language, we
work up to (the productions for rewriting) the start symbol E⋆ of the grammar.

Some of the languages consist of sequences ε1 . . . εn with n ≥ 1, which have certain
properties. In fact, these sequences consist of arguments of the operator ↑. To simplify
the description of the languages, we introduce a notation for three (possible) properties
of such sequences:

(LU.1) for i = 1, . . . , n, εi is either a maximal N -word occurrence α (in ε1 . . . εn), or an
l-expression 〈l α〉 for an N -word α, or a ↓-expression with two or more arguments
which form an alternating sequence of N -words α and l-expressions 〈l α〉.

(LU.2) ε1, . . . , εn fit together by upper strands.

(LU.3) L(S+(ε1)) ∈ A± ∪ A+.

Lemma 10.17 In the context-free grammar G2,

1. L(α) is the set of all N -words.

2. L(〈l α〉) is the set of all l-expressions in minimal normal form.

3. L(Aα,l) is the set of all (non-empty and finite) alternating sequences of N -words α
and l-expressions 〈l α〉 for N -words α, which start with an N -word α and end with
an l-expression 〈l α〉.
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4. L(Al,l) is the set of all (non-empty and finite) alternating sequences of N -words α
and l-expressions 〈l α〉 for N -words α, which start with an l-expression 〈l α〉 and
end with an l-expression 〈l α〉.

5. L(Aα,⋆) is the set of all (non-empty and finite) alternating sequences of N -words α
and l-expressions 〈l α〉 for N -words α, which start with an N -word α.

6. L(Al,⋆) is the set of all (non-empty and finite) alternating sequences of N -words α
and l-expressions 〈l α〉 for N -words α, which start with an l-expression 〈l α〉.

7. L(
〈
↓ αAl,l

〉
) is the set of all ↓-expressions 〈↓ ε1,1 . . . ε1,m〉 with m ≥ 2, such that

ε1,1, . . . , ε1,m form an alternating sequence of N -words α and l-expressions 〈l α〉 for
N -words α, which starts with an N -word ε1,1 = α and ends with an l-expression
ε1,m = 〈l α〉.

8. L(
〈
↓ 〈l α〉Aα,l

〉
) is the set of all ↓-expressions 〈↓ ε1,1 . . . ε1,m〉 with m ≥ 2, such that

ε1,1, . . . , ε1,m form an alternating sequence of N -words α and l-expressions 〈l α〉 for
N -words α, which starts with an l-expression ε1,1 = 〈l α〉 and ends with an l-
expression ε1,m = 〈l α〉.

9. L(〈↓ 〈l α〉Aα,⋆〉) is the set of all ↓-expressions 〈↓ ε1,1 . . . ε1,m〉 with m ≥ 2, such that
ε1,1, . . . , ε1,m form an alternating sequence of N -words α and l-expressions 〈l α〉 for
N -words α, which starts with an l-expression ε1,1 = 〈l α〉.

10. L(E+,+) is the union of

• the set of all l-expressions 〈l α〉 for N -words α, and

• the set of all ↓-expressions 〈↓ ε1,1 . . . ε1,m〉 with m ≥ 2, such that ε1,1, . . . , ε1,m
form an alternating sequence of N -words α and l-expressions 〈l α〉 for N -
words α, which starts with an l-expression ε1,1 = 〈l α〉 and ends with an l-
expression ε1,m = 〈l α〉.

11. L(E+,⋆) is the union of

• the set of all l-expressions 〈l α〉 for N -words α, and

• the set of all ↓-expressions 〈↓ ε1,1 . . . ε1,m〉 with m ≥ 2, such that ε1,1, . . . , ε1,m
form an alternating sequence of N -words α and l-expressions 〈l α〉 for N -
words α, which starts with an l-expression ε1,1 = 〈l α〉.

12. L(Uα) is the set of all sequences of arguments ε1 . . . εn with n ≥ 1 and Properties
(LU.1)–(LU.3), such that (in addition)

• ε1 is a maximal N -word occurrence α (in ε1 . . . εn).

13. L(UE) is the set of all sequences of arguments ε1 . . . εn with n ≥ 1 and Properties
(LU.1)–(LU.3), such that (in addition)

• ε1 is a DNA expression.

14. L(ÛE) is the set of all sequences of arguments ε1 . . . εn with n ≥ 1 and Properties
(LU.1)–(LU.3), such that (in addition)

• ε1 is a DNA expression, and
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• there exists i with 1 ≤ i ≤ n−1, such that both εi and εi+1 are DNA expressions.

15. L(U⋆) is the set of all sequences of arguments ε1 . . . εn with n ≥ 1 and Properties
(LU.1) and (LU.2), such that (in addition)

• if n = 1, then ε1 is an N -word α, and

• if ε1 is a ↓-expression, then there exists i with 1 ≤ i ≤ n− 1, such that both εi
and εi+1 are DNA expressions.

16. L(〈↑ U⋆〉) is the set of all ↑-expressions in minimal normal form.

17. L(〈↓ L⋆〉) is the set of all ↓-expressions in minimal normal form.

Note that the number m in Claims 8 and 10 is always odd, and thus at least 3, because the
alternating sequence in the claims both starts and ends with an l-expression 〈l α〉. Note
also that the number n in Claim 14 is in fact at least 2, because there are two consecutive
εi’s which are DNA expressions.

Finally, it is worth noting that some of the languages described are (proper) subsets
of other languages. We mention a few of the relations between the languages:

L(Aα,l) ⊂ L(Aα,⋆)

L(Al,l) ⊂ L(Al,⋆)

L(E+,+) ⊂ L(E+,⋆)

L(ÛE) ⊂ L(UE)

L(Uα) ⊂ L(U⋆)

These relations fit in with the intuitive meanings of the non-terminal symbols involved.
For example, the subscript ⋆ denotes the absence of a particular restriction.

Proof:

1 This claim follows immediately from the productions for (rewriting) α.

2 This claim follows immediately from the observation that the l-expressions in minimal
normal form are (exactly) all DNA expressions of the form 〈l α〉 for an N -word α
(see Definition 10.1).

3 This claim follows immediately from the productions for (rewriting) Aα,l.

4 This claim follows immediately from the productions for (rewriting) Al,l and the pre-
vious claim.

5, 6 These claims (simultaneously) follow immediately from the productions for (rewrit-
ing) Aα,⋆ and Al,⋆.

7 This claim follows immediately from Claim 4 and the fact that the elements of an
alternating sequence of N -words α and l-expressions 〈l α〉 fit together by lower
strands (so that each element of L(

〈
↓ 〈l α〉Aα,l

〉
) is indeed a DNA expression).

8 This claim follows immediately from Claim 3 and the fact that the elements of an
alternating sequence of N -words α and l-expressions 〈l α〉 fit together by lower
strands.
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9 This claim follows immediately from Claim 5 and the fact that the elements of an
alternating sequence of N -words α and l-expressions 〈l α〉 fit together by lower
strands.

10 This claim follows immediately from the productions for (rewriting) E+,+ and Claim 8.

11 This claim follows immediately from the productions for (rewriting) E+,⋆ and Claim 9.

12, 13 We first prove that each element of L(Uα) or L(UE) is a sequence as described in
the respective claims. Let X be an arbitrary element of L(Uα) ∪ L(UE).

It follows immediately from the productions for (rewriting) Uα and UE that X is a
sequence ε1 . . . εn for some n ≥ 1, such that for i = 1, . . . , n, εi is either an N -word
α, or an element of L(E+,+), or an element of L(E+,⋆).

By Claims 10 and 11, each element of L(E+,+) or L(E+,⋆) is either an l-expression
〈l α〉 for an N -word α, or a ↓-expression with two or more arguments which form
an alternating sequence of N -words α and l-expressions 〈l α〉. This implies in
particular that if X ∈ L(UE), then ε1 is a DNA expression (which is the additional
property in Claim 13).

To complete Property (LU.1), we must establish that each N -word εi is a maximal
N -word occurrence in X. For this, it is sufficient to show that no N -word εi is
succeeded by another N -word. Therefore, assume that εi with 1 ≤ i ≤ n − 1 is
an N -word α. This N -word has been introduced into X by the application of the
production Uα −→ αUE. Hence, εi = α is succeeded by an element of L(UE), which
starts with a DNA expression.

In particular, if X ∈ L(Uα), then X starts with a maximal N -word occurrence ε1
(which is the additional property in Claim 12).

We proceed with Properties (LU.2) and (LU.3). By definition, for each N -word α,

L(S+(α)) = L(
(
α
−
)
) ∈ A+, R(S+(α)) = R(

(
α
−
)
) ∈ A+,

L(S(〈l α〉)) = L(
(

α
c(α)

)
) ∈ A± and R(S(〈l α〉)) = R(

(
α

c(α)

)
) ∈ A±.

Hence, if εi with 1 ≤ i ≤ n is a maximal N -word occurrence α or an l-expression
〈l α〉 for an N -word α, then L(S+(εi)), R(S+(εi)) ∈ A± ∪ A+.

We now consider a ↓-expression εi. If εi ∈ L(E+,+), then by Claim 10, the first
argument of εi is an l-expression 〈l αi,1〉 for anN -word αi,1, and the last argument of
εi is an l-expression 〈l αi,m〉 for anN -word αi,m. Now by Lemma 4.13(4), L(S(εi)) =
L(S(〈l αi,1〉)) ∈ A± and R(S(εi)) = R(S(〈l αi,m〉)) ∈ A±.

If, on the other hand, εi ∈ L(E+,⋆), then we must have i = n. By Claim 11, the
first argument of the ↓-expression εi is an l-expression 〈l αi,1〉 for an N -word αi,1.
Hence, L(S(εi)) = L(S(〈l αi,1〉)) ∈ A±.

We conclude that for i = 1, . . . , n − 1, L(S+(εi)), R(S+(εi)) ∈ A± ∪ A+ and that
L(S+(εn)) ∈ A± ∪ A+. This implies that X has Properties (LU.2) and (LU.3).

We also have to prove that each sequence ε1 . . . εn as described in the claims is an
element of L(Uα) or L(UE), respectively. Let X be such a sequence.
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We first analyse the ↓-expressions occurring in the sequence. Therefore, let εi with
1 ≤ i ≤ n be a ↓-expression. By Property (LU.1), εi has m ≥ 2 arguments which
form an alternating sequence of N -words α and l-expressions 〈l α〉 for N -words α.

If the first argument of εi were an N -word αi,1, then by Lemma 4.13(4), L(S(εi)) =
L(S−(αi,1)) ∈ A−. This would contradict Property (LU.2) (if i ≥ 2) or Property
(LU.3) (if i = 1). Hence, the first argument of εi is an l-expression 〈l αi,1〉 for an
N -word αi,1.

If the last argument of εi is an N -word αi,m, then R(S(εi)) = R(S−(αi,m)) ∈ A−.
If i ≤ n − 1, then this would contradict Property (LU.2). Hence, in that case, the
last argument of εi is an l-expression 〈l αi,m〉 for an N -word αi,m.

Now, by Claim 10, if 1 ≤ i ≤ n−1, then the ↓-expression εi is an element of L(E+,+).
By Claim 11, if i = n, then εi is an element of L(E+,⋆).

By Claim 10 and Claim 11, L(E+,+) and L(E+,⋆) also contain all l-expressions
of the form 〈l α〉 for an N -word α. We can thus conclude that if an element εi
of the sequence X is a DNA expression (a ↓-expression or an l-expression), then
εi ∈ L(E+,+) if 1 ≤ i ≤ n− 1, and εi ∈ L(E+,⋆) if i = n.

We finally observe that if an element εi of the sequence X is a maximal N -word
occurrence α, then either it is the last element of the sequence, or it is succeeded by
a DNA expression. If, on the other hand, εi is a DNA expression, then either it is
the last element of the sequence, or it is succeeded by a maximal N -word occurrence
or it is succeeded by another DNA expression. These possibilities can exactly be
realized by the productions for Uα and UE, respectively.

We can thus conclude that X ∈ L(Uα) if ε1 is an N -word α and that X ∈ L(UE) if
ε1 is a DNA expression.

14 Let X be an arbitrary element of L(ÛE). We can prove that X is a sequence ε1 . . . εn
for some n ≥ 1, which has Properties (LU.1)–(LU.3) and for which ε1 is a DNA
expression, like we did in the proof of Claims 12 and 13. Next, we observe that in
the derivation of X from ÛE, we must have applied the production ÛE −→ E+,+UE

(exactly) once. By Claim 10, E+,+ is rewritten into a DNA expression εi with i ≥ 1,
and by Claim 13, UE is rewritten into a sequence εi+1 . . . εn with n ≥ i+1, for which
εi+1 is a DNA expression. Indeed, the sequence ε1 . . . εn contains two consecutive
elements εi and εi+1 that are DNA expressions.

On the other hand, let X = ε1 . . . εn be a sequence as described in the claim. We
have to prove that X ∈ L(ÛE). Also for this, we can start in the same way as in
the proof of Claims 12 and 13. Thus, we find that if εi with 1 ≤ i ≤ n is a DNA
expression, then εi ∈ L(E+,+) if 1 ≤ i ≤ n− 1, and εi ∈ L(E+,⋆) if i = n.

In addition, let i0 be the smallest value of i for which both εi and εi+1 are DNA ex-
pressions. Then ε1, . . . , εi0 are maximal N -word occurrences and DNA expressions,
alternately. Because, by assumption, both ε1 and εi0 are DNA expressions. i0 must
be odd.

Now, when we start a derivation from ÛE, first apply the production ÛE −→
E+,+αÛE

i0−1
2

times, and subsequently apply the production ÛE −→ E+,+UE once,
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we obtain

E+,+α︸ ︷︷ ︸ . . . E+,+α︸ ︷︷ ︸︸ ︷︷ ︸
i0−1

2
times

E+,+UE.

It follows from the foregoing that the i0−1
2

pairs E+,+α can be rewritten into ε1 . . . εi0−1

and that the subsequent occurrence of E+,+ can be rewritten into the DNA expres-
sion εi0 . Finally, by Claim 13, UE can be rewritten into the sequence εi0+1 . . . εn
which starts with the DNA expression εi0+1.

15 We first prove that each element of L(U⋆) is a sequence ε1 . . . εn with the properties
from the claim. Therefore, let X be an arbitrary element of L(U⋆).

It follows immediately from the productions for (rewriting) U⋆ and Claims 7, 8, 12,
13 and 14, that X is a sequence ε1 . . . εn with n ≥ 1, which has Property (LU.1).

If ε1 is an element of L(
〈
↓ αAl,l

〉
) ∪ L(

〈
↓ 〈l α〉Aα,l

〉
), then by Claims 7 and 8, ε1

is a ↓-expression, whose last argument is an l-expression 〈l α〉 for an N -word α.
Hence, by Lemma 4.13(4), R(S(ε1)) = R(S(〈l α〉)) ∈ A±. Now, Property (LU.2)
follows from the productions for (rewriting) U⋆ and Claims 12, 13 and 14,

We finally consider the additional properties in the claim. If n = 1, then we must
have applied the production U⋆ −→ α in the first step of the derivation of X from
U⋆. This implies that ε1 is an N -word α. If, on the other hand, ε1 is a ↓-expression,
then we must have applied one of the productions from line 3. It follows from these
productions and Claims 13 and 14 that in that case, there exists i with 1 ≤ i ≤ n−1,
such that both εi and εi+1 are DNA expressions.

We now prove that each sequence ε1 . . . εn as described in the claim is an element
of L(U⋆). Let X be such a sequence. We distinguish a number of cases, based on ε1
and (possibly) subsequent εi’s.

• If ε1 is an N -word α, then we may have n = 1. In that case, X = α, which is
derived from U⋆ by the application of production U⋆ −→ α.

If, on the other hand, n ≥ 2, then the sequence ε2 . . . εn has Properties (LU.1)–
(LU.3) (with subscripts increased by 1), and ε2 is a DNA expression. By Claim 13,
the sequence ε2 . . . εn is an element of L(UE). Hence, X = αε2 . . . εn ∈ L(αUE).

• If ε1 is an l-expression 〈l α〉 for an N -word α, then we must have n ≥ 2. The
sequence ε2 . . . εn has Properties (LU.1)–(LU.3) (with subscripts increased by 1).

Now, if ε2 is an N -word α, then by Claim 12, the sequence ε2 . . . εn is an element
of L(Uα) and X = 〈l α〉 ε2 . . . εn ∈ L(〈l α〉Uα). If, on the other hand, ε2 is a DNA
expression, then by Claim 13, the sequence ε2 . . . εn is an element of L(UE) and
X = 〈l α〉 ε2 . . . εn ∈ L(〈l α〉UE).

• If ε1 is a ↓-expression, then we must again have n ≥ 2. The ↓-expression ε1 has
m ≥ 2 arguments ε1,1, . . . , ε1,m, which form an alternating sequence of N -words α
and l-expressions 〈l α〉. Moreover, because ε1 prefits ε2 by upper strands, the last
argument ε1,m of ε1 must be an l-expression.
Now, if the first argument ε1,1 of ε1 is an N -word α, then by Claim 7, ε1 ∈
L(
〈
↓ αAl,l

〉
). If, on the other hand, ε1,1 is an l-expression, then by Claim 8,

ε1 ∈ L(
〈
↓ 〈l α〉Aα,l

〉
).
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In both cases, there exists i with 1 ≤ i ≤ n− 1 such that both εi and εi+1 are DNA
expressions.

If ε2 is an N -word α, then we do not have two consecutive DNA expressions, yet.
Hence, n must be at least 3 (in fact, at least 4) and ε3 . . . εn is a sequence with
Properties (LU.1)–(LU.3) (with subscripts increased by 2), such that (in addition)
ε3 is a DNA expression (because it succeeds the maximal N -word occurrence ε2) and
there exists i with 3 ≤ i ≤ n − 1 for which both εi and εi+1 are DNA expressions.
By Claim 14, the sequence ε3 . . . εn is an element of L(ÛE). Hence, either X =

ε1αε3 . . . εn ∈ L(
〈
↓ αAl,l

〉
αÛE), or X = ε1αε3 . . . εn ∈ L(

〈
↓ 〈l α〉Aα,l

〉
αÛE).

If, on the other hand, ε2 is a DNA expression, then ε1 and ε2 are two consecut-
ive DNA expressions. There does not necessarily exist i with 2 ≤ i ≤ n − 1 for
which both εi and εi+1 are DNA expressions. The sequence ε2 . . . εn has Properties
(LU.1)–(LU.3) and ε2 is a DNA expression. By Claim 13, ε2 . . . εn is an element
of L(UE). Hence, either X = ε1ε2 . . . εn ∈ L(

〈
↓ αAl,l

〉
UE), or X = ε1ε2 . . . εn ∈

L(
〈
↓ 〈l α〉Aα,l

〉
UE).

16 Let X be an arbitrary element of L(〈↑ U⋆〉). By the previous claim, X = 〈↑ ε1 . . . εn〉
for n ≥ 1 N -words and DNA expressions ε1, . . . , εn with some special properties. By
Property (LU.2), the arguments ε1, . . . , εn fit together by upper strands. Hence, X
is indeed an ↑-expression. Each of Properties (DMinNF.1)–(DMinNF.5) follows easily
from the properties listed in the previous claim. By Theorem 10.8, X is in minimal
normal form.

On the other hand, letX be an arbitrary ↑-expression in minimal normal form. Then
X = 〈↑ ε1 . . . εn〉 for n ≥ 1 maximal N -word occurrences and DNA expressions
ε1, . . . , εn that fit together by upper strands, and X has Properties (DMinNF.1)–
(DMinNF.5). It is easily verified that the sequence ε1 . . . εn have the properties listed
in the previous claim. Hence, ε1 . . . εn is an element of L(U⋆) and X = 〈↑ ε1 . . . εn〉 ∈
L(〈↑ U⋆〉).

17 The proof of this claim is analogous to that of the previous claim (with analogous
auxiliary claims).

In the first part of the proof of Claims 12 and 13, we showed that each element X of L(Uα)
or L(UE) has Properties (LU.1)–(LU.3). It is worth noting that such an element X has
even stronger properties. Also the ‘lower analogues’ of Properties (LU.2) and (LU.3) are
valid: ε1, . . . , εn fit together by lower strands and L(S−(ε1)) ∈ A± ∪ A−.

The lower analogue of Property (LU.1), however, is not necessarily valid. (Some of) the
elements εi of the sequences in L(Uα) and L(UE) may be ↓-expressions. Consequently, the
languages L(Lα) and L(LE), which contain sequences ε1 . . . εn with the lower analogues
of Properties (LU.1)–(LU.3), are really different from L(Uα) and L(UE), respectively.

A corollary of Lemma 10.17(2), (16) and (17) is

Theorem 10.18 L(G2) = LG2
(E⋆) is the language DMinNF of all DNA expressions in

minimal normal form.

Because G2 is a context-free grammar, we know that DMinNF is a context-free language.
We use Proposition 2.6 to prove that it is even a regular language. In order to apply
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Level Non-terminal symbols
1 E⋆

2 U⋆, Uα, UE, ÛE, L⋆, Lα, LE, L̂E

3 E+,+, E+,⋆, E−,−, E−,⋆

4 Aα,lAl,l, Aα,⋆, Al,⋆

5 α

Table 10.2: Intuitive levels of non-terminal symbols in the context-free grammar G2.
Note that the higher the level is, the ‘simpler’ the non-terminal symbols are.

Proposition 2.6 to G2 directly, we have to establish that G2 is not self-embedding, i.e.,
that none of its non-terminal symbols is self-embedding.

Note that it is not really surprising that this property is valid. Intuitively, we can
distinguish ‘levels’ of non-terminal symbols in G2, as indicated in Table 10.2. When
we rewrite a non-terminal symbol, the result consists of terminal symbols, non-terminal
symbols at a higher level and at most one non-terminal symbol at the same level, which
then is the rightmost letter of the result. Hence, if a non-terminal symbol expands at its
own level, then it does so ‘in a right-linear way’.

The levels of the non-terminal symbols, as listed in Table 10.2, do not correspond per-
fectly to the nesting levels in the DNA expressions that can be derived in G2. For example,
the elements of {U⋆, Uα, UE, ÛE, L⋆, Lα, LE, L̂E} and the elements of {E+,+, E+,⋆, E−,−,
E−,⋆} are at different levels in the table. However, as we discussed at the beginning of
this section, each of these elements corresponds to a sequence of arguments or a single
argument of the outermost operator, i.e., at nesting level 1 of the DNA expression. As
another example, the symbol α is at level 5 in Table 10.2, whereas an N -word α may
occur at different levels in a DNA expression (in minimal normal form).

On the other hand, there definitely is a relation between the levels in the table and
the nesting levels of a DNA expression. To see this, recall that a DNA subexpression
induces a temporary increase of the nesting level of the DNA expression. Indeed, for
each production A −→ Z in P2 that introduces a new DNA subexpression (i.e., for which
the right-hand side Z contains a pair of matching brackets), the non-terminal symbols
occurring inside the brackets of the DNA subexpression are at the higher level than the
original non-terminal symbol A. Hence, the levels of the non-terminal symbols in G2

‘follow the direction’ of the nesting levels of the DNA expression.

Our intuition about the levels of the non-terminal symbols is expressed formally in the
following result:

Lemma 10.19 Let A be an arbitrary non-terminal symbol in V2 and let X be a string
over V2 ∪ Σ2 that can be derived from A in one or more derivation steps.

1. Assume that A = α. If X contains a non-terminal symbol B, then B = α and B is
the last letter of X.

2. Assume that A ∈ {Aα,l, Al,l, Aα,⋆, Al,⋆}. If X contains a non-terminal symbol B,
then

• either B = α,

• or B ∈ {Aα,l, Al,l, Aα,⋆, Al,⋆} and B is the last letter of X.
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3. Assume that A ∈ {E+,+, E+,⋆, E−,−, E−,⋆}. If X contains a non-terminal symbol B,
then B ∈ {Aα,l, Al,l, Aα,⋆, Al,⋆, α}.

4. Assume that A ∈ {U⋆, Uα, UE, ÛE}. If X contains a non-terminal symbol B, then

• either B ∈ {E+,+, E+,⋆, Aα,l, Al,l, Aα,⋆, Al,⋆, α},
• or B ∈ {U⋆, Uα, UE, ÛE} and B is the last letter of X.

5. Assume that A ∈ {L⋆, Lα, LE, L̂E}. If X contains a non-terminal symbol B, then

• either B ∈ {E−,−, E−,⋆, Aα,l, Al,l, Aα,⋆, Al,⋆, α},
• or B ∈ {L⋆, Lα, LE, L̂E} and B is the last letter of X.

6. Assume that A = E⋆. If X contains a non-terminal symbol B, then B 6= E⋆.

Proof:

1. This claim follows immediately from the productions for (rewriting) α.

2. This claim follows immediately from the productions for (rewriting) the non-termi-
nals in {Aα,l, Al,l, Aα,⋆, Al,⋆} and the previous claim.

3. This claim follows immediately from the productions for (rewriting) the non-termi-
nals in {E+,+, E+,⋆, E−,−, E−,⋆} and from the previous two claims.

4. This claim follows immediately from the productions for (rewriting) the non-termi-

nals in {U⋆, Uα, UE, ÛE} and from the previous three claims.

5. The proof of this claim is analogous to that of the previous claim.

6. This claim is obvious, because the non-terminal symbol E⋆ does not occur in the
right-hand side of any production in G2.

It follows immediately from Lemma 10.19 that none of the non-terminal symbols in G2 is
self-embedding, and thus that G2 is not self-embedding. By Theorem 10.18, L(G2) equals
the language of all DNA expressions in minimal normal form. Hence, by Proposition 2.6,

Theorem 10.20 The language DMinNF of DNA expressions in minimal normal form is
regular.



Chapter 11

Algorithms for the Minimal Normal
Form

At the beginning of Chapter 10, we introduced the (minimal) normal form, a.o., as a
means to check equivalence. Two DNA expressions E1 and E2 are equivalent, if and only
if their normal form versions are equal.

To utilize this property, we need an algorithm that, for a given DNA expression, com-
putes the equivalent DNA expression in minimal normal form. With such an algorithm, we
can compute the normal form versions of E1 and E2. If these are equal, then the original
DNA expressions E1 and E2 are equivalent. If not, then E1 and E2 are not equivalent.

In order to obtain the normal form version of a given DNA expression E∗
1 , we may first

compute its semantics X1 = S(E∗
1), and then use Definition 10.1 to construct EMinNF(X1).

However, if we do this for E1 and E2, to decide if they are equivalent, then we make
a useless detour. We can as well omit the second step, the construction of the DNA
expression in minimal normal form from the semantics, and base our decision on S(E1)
and S(E2) directly. Apart from that, of course, it would be more elegant if we did not
need the semantics, at all, to get from one DNA expression (E∗

1) to another (EMinNF(X1)).
In this chapter, we discuss two approaches to rewrite an arbitrary DNA expression E∗

1

into its normal form equivalent, without referring to S(E∗
1). The first approach is inspired

by the efficient recursive function MakeMinimal, which we used in Chapter 9 to rewrite a
given DNA expression into an equivalent, minimal DNA expression. Unfortunately, the
resulting recursive function for the minimal normal form turns out be be less efficient: it
uses at least quadratic time in the worst case, whereas the complexity of MakeMinimal
was linear. We subsequently describe an alternative, two-step algorithm, and prove that
it is correct and uses only linear time and space.

Note that the recursive function MakeMinimal itself is not sufficient to produce some
kind of a normal form. By Corollary 9.13, this function does not necessarily yield the same
output for different equivalent inputs, which is required for a normal form. However, as
we see in Section 11.2, it will be useful as the first step of the two-step algorithm.

11.1 Recursive algorithm for the minimal normal form

In Chapter 9, we have described a recursive function MakeMinimal, which rewrites a
given DNA expression E into an equivalent, minimal DNA expression. For an expression-
argument Ei of E, the function first performs a recursive call. If necessary, the result is
subject to some local rearrangements, to make E minimal itself. We proved that, with

341
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1. MakeMinimalNF (E)
// recursively rewrites an arbitrary DNA expression E
// into an equivalent DNA expression in minimal normal form

2. {
3. if (E is an l-expression)
4. then if (the argument of E is a DNA expression E1)
5. then MakeMinimalNF (E1);
6. substitute E by a DNA expression E ′ in minimal normal form

satisfying E ′ ≡ E;
7. fi

8. else // E is an ↑-expression or a ↓-expression
9. for all expression-arguments Ei of E (in some order)
10. do MakeMinimalNF (Ei);
11. od
12. substitute E by a DNA expression E ′ in minimal normal form

satisfying E ′ ≡ E;
13. fi
14. }

Figure 11.1: Set-up of a recursive function MakeMinimalNF.

a proper data structure, this function requires time and space that are linear in |E| (see
Corollary 9.38 and Theorem 9.40).

We now want to rewrite a given DNA expression into the equivalent DNA expression
in minimal normal form. Our first attempt is again a recursive function, which we call
MakeMinimalNF. When we apply this function to a DNA expression E, we first (recursively)
rewrite the expression-arguments of E into the minimal normal form. After that, we deal
with the DNA expression as a whole. Just like we did in MakeMinimal, we consider
l-expressions on the one hand, and ↑-expressions and ↓-expressions on the other hand,
separately. Figure 11.1 displays the global set-up of MakeMinimalNF.

In lines 6 and 12, we substitute a DNA expression E whose arguments are in min-
imal normal form by an equivalent DNA expression E ′ which is in minimal normal form
itself. We have not specified how to find this DNA expression E ′. It is, however, clear,
that we should not implement those lines by a recursive call MakeMinimalNF(E), as that
would start an infinite series of recursive calls of MakeMinimalNF, with the same argument
E. Instead, analogous to our implementation of MakeMinimal, we should try to devise
procedures consisting of local rearrangements at the string level, which make sure that a
DNA expression with normal form arguments becomes in normal form itself.

Note that indeed, the structure of MakeMinimalNF is equal to that of MakeMinimal(see
Figure 9.1). The main difference between the description of MakeMinimal and that of
MakeMinimalNF is that the former has more detail. Both lines 6–10 and lines 16–37 of
MakeMinimal are an implementation of the general statement ‘substitute E by a minimal
DNA expression E ′ satisfying E ′ ≡ E’ (cf. lines 6 and 12 of MakeMinimalNF).

Although we have not specified the details of lines 6 and 12, it is not difficult to prove
that the set-up of MakeMinimalNF is correct.

Theorem 11.1 Let E∗
1 be an arbitrary DNA expression, and let E∗

2 be the result of ap-
plying the function MakeMinimalNF to E∗

1 .

1. MakeMinimalNF is well defined.
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2. The string E∗
2 is a DNA expression in minimal normal form satisfying E∗

2 ≡ E∗
1 .

Proof:

1. Clearly, for every DNA expression E, there exists an equivalent DNA expression E ′

which is minimal normal form. This implies that lines 6 and 12 of MakeMinimalNF
are well defined. Hence, the entire recursive function is well defined.

2. The proof of this claim is straightforward by induction on the number p of operators
occurring in E∗

1 .

If E∗
1 = 〈l α1〉 for an N -word α1, then MakeMinimalNF leaves E∗

1 unchanged. By

Case 1 of Definition 10.1, E∗
2 = E∗

1 = 〈l α1〉 = EMinNF(X) for X =
(

α1

c(α1)

)
. Indeed,

E∗
2 is in minimal normal form, and obviously, E∗

2 ≡ E∗
1 .

In all other cases (E∗
1 = 〈l E1〉 for a DNA expression E1, or E

∗
1 is an ↑-expression or

a ↓-expression), suppose that the recursive calls in lines 5 and 10 of MakeMinimalNF
yield DNA expressions that are equivalent to the expression-arguments Ei of E = E∗

1 .
Then Lemma 5.11 and lines 6 and 12 of MakeMinimalNF ensure that E∗

2 is in minimal
normal form and equivalent to E∗

1 . We leave the details to the reader.

In the above proof of Claim 2, we did not use the fact that the expression-arguments
resulting from the recursive calls in lines 5 and 10 of MakeMinimalNF are in minimal
normal form. This fact may, however, be exploited in an actual implementation of lines 6
and 12.

Regardless of the actual implementations of lines 6 and 12, we can draw another
important conclusion: the recursive approach of MakeMinimalNF is not as efficient as that
of MakeMinimal. We demonstrate this by examining its complexity for DNA expressions
of a specific type.

Example 11.2 Let α be an arbitrary N -word, and let

E1 = 〈↓ 〈l α〉α 〈l α〉〉 ,
E2p = 〈↑ 〈l α〉α E2p−1 α 〈l α〉〉 (p ≥ 1),
E2p+1 = 〈↓ 〈l α〉α E2p α 〈l α〉〉 (p ≥ 1).

Hence,

E1 = 〈↓ 〈l α〉α 〈l α〉〉 ,
E2 = 〈↑ 〈l α〉α 〈↓ 〈l α〉α 〈l α〉〉α 〈l α〉〉 ,
E3 = 〈↓ 〈l α〉α 〈↑ 〈l α〉α 〈↓ 〈l α〉α 〈l α〉〉α 〈l α〉〉α 〈l α〉〉 ,
E4 = 〈↑ 〈l α〉α 〈↓ 〈l α〉α 〈↑ 〈l α〉α 〈↓ 〈l α〉α 〈l α〉〉α 〈l α〉〉α 〈l α〉〉α 〈l α〉〉 ,

etc.

It is easy to prove by induction on p, that for any p ≥ 1,

• both E2p and E2p+1 are DNA expressions,
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•

S(E2p) =
(

α
c(α)

)(
α
−
) (

α
c(α)

)(−
α

)(
α

c(α)

)(
α
−
)
. . .
(

α
c(α)

)(−
α

)(
α

c(α)

)(
α
−
)

︸ ︷︷ ︸
p− 1 times

·

(
α

c(α)

)(−
α

)(
α

c(α)

)
·

(
α
−
)(

α
c(α)

)(−
α

)(
α

c(α)

)
. . .
(
α
−
)(

α
c(α)

)(−
α

)(
α

c(α)

)
︸ ︷︷ ︸

p− 1 times

(
α
−
)(

α
c(α)

)

=
(

α
c(α)

)(
α
−
) (

α
c(α)

)(−
α

)(
α

c(α)

)(
α
−
)
. . .
(

α
c(α)

)(−
α

)(
α

c(α)

)(
α
−
)

︸ ︷︷ ︸
2p− 1 times

(
α

c(α)

)
,

S(E2p+1) =
(

α
c(α)

)(−
α

)(
α

c(α)

)(
α
−
)
. . .
(

α
c(α)

)(−
α

)(
α

c(α)

)(
α
−
)

︸ ︷︷ ︸
p times

·

(
α

c(α)

)(−
α

)(
α

c(α)

)
·

(
α
−
)(

α
c(α)

)(−
α

)(
α

c(α)

)
. . .
(
α
−
)(

α
c(α)

)(−
α

)(
α

c(α)

)
︸ ︷︷ ︸

p times

=
(

α
c(α)

)(−
α

) (
α

c(α)

)(
α
−
)(

α
c(α)

)(−
α

)
. . .
(

α
c(α)

)(
α
−
)(

α
c(α)

)(−
α

)
︸ ︷︷ ︸

2p times

(
α

c(α)

)
,

•

B↑(S(E2p)) = B↓(S(E2p)) + 1 = 2p,

B↓(S(E2p+1)) = B↑(S(E2p+1)) + 1 = 2p+ 1,

• nl(S(Eq)) = 2q, both if q = 2p and if q = 2p+ 1,

• |Eq| = 3 · 3q + (4q − 1) · |α|, both if q = 2p and if q = 2p+ 1.

In particular, E2p and E2p+1 are nick free, and their lengths are linear in p. Moreover,
both E2p and E2p+1 are minimal, because they achieve the minimal lengths mentioned in
Summary 8.16(3) and (4), respectively. However, for q ≥ 3, Eq is not in minimal normal
form, because it violates Property (DMinNF.4).

By Definition 10.1(3) and (4) and the construction from Theorem 7.24, the corres-
ponding DNA expressions in minimal normal form are

E ′
2p = EMinNF(S(E2p))

=

〈
↑ 〈l α〉α 〈↓ 〈l α〉α 〈l α〉〉α . . . 〈↓ 〈l α〉α 〈l α〉〉α︸ ︷︷ ︸

2p− 1 times

〈l α〉
〉
, (11.1)

E ′
2p+1 = EMinNF(S(E2p+1))

=

〈
↓ 〈l α〉α 〈↑ 〈l α〉α 〈l α〉〉α . . . 〈↑ 〈l α〉α 〈l α〉〉α︸ ︷︷ ︸

2p times

〈l α〉
〉
. (11.2)
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Now, let p ≥ 1 and let us apply the function MakeMinimalNF to the ↓-expression E2p+1,
with the ↑-expression E2p as one of its arguments. When we call the function recursively
for E2p, this argument is rewritten into the ↑-expression E ′

2p. The other two expression-
arguments 〈l α〉 of E2p+1 are already in minimal normal form. In order to rewrite the
result

〈
↓ 〈l α〉α E ′

2p α 〈l α〉
〉

(11.3)

into the corresponding DNA expression in minimal normal form E ′
2p+1, we must remove

the 2p−1 occurrences of ↓ in E ′
2p, add 2p−1 occurrences of ↑ at other positions in the DNA

expression, and also rearrange the brackets. Regardless of the actual implementation of
such a rearrangement, it requires time that is at least linear in p.

Likewise, at a higher level of the recursion, we have had to rearrange 2p−2, 2p−3, 2p−
4, . . . , 1 occurrences of operators in E ′

2p−1, E
′
2p−2, E

′
2p−3, . . . , E

′
2, respectively. Altogether,

this takes time that is at least quadratic in p, and thus in the length of E2p+1.
The analysis for the ↑-expression E2p is completely analogous.

It is instructive to examine the operation of the recursive function MakeMinimalNF on the
structure trees of the DNA expressions from the above example. We have depicted this
in Figure 11.2 and Figure 11.3 for the ↓-expression E5.

Since there exist DNA expressions E for which MakeMinimalNF requires time that is
at least quadratic in |E|, we can conclude:

Theorem 11.3 The worst case time complexity of the recursive function MakeMinimalNF

is at least quadratic.

Alternative implementation

We need to mention that Theorem 11.3 was actually based on an implicit, but natural
assumption about the way that line 12 of MakeMinimalNF may be implemented. In par-
ticular, in Example 11.2, when we observe that the DNA expression from (11.3) must be
rewritten into E ′

2p+1, we assume that the requisite rewriting steps are really carried out,
in the current version of the DNA expression E.

There is, however, an alternative implementation possible, in which MakeMinimalNF

maintains two DNA expressions E ′ and Ê ′ instead of just one. E ′ and Ê ′ are operator-
minimal DNA expressions, as defined in Section 7.2, or are based on such DNA expres-
sions. In the case of a nick free DNA molecule X, one of these two DNA expressions is
the operator-minimal ↑-expression based on the primitive lower block partitioning of X,
and the other is the operator-minimal ↓-expression based on the primitive upper block
partitioning of X. Only one of these two DNA expressions, say E ′, is in minimal normal
form.

Let E be an ↑-expression or ↓-expression. For each expression-argument Ei of E,
the recursive call in line 10 of MakeMinimalNF should produce an operator-minimal ↑-
expression and an operator-minimal ↓-expression, which are both equivalent to Ei. Now,
suppose that in line 12, we discover that E ′, the DNA expression in minimal normal
form satisfying E ′ ≡ E, should be an ↑-expression. Then we can efficiently construct E ′

from its operator-minimal ↑-arguments. In addition, we construct an operator-minimal
↓-expression Ê ′ satisfying Ê ′ ≡ E from the operator-minimal ↓-arguments.

Example 11.4 Consider the ↓-expression E = E2p+1 for some p ≥ 1, with semantics X =
S(E2p+1), as described in Example 11.2. The recursive call of MakeMinimalNF for argument
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Figure 11.2: Structure trees of the DNA expressions that we successively obtain, when
we apply the recursive function MakeMinimalNF to the ↓-expression E5 from Example 11.2.
To make the structure trees easier to compare, we have added subscripts to the occurring
N -words. (a) Structure tree of the original DNA expression. The nodes in the backbone
of the tree correspond in top-down order to E5, E4, E3, E2 and E1, respectively. Note
that E1 and E2 are already in the minimal normal form. The corresponding two nodes
are marked with an extra circle. (b) Structure tree after rewriting the DNA subexpression
E3 into the minimal normal form equivalent E ′

3. The node corresponding to E ′
3 is marked

with an extra circle. (Continued in Figure 11.3)

E2p of E2p+1 yields two operator-minimal DNA expressions denoting X2p = S(E2p). The
operator-minimal ↑-expression based on the primitive lower block partitioning of X2p is
the ↑-expression E ′

2p from (11.1), which is in minimal normal form. The operator-minimal
↓-expression based on the primitive upper block partitioning of X2p is

Ê ′
2p =

〈
↓ 〈↑ 〈l α〉α 〈l α〉〉α . . . 〈↑ 〈l α〉α 〈l α〉〉α︸ ︷︷ ︸

2p− 1 times

〈↑ 〈l α〉α 〈l α〉〉
〉
.

Now, the DNA expression E ′ in minimal normal form, satisfying E ′ ≡ E = E2p+1, is
the ↓-expression E ′

2p+1 from (11.2). This DNA expression can be constructed in constant

time from Ê ′
2p. In addition, we use E ′

2p to construct the equivalent, operator-minimal
↑-expression

Ê ′ =

〈
↑ 〈↓ 〈l α〉α 〈l α〉〉α . . . 〈↓ 〈l α〉α 〈l α〉〉α︸ ︷︷ ︸

2p times

〈↓ 〈l α〉α 〈l α〉〉
〉
.

The construction of Ê ′ can also be done in constant time.
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α1 l α4 l l α8 l l α12 l l α16 l α19

α3 α5 α7 α9 α11 α13 α15 α17 (d)

Figure 11.3: Structure trees of the DNA expressions that we successively obtain, when
we apply the recursive function MakeMinimalNF to the ↓-expression E5 from Example 11.2
(continuation of Figure 11.2). (c) Structure tree after rewriting the DNA subexpression
E4 into the minimal normal form equivalent E ′

4. The node corresponding to E ′
4 is marked

with an extra circle. (d) Structure tree of the final result of the function, the minimal
normal form equivalent E ′

5 of E5 itself. For consistency, the root node (corresponding to
E ′

5) is marked with an extra circle.

If E denotes a formal DNA molecule X denoting nick letters, then without loss of gen-
erality, assume that these are lower nick letters. We know from Lemma 5.2(1) that we
cannot find an operator-minimal ↓-expression denoting X. In that case, we consider the
substrings Zh occurring in the nick free decomposition of X. For each Zh, we maintain
both the operator-minimal ↑-expression denoting Zh based on the primitive lower block
partitioning, and the operator-minimal ↓-expression denoting Zh based on the primitive
upper block partitioning. Now, the operator-minimal ↑-expressions are used to construct
the ↑-expression E ′ in minimal normal form satisfying E ′ ≡ E. The operator-minimal
↓-expressions are used to construct a second, equivalent ↑-expression Ê ′.

There are many more details about this alternative implementation of MakeMinimalNF
that should be worked out, before one can conclude that its time complexity is really
linear, as desired. We believe it is possible, but do not do this in this thesis. Instead,
we describe a completely different algorithm, which maintains only one DNA expression,
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1. NormalizeMinimal (E∗
2)

// rewrites an arbitrary minimal DNA expression E∗
2

// into a DNA expression E∗
3 in minimal normal form satisfying E∗

3 ≡ E∗
2;

// uses local rearrangements of the DNA expression for this
2. {
3. E = E∗

2;
4. if (E is an l-expression)
5. then E∗

3 = E;
6. else // E is an ↑-expression or a ↓-expression;

// without loss of generality, assume it is an ↑-expression
7. if (E is alternating and its first argument is a ↓-argument)
8. then substitute E by the result of procedure RotateToMinimal;

(DMinNF.5)
9. fi

// E is an ↑-expression or a ↓-expression;
// without loss of generality, assume it is an ↑-expression

10. while (E has inner occurrences of ↑)
11. do select a ↓-subexpression Ê of E

which has at least one ↑-argument Ei;

// Ê = 〈↓ ε1 . . . εi−1Eiεi+1 . . . εn〉
// and Ei = 〈↑ εi,1εi,2 . . . εi,m−1εi,m〉

12. substitute Ê in E
by 〈↓ ε1 . . . εi−1εi,1〉 εi,2 . . . εi,m−1 〈↓ εi,mεi+1 . . . εn〉; (DMinNF.4)

13. od
14. E∗

3 = E;
15. fi
16. }

Figure 11.4: Pseudo-code of the algorithm NormalizeMinimal.

performs rewriting steps directly in that DNA expression, and has linear complexity, after
all.

11.2 Two-step algorithm for the minimal normal form

As we have seen in Section 11.1, a natural implementation of the direct, recursive function
MakeMinimalNF might produce an equivalent DNA expression in minimal normal form for
its argument E, but would not really be efficient. We now propose another, two-step
algorithm. Given an arbitrary DNA expression E∗

1 , we first use the function MakeMinimal

to construct an equivalent, minimal DNA expression E∗
2 . This DNA expression is not

necessarily in minimal normal form. We subsequently rewrite E∗
2 into the minimal normal

form.

In Figure 11.4, we give pseudo-code for the algorithm NormalizeMinimal, which per-
forms this second step. Both substitutions occurring in this pseudo-code can be achieved
by local rearrangements of brackets and operators in the DNA expression.

As usual, in NormalizeMinimal, we consider l-expressions on the one hand, and ↑-
and ↓-expressions on the other hand, separately. If the minimal DNA expression E∗

2 is an
l-expression, then by Theorem 7.5, there is no other minimal DNA expression with the
same semantics. Hence, E∗

2 must be in minimal normal form already. It does not have to
be rewritten. This explains line 5.
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Now, let us assume that E = E∗
2 is an ↑-expression. In lines 7–9, we consider the case

that E is alternating and its first argument is a ↓-expression. In this case, as indicated
in the code, E violates Property (DMinNF.5). We correct this by applying a procedure
that we also used in the implementation of MakeMinimal, namely RotateToMinimal, see
Figure 9.5.

In the subsequent while-loop, we deal with inner occurrences of ↑ in the ↑-expression
E. As we have seen in the proof of Lemma 10.9(1), such inner occurrences correspond to
violations of Property (DMinNF.4). When we perform the substitution in line 12, we get
rid of one inner occurrence of ↑.

In Lemma 10.10, we have established an upper bound on the nesting level of the
brackets in a DNA expression in minimal normal form. In fact, due to the substitution in
line 12, the nesting level decreases by 2 at the location of the substitution. We can also
use the terms from Definition 10.1: the substitution in line 12 corresponds to breaking a
large lower block into two smaller lower blocks.

Note that Properties (DMinNF.1)–(DMinNF.3) are not mentioned in the pseudo-code.
This is natural, as they equal Properties (DMin.1)–(DMin.3) of minimal DNA expressions,
and the input of NormalizeMinimal is supposed to be minimal.

We illustrate the algorithm by an example. In this example, we also show (or refer back
to) the structure trees of the DNA expressions we obtain in the course of the algorithm.

Example 11.5 In Example 7.26, we have constructed four minimal DNA expressions for
the formal DNA molecule X depicted in Figure 7.6. Let

E = Ec = 〈↓ 〈↑ α1 〈l α2〉〉α3 〈↑ 〈l α4〉α5 〈l α6〉α7 〈l α8〉〉α9 〈l α10〉〉 (11.4)

(see (7.11)), which has been depicted in Figure 11.5(a). The fact that E is minimal implies
(1) that, by Theorem 9.12, it is not affected by the recursive function MakeMinimal, and
(2) that we can apply the algorithm NormalizeMinimal to it.

E is an alternating ↓-expression. Because its first argument is the ↑-expression E1 =
〈↑ α1 〈l α2〉〉, E violates Property (DMinNF.5). According to (the analogue for ↓-expressions
of) line 8 of algorithm NormalizeMinimal and line RtM.6 of procedure RotateToMinimal,
E is substituted by

E = 〈↑ α1 〈↓ 〈l α2〉α3 〈↑ 〈l α4〉α5 〈l α6〉α7 〈l α8〉〉α9 〈l α10〉〉〉 . (11.5)

This is the minimal DNA expression Eb from (7.10). It has been depicted in Figure 11.5(b).
Because the ↑-expression E has an inner occurrence of ↑, we enter the while-loop. We
select the ↓-subexpression

Ê = 〈↓ 〈l α2〉α3 〈↑ 〈l α4〉α5 〈l α6〉α7 〈l α8〉〉α9 〈l α10〉〉 ,

(the second argument of E), whose third argument is the ↑-expression E3 = 〈↑ 〈l α4〉α5

〈l α6〉α7 〈l α8〉〉. Because the outermost operator ↓ of Ê is an inner occurrence in E, it

violates Property (DMinNF.4). According to line 12 of algorithm NormalizeMinimal, Ê is
substituted in E by the sequence of arguments

〈↓ 〈l α2〉α3 〈l α4〉〉 α5 〈l α6〉α7 〈↓ 〈l α8〉α9 〈l α10〉〉 ,

yielding

E = 〈↑ α1 〈↓ 〈l α2〉α3 〈l α4〉〉α5 〈l α6〉α7 〈↓ 〈l α8〉α9 〈l α10〉〉〉 . (11.6)
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Figure 11.5: Structure trees of the first two minimal DNA expressions occurring in
Example 11.5, denoting the formal DNA molecule from Figure 7.6. (a) The structure tree
of Ec from (11.4). (b) The structure tree of Eb from (11.5).

After the substitution, E has no inner occurrences of ↑ any more, and we exit the while-
loop. We do not rewrite the DNA expression any further. Indeed, E has all five properties
from Lemma 10.6, and thus is in minimal normal form. It equals EMinNF(X) = Ea from
(7.9) and (10.2), which has been depicted in Figure 10.1(b).

In the above example, the while-loop in lines 10–13 of NormalizeMinimal has only one
iteration. In general, there may be more iterations. We will see an example of this in
Section 11.3.

It is possible that for a given DNA expression E∗
1 , the result E

∗
2 of function MakeMinimal

is already in minimal normal form. One can verify that this is, e.g., the case for the DNA
expression from Example 9.28. In such a case, NormalizeMinimal obviously will not find
violations of Properties (DMinNF.4) and (DMinNF.5) in E∗

2 , and will leave E∗
2 unchanged.

When we introduced algorithm NormalizeMinimal, we already mentioned the relation
between inner occurrences of ↑ in an ↑-expression E (and inner occurrences of ↓ in a ↓-
expression E) and violations of Property (DMinNF.4). This property deals (a.o.) with the
arguments of arbitrary inner occurrences of ↓ in E, i.e., the arguments of arbitrary proper
↓-subexpressions of E. We now focus on the arguments of (direct) ↓-arguments of an
↑-expression E.

Lemma 11.6 Let E be a minimal ↑-expression. Then E has an inner occurrence of ↑, if
and only if E has a ↓-argument with at least one ↑-argument.

Proof: Obviously, if E has a ↓-argument with at least one ↑-argument, then E has an
inner occurrence of ↑.

Now assume that E has an inner occurrence ↑1 of ↑. Then ↑1 occurs in an argument ε̂
of E. By Corollary 8.2, ε̂ is either an N -word α, or an l-expression 〈l α〉 for an N -word
α, or a ↓-expression. Because the first two types of arguments do not contain occurrences
of ↑, ε̂ must be a ↓-expression Ê.



11.2 Two-step algorithm for the minimal normal form 351

Inside Ê, ↑1 occurs in an argument εi of Ê. Because E is minimal, so is Ê. Hence, by
Corollary 8.2, εi is either an N -word α, or an l-expression 〈l α〉 for an N -word α, or an
↑-expression. Because εi contains ↑1, it must be an ↑-expression Ei. We conclude that E
has a ↓-argument Ê with at least one ↑-argument Ei.

Note that ↑1 may be the outermost operator of Ei, but it may also be an inner occur-
rence in Ei. This is not important for the proof.

We prove that algorithm NormalizeMinimal is correct.

Theorem 11.7 Let E∗
2 be an arbitrary minimal DNA expression, and let E∗

3 be the result
of applying algorithm NormalizeMinimal to E∗

2 .

1. Algorithm NormalizeMinimal is well defined.

2. Algorithm NormalizeMinimal terminates.

3. The string E∗
3 is a DNA expression in minimal normal form satisfying E∗

3 ≡ E∗
2 .

4. E∗
3 is independent of the order in which ↓-subexpressions Ê with at least one ↑-

argument Ei are selected in line 11.

Proof: We combine the proofs of Claims 1 and 3, because both of them (partly) rely on
an invariant of the while-loop in algorithm NormalizeMinimal.

1, 3. The only instructions that are not obviously well defined, are the ones in lines 8, 11
and 12. Before we can apply procedure RotateToMinimal to E in line 8, we must
verify that E satisfies the preconditions of the procedure. In line 11, we select a
↓-subexpression Ê that has at least one ↑-argument. Of course, this is only possible,
if E has at least one such ↓-subexpression. Finally, the substitution in line 12 is
only well defined if m ≥ 2.

We first consider the case that E∗
2 is an l-expression. Because E∗

2 is minimal, by
Theorem 7.5, E∗

2 = 〈l α1〉 for an N -word α1. By Case 1 of Definition 10.1, E∗
2

is in minimal normal form, already. In this case, by line 5 of NormalizeMinimal,
E∗

3 = E = E∗
2 . Obviously, E∗

3 satisfies E∗
3 ≡ E∗

2 .

Now assume that E∗
2 is an ↑-expression or a ↓-expression. We enter the else-branch

in line 6 with E = E∗
2 . Because E is minimal, it has Properties (DMin.1)–(DMin.6)

from Lemma 8.22. E also has Properties (DMinNF.1)–(DMinNF.3) from Lemma 10.6,
because these properties are equal to Properties (DMin.1)–(DMin.3). E does, however,
not necessarily have Properties (DMinNF.4) and (DMinNF.5).

Without loss of generality, we assume that E is an ↑-expression. By Corollary 8.2,
the first argument of E is either an N -word α, or an l-expression 〈l α〉 for an
N -word α, or a ↓-argument.

If the first argument of E is an N -word α or an l-expression 〈l α〉 for an N -word
α, or E has two consecutive expression-arguments, then E has Property (DMinNF.5)
and we skip line 8 of NormalizeMinimal.

If on the other hand, the first argument of E is a ↓-argument and E is alternating,
then E does not have Property (DMinNF.5) and we do execute line 8. Indeed, E satis-
fies all conditions of (the analogue for ↑-expressions of) procedure RotateToMinimal.
By Property (DMin.6), the last argument of E cannot be another ↓-argument. Hence,
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in RotateToMinimal, we execute line RtM.6. The result is a minimal ↓-expression
E ′, which satisfies E ′ ≡ E and whose last argument is an ↑-argument. As we have
seen in the proof of Theorem 9.27, the first argument ε1,1 of E

′ is either an N -word
α or an l-expression 〈l α〉 for an N -word α. Hence, E ′ has Property (DMinNF.5).

In both cases, after the if-then construction of lines 7–9, E is a minimal ↑-expression
or ↓-expression with Property (DMinNF.5), which satisfies E ≡ E∗

2 . Without loss of
generality, we again assume that E is an ↑-expression. We thus have

E is a minimal ↑-expression with Property (DMinNF.5), satisfying
E ≡ E∗

2 .
(11.7)

Before we prove that this property is an invariant for the while-loop in Normalize-
Minimal, we examine some implications. As we observed before, because E is min-
imal, it also has Properties (DMinNF.1)–(DMinNF.3). Hence, Property (11.7) and The-
orem 10.8 imply that E is in minimal normal form, if and only if E has Property
(DMinNF.4).

Now suppose that E has at least one inner occurrence of ↑. Because E is minimal,
we can apply Lemma 11.6 and conclude that E has a ↓-argument with at least one
↑-argument. Then there certainly exists a ↓-subexpression Ê of E with at least one
↑-argument. Hence, line 11 of NormalizeMinimal is well defined.1 Moreover, the
outermost operator ↓ of Ê (which is an inner occurrence in E) makes E violate
Property (DMinNF.4).

Suppose, on the other hand, that E has no inner occurrence of ↑. Let ↓1 be an inner
occurrence of ↓ in E. Because E is minimal, so is the DNA subexpression of E
governed by ↓1. By Corollary 8.2, the arguments of ↓1 are N -words α, l-expressions
〈l α〉 for N -words α, or ↑-expressions. The last type of arguments, however, is not
possible, because ↑-arguments would correspond to inner occurrences of ↑. Now by
Property (DMin.4) of E, the arguments of ↓1 are maximal N -word occurrences α and
l-expressions 〈l α〉 for N -words α, alternately. This implies that E has Property
(DMinNF.4).

We conclude that (under the assumption that Property (11.7) is valid) E has no
inner occurrences of ↑, if and only if E has Property (DMinNF.4), which is the case
if and only if E is in minimal normal form.

We now prove that Property (11.7) is indeed an invariant for the while-loop.

• Clearly, before the first iteration of the while-loop, Property (11.7) is valid.

• Suppose that Property (11.7) is valid before a certain iteration of the while-
loop.

When we enter the iteration, E has at least one inner occurrence of ↑. As we
just observed, there indeed exists at least one ↓-subexpression of E with an
↑-argument. Let Ê be the ↓-subexpression of E that we select in line 11, say

Ê = 〈↓ ε1 . . . εi−1 〈↑ εi,1εi,2 . . . εi,m−1εi,m〉 εi+1 . . . εn〉
for some m,n ≥ 1 and N -words and DNA expressions ε1, . . . , εi−1, εi+1, . . . , εn,
and εi,1, εi,2, . . . , εi,m−1, εi,m.

1There may also be ↓-subexpressions Ê of E with an ↑-argument, which are not arguments of E. They
occur in arguments of E. In line 11, we may also select such a ↓-subexpression.
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We zoom in on the ↑-argument Ei = 〈↑ εi,1εi,2 . . . εi,m−1εi,m〉. Ei is the argument

of the ↓-expression Ê, which is in turn a proper DNA subexpression of the
minimal ↑-expression E. By Lemma 8.27(7), m ≥ 3 and both εi,1 and εi,m are
l-expressions. Then certainly m ≥ 2, which implies that the substitution in
line 12 is well defined. By Property (DMin.4), εi,1, εi,2, . . . , εi,m−1, εi,m form an
alternating sequence of maximal N -word occurrences and DNA expressions. In
particular, εi,2 and εi,m−1 are N -words.

We now consider Ê itself. As we just mentioned, Ê is a proper DNA subexpres-
sion of E. By Property (DMin.5), Ei cannot be the first or the last argument

of Ê, so 2 ≤ i ≤ n− 1. By Property (DMin.4), each occurrence of ↑ or ↓ in Ê is

alternating. Now when we apply Theorem 5.19(1) and (2) to Ê (with r = 1),
we find that

Ê ′ = 〈↑ 〈↓ ε1 . . . εi−1εi,1〉 εi,2 . . . εi,m−1 〈↓ εi,mεi+1 . . . εn〉〉

is a DNA expression satisfying Ê ′ ≡ Ê. 2

By Lemma 8.27(1b), the parent operator of Ê in E is an occurrence ↑0 of ↑.
Let Ê be the jth argument of ↑0, and let E0 be the DNA subexpression of E
governed by ↑0:

E0 =
〈
↑0 ε̂1 . . . ε̂j−1Êε̂j+1 . . . ε̂l

〉
(11.8)

for some l ≥ 1 and N -words and DNA expressions ε̂1, . . . , ε̂j−1, ε̂j+1, . . . , ε̂l.
Note that E0 may be equal to E, but that is not important for the moment.
By Lemma 5.11 and Lemma 5.10,

E0 ≡
〈
↑0 ε̂1 . . . ε̂j−1Ê

′ε̂j+1 . . . ε̂l

〉

=
〈
↑0 ε̂1 . . . ε̂j−1

〈↑ 〈↓ ε1 . . . εi−1εi,1〉 εi,2 . . . εi,m−1 〈↓ εi,mεi+1 . . . εn〉〉
ε̂j+1 . . . ε̂l

〉

≡
〈
↑0 ε̂1 . . . ε̂j−1

〈↓ ε1 . . . εi−1εi,1〉 εi,2 . . . εi,m−1 〈↓ εi,mεi+1 . . . εn〉
ε̂j+1 . . . ε̂l

〉
.

(11.9)

Hence, when we substitute Ê in E0 (and thus in E) by

〈↓ ε1 . . . εi−1εi,1〉 εi,2 . . . εi,m−1 〈↓ εi,mεi+1 . . . εn〉 , (11.10)

like we do in line 12 of NormalizeMinimal, we obtain an equivalent ↑-expression.
After the substitution, E still satisfies E ≡ E∗

2 . Moreover, it is easily verified
that after the substitution, E has the same length as before the substitution.
This implies that E is still minimal.

We finally verify that E also has Property (DMinNF.5) after the substitution. If
E0 was a proper DNA subexpression of E, then the substitution has no effect
on the number of arguments and the types of arguments of E. Hence, E has

2The substitution in line 12 of NormalizeMinimal is almost the reverse of line RtM.5 of procedure
RotateToMinimal. This explains why we use the same type of arguments to prove that the operations
do not affect the semantics of the DNA expression, see the proof of Theorem 9.27.
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Property (DMinNF.5) after the substitution, because it had this property before
the substitution.

Now assume that E0 happened to be E itself. The ↓-argument Ê of E has been
substituted by the sequence of arguments in (11.10). This is an alternating
sequence of N -words and DNA expressions, which both starts and ends with a
↓-expression. It is easily verified that E was alternating before the substitution
of Ê, if and only if E is alternating after the substitution.

By Property (DMinNF.5), before the substitution, either the first argument of
E = E0 was an N -word α or an l-expression 〈l α〉 for an N -word α, or E was
not alternating. In the former case, it follows from (11.8) and (11.9) that j ≥ 2
and the first argument ε̂1 of E is not affected by the substitution. It is still α
or 〈l α〉 after the substitution. In the latter case, as we just observed, E is not
alternating after the substitution, either. In both cases, E also has Property
(DMinNF.5) after the substitution.

Indeed, Property (11.7) is an invariant of the while-loop. After the last iteration
of the loop, E has no inner occurrences of ↑ any more, which implies that E is in
minimal normal form. By the invariant, E satisfies E ≡ E∗

2 . This carries over to
E∗

3 .

2. In every iteration of the while-loop, we substitute a ↓-subexpression

Ê = 〈↓ ε1 . . . εi−1 〈↑ εi,1εi,2 . . . εi,m−1εi,m〉 εi+1 . . . εn〉

of E by the sequence of arguments

〈↓ ε1 . . . εi−1εi,1〉 εi,2 . . . εi,m−1 〈↓ εi,mεi+1 . . . εn〉 .

This way, we decrease the number of inner occurrences of ↑ in E by 1. Because,
obviously, this number cannot become negative, the number of iterations of the
while-loop is bounded, and algorithm NormalizeMinimal terminates.

4. By Claim 3, E∗
3 is a DNA expression in minimal normal form satisfying E∗

3 ≡ E∗
2 , i.e.,

with S(E∗
3) = S(E∗

2). By definition, there is only one DNA expression in minimal
normal form with this semantics. Then E∗

3 is certainly independent of the order in

which ↓-subexpressions Ê with at least one ↑-argument Ei are selected in line 11.

This completes the proof of Theorem 11.7.

11.3 Implementation and complexity of the algorithm

In the description of algorithm NormalizeMinimal in Figure 11.4, we have not specified all
details of the while-loop. In particular, in line 11, we have not specified how to select a ↓-
subexpression Ê of E with at least one ↑-argument Ei. To make it possible to analyse the
algorithm’s complexity, we now make the description more precise. In fact, we completely
rewrite the while-loop. However, the purpose of the loop (to achieve Property (DMinNF.4))
and the types of substitutions performed in the loop remain the same.

We also describe three features of a data structure to store the DNA expression in.
We prove that with this data structure, the algorithm can be carried out in linear time.
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In the proof of Theorem 11.7(1) and (3), we have established that during the while-
loop of NormalizeMinimal, the ↑-expression E is minimal. Hence, by Lemma 11.6, the
condition

while (E has inner occurrences of ↑)

in line 10 of Figure 11.4 is equivalent to

while (E has a ↓-argument with at least one ↑-argument).

If E has such a ↓-argument Ê, then that is, in particular, a ↓-subexpression of E with at
least one ↑-argument. Hence, in line 11, we can simply select this ↓-argument.

A natural implementation of the while-loop would then consist of iterating over all
↓-arguments of E, and selecting the ones that have at least one ↑-argument. Note, how-
ever, that the substitution in line 12 introduces new arguments 〈↓ ε1 . . . εi−1εi,1〉 , εi,2,
. . . , εi,m−1, 〈↓ εi,mεi+1 . . . εn〉 for E. These may include new ↓-arguments with at least
one ↑-argument, which also have to substituted. This is accounted for in algorithm
NormalizeMinimal2, which is given in Figure 11.6. The while-loop in NormalizeMinimal2

considers all arguments ε̂ of E from left to right. A boolean stop indicates whether or
not the last argument of E has been considered.

As an illustration, we revisit the DNA expressions from Example 11.2, for which the
recursive function MakeMinimalNF turned out to use quadratic time.

Example 11.8 Let α be an arbitrary N -word, and let

E1 = 〈↓ 〈l α〉α 〈l α〉〉 ,
E2p = 〈↑ 〈l α〉α E2p−1 α 〈l α〉〉 (p ≥ 1),
E2p+1 = 〈↓ 〈l α〉α E2p α 〈l α〉〉 (p ≥ 1).

As we observed in Example 11.2, for p ≥ 1, both E2p and E2p+1 are minimal. The starting
DNA expression E1 is also minimal. The fact that for each q ≥ 1, Eq is minimal, implies
(1) that, by Theorem 9.12, Eq is not affected by the recursive function MakeMinimal, and
(2) that we can apply the algorithm NormalizeMinimal2 to it.

For q ≥ 1, Eq is alternating but its first argument is 〈l α〉. Hence, lines 7–9 of the
algorithm are not applicable. We examine the effect of the while-loop on an ↑-expression
E2p for p ≥ 2:

E = E2p = 〈↑ 〈l α〉α E2p−1 α 〈l α〉〉
=

〈
↑ 〈l α〉α

〈
↓ 〈l α〉α

〈
↑ 〈l α〉α E2(p−1)−1 α 〈l α〉

〉
α 〈l α〉

〉
α 〈l α〉

〉
.

The third argument of E2p is the ↓-expression E2p−1, which has in turn as an argument
the ↑-expression E2(p−1). The outermost operator ↓ of E2p−1 violates Property (DMinNF.4).
According to line 14 of NormalizeMinimal2, E2p−1 is substituted in E by the sequence of
arguments

〈↓ 〈l α〉α 〈l α〉〉α E2(p−1)−1 α 〈↓ 〈l α〉α 〈l α〉〉 ,

yielding

E =
〈
↑ 〈l α〉α 〈↓ 〈l α〉α 〈l α〉〉α E2(p−1)−1 α 〈↓ 〈l α〉α 〈l α〉〉α 〈l α〉

〉
.

After the substitution, the algorithm proceeds with the (new) fourth argument of E, which
is an N -word α. The fifth argument of E is the ↓-expression E2(p−1)−1. If p ≥ 3, then



356 Ch. 11 Algorithms for the Minimal Normal Form

1. NormalizeMinimal2 (E∗
2)

// rewrites an arbitrary minimal DNA expression E∗
2 into

// a DNA expression E∗
3 in minimal normal form satisfying E∗

3 ≡ E∗
2;

// uses local rearrangements of the DNA expression for this
2. {
3. E = E∗

2;
4. if (E is an l-expression)
5. then E∗

3 = E;
6. else // E is an ↑-expression or a ↓-expression;

// without loss of generality, assume it is an ↑-expression
7. if (E is alternating and its first argument is a ↓-argument)
8. then substitute E by the result of procedure RotateToMinimal;

(DMinNF.5)
9. fi

// E is an ↑-expression or a ↓-expression;
// without loss of generality, assume it is an ↑-expression

10. ε̂ = first argument of E;
11. stop = false;
12. while (not stop)
13. do if (ε̂ is a ↓-expression with at least one ↑-argument)

// let ε̂ = 〈↓ ε1 . . . εi−1Eiεi+1 . . . εn〉,
// where Ei = 〈↑ εi,1εi,2 . . . εi,m−1εi,m〉
// is the first ↑-argument of ε̂

14. then substitute ε̂ in E
by 〈↓ ε1 . . . εi−1εi,1〉 εi,2 . . . εi,m−1 〈↓ εi,mεi+1 . . . εn〉;

(DMinNF.4)
15. ε̂ = εi,2;
16. else if (ε̂ is not the last argument of E)
17. then ε̂ = next argument of E;
18. else stop = true;
19. fi
20. fi
21. od
22. E∗

3 = E;
23. fi
24. }

Figure 11.6: Pseudo-code of the algorithm NormalizeMinimal2, which is a more detailed
version of the algorithm NormalizeMinimal from Figure 11.4.

this ↓-expression has as an argument the ↑-expression E2(p−2). The outermost operator ↓
of E2(p−1)−1 violates Property (DMinNF.4). According to line 14, E2(p−1)−1 is substituted
in E by the sequence of arguments

〈↓ 〈l α〉α 〈l α〉〉α E2(p−2)−1 α 〈↓ 〈l α〉α 〈l α〉〉 .

In p−1 substitutions, we obtain the DNA expression E ′
2p from (11.1), which is in minimal

normal form. For each substitution, we perform a constant amount of work: remove one
occurrence of ↑, add one occurrence of ↓ and rearrange two brackets. Hence, the total
amount of work (and time) to rewrite E2p into E ′

2p is linear in p, and thus linear in |E2p|.
The effect of the while-loop on the ↓-expressions E2p+1 is analogous.

Indeed, for the ↑-expressions E2p with p ≥ 3 in the example, the substitution of a
↓-argument in line 14 of NormalizeMinimal2 introduces a new ↓-argument with an ↑-
argument, which is in turn substituted. It is not hard to prove by induction, that the
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maximal nesting level of the brackets in E2p is 2p+ 1. Due to the substitution in line 14,
the nesting level decreases by 2. Successive substitutions bring down the nesting level of
the brackets to at most 3.

In Figure 11.7, we have depicted the effect of algorithm NormalizeMinimal2 for DNA
expression E6 from Example 11.8. In two steps (iterations of the while-loop), we transform
the original, tall tree in Figure 11.7(a) into the relatively flat tree in Figure 11.7(c). In
each step, the height of the tree decreases by 2: from 8 via 6 to 4. With the recursive
function MakeMinimalNF, we would need four steps to achieve the same result. Each step
would yield a decrease of only 1 (cf. Figures 11.2 and 11.3).

The difference in complexity between (a natural implementation of) MakeMinimalNF
and NormalizeMinimal2 is not just this factor of 2. If it were just this factor of 2, then
NormalizeMinimal2 would also require at least quadratic time, while the algorithm was
meant to be more efficient. There is, however, a relation with this factor. In the first
rewriting step of MakeMinimalNF for E6, we rewrite the ↓-subexpression E3 into E ′

3. For
this, we substitute an inner occurrence of ↓ by an inner occurrence of ↑. In the second
step, we substitute two inner occurrences of ↑ (including the one we just introduced) by
two inner occurrence of ↓, and so on. In NormalizeMinimal2, we somehow make two steps
at a time. Thus, we no longer introduce operators in one step that we have to remove in
the next step. This is what really reduces the complexity for the DNA expressions from
Example 11.2 and Example 11.8. In Theorem 11.11, we will consider the complexity of
NormalizeMinimal2 for arbitrary minimal DNA expressions.

Note that there is another difference between the operation of MakeMinimalNF and
that of NormalizeMinimal2, besides the fact that NormalizeMinimal2 takes two steps
at a time. Due to its recursive set-up, MakeMinimalNF rewrites a DNA expression from
the inside outwards (bottom-up in the tree). NormalizeMinimal2, on the other hand,
rewrites a DNA expression from the outside inwards (top-down in the tree).

We prove that NormalizeMinimal2 is correct. It does not suffice to just refer to
Theorem 11.7, where we established the correctness of NormalizeMinimal, because the
while-loop in the algorithm has significantly changed. In particular, it is not immediately
clear that by the end of the loop, the DNA expression has no more inner occurrences of
↑. We can, however, reuse some elements of the argumentation.

Theorem 11.9 Let E∗
2 be an arbitrary minimal DNA expression.

1. Algorithm NormalizeMinimal2 is well defined.

2. Algorithm NormalizeMinimal2 terminates.

3. The string E∗
3 resulting from algorithm NormalizeMinimal2 is a DNA expression in

minimal normal form satisfying E∗
3 ≡ E∗

2 .

Proof: We combine the proofs of Claims 1 and 3, because both of them (partly) rely on
an invariant of the while-loop.

1, 3. The only differences between algorithm NormalizeMinimal and algorithm
NormalizeMinimal2 are in the while-loop. Hence, to prove Claims 1 and 3, it
suffices to analyse this loop in NormalizeMinimal2.

The only instructions in the loop that are not obviously well defined, are the ones
in lines 14 and 17. The substitution in line 14 requires m, the number of arguments
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Figure 11.7: Structure trees of the three DNA expressions we successively obtain, when
we apply algorithm NormalizeMinimal2 to the ↑-expression E6 from Example 11.8. To
make the structure trees easier to compare, we have added subscripts to the occurring N -
words. (a) Structure tree of the original DNA expression E6. The nodes in the backbone
of the tree correspond in top-down order to E6, E5, E4, E3, E2 and E1, respectively. The
third argument of E6 is the ↓-expression E5, which has in turn the ↑-expression E4 as an
argument. (b) Structure tree of the DNA expression after substituting E5, according to
line 14 of the algorithm. The fifth argument of the DNA expression is the ↓-expression
E3, which has in turn the ↑-expression E2 as an argument. (c) Structure tree of the DNA
expression after substituting E3, according to line 14 of the algorithm. This is the final
result of the algorithm.
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of Ei, to be at least 2. The assignment in line 17 is only well defined if ε̂ is (still) an
argument of E. We use an invariant of the while-loop to verify both requirements.

Before the first iteration of the loop, E has the same properties as in Normalize-
Minimal. By Property (11.7) from the proof of Theorem 11.7, E is a minimal
↑-expression with Property (DMinNF.5), satisfying E ≡ E∗

2 . We prove that the fol-
lowing, extended property is an invariant of the while-loop in NormalizeMinimal2:

E is a minimal ↑-expression with Property (DMinNF.5), satisfying
E ≡ E∗

2 , ε̂ is an argument of E and the arguments of E to the left
of ε̂ do not contain any occurrence of ↑.

(11.11)

The fact that, according to this property, ε̂ is an argument of E, implies that line 17
of the algorithm is well defined.

• Initially, before the first iteration of the while-loop, ε̂ is the first argument of
E. Hence, there are no arguments to the left of ε̂. This makes Property (11.11)
valid.

• Suppose that Property (11.11) is valid before a certain iteration of the while-
loop. In the iteration, we consider the argument ε̂ of E.

We first examine the case that ε̂ is a ↓-expression with at least one ↑-argument.
Let

ε̂ = 〈↓ ε1 . . . εi−1 〈↑ εi,1εi,2 . . . εi,m−1εi,m〉 εi+1 . . . εn〉
for some m,n ≥ 1 and N -words and DNA expressions ε1, . . . , εi−1, εi+1, . . . , εn,
and εi,1, εi,2, . . . , εi,m−1, εi,m, where Ei = 〈↑ εi,1εi,2 . . . εi,m−1εi,m〉 is the first ↑-
argument of ε̂. Because E is minimal, so are its DNA subexpressions ε̂ and
Ei.

We zoom in on the ↑-argument Ei of ε̂. By Lemma 8.27(7), m ≥ 3 and the
first argument εi,1 is an l-expression 〈l α〉 for an N -word α. Then certainly
m ≥ 2, and the substitution in line 14 is well defined.

We now consider ε̂ itself. By Corollary 8.2, each argument of ε̂ is either an N -
word α, or an l-expression 〈l α〉 for an N -word α, or an ↑-expression. Because
Ei is the first ↑-argument of ε̂, the arguments ε1, . . . , εi−1 are N -words α or
l-expressions 〈l α〉.
In line 14 of NormalizeMinimal2, we substitute ε̂ in E by the sequence of
arguments

〈↓ ε1 . . . εi−1εi,1〉 εi,2 . . . εi,m−1 〈↓ εi,mεi+1 . . . εn〉 .
This substitution is of exactly the same type as the substitution in line 12 of
NormalizeMinimal. Hence, we can reuse part of the proof of Theorem 11.7(1)
and (3), and conclude that after the substitution, E is still a minimal ↑-
expression with Property (DMinNF.5), satisfying E ≡ E∗

2 .

In line 15 of NormalizeMinimal2, we set ε̂ to εi,2, which is indeed an argument
of E after the substitution. It follows from the above that the new argument
〈↓ ε1 . . . εi−1εi,1〉 of E, which precedes ε̂ = εi,2, does not contain any occurrence
of ↑. Hence, Property (11.11) is also valid at the end of the iteration. This
concludes the analysis for the case that ε̂ is a ↓-expression with at least one
↑-argument.
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We subsequently examine the (simpler) case that ε̂ is not such a ↓-expression.
Because in this case, E is not modified, it is still a minimal ↑-expression with
Property (DMinNF.5), satisfying E ≡ E∗

2 , at the end of the iteration.

We first consider the subcase that ε̂ is a ↓-expression without ↑-arguments.
Because E is minimal, so is ε̂. By Corollary 8.2, each argument of ε̂ is either
an N -word α or an l-expression 〈l α〉 for an N -word α. We also consider the
subcase that ε̂ is not a ↓-expression, at all. By Corollary 8.2 (applied to E), ε̂
is either an N -word α, or an l-expression 〈l α〉 for an N -word α.

In both subcases, ε̂ does not contain any occurrence of ↑. Hence, if ε̂ is not the
last argument of E and it is set to the next argument of E (in line 17), then
Property (11.11) is again valid. If, on the other hand, ε̂ is the last argument of
E and ε̂ remains the same, then certainly Property (11.11) remains valid. The
variable stop is set to true. Apparently, in this case, none of the arguments of
E contains an occurrence of ↑.
In all cases, Property (11.11) is also valid at the end of the iteration.

Indeed, Property (11.11) is an invariant of the while-loop. After the last iteration
of the loop, the variable stop is true. This implies that in the last iteration, ε̂ was
not a ↓-expression with at least one ↑-argument, and ε̂ was the last argument of E.
As we have just observed, at that point, none of the arguments of E contains an
occurrence of ↑ any more. In other words, the ↑-expression E does not contain any
inner occurrence of ↑ any more.

We can again reuse part of the proof of Theorem 11.7(1) and (3), and conclude that
E is in minimal normal form. By the invariant, E satisfies E ≡ E∗

2 . This carries
over to E∗

3 .

2. We prove that the number of iterations of the while-loop is bounded. By Prop-
erty (11.11), during the while-loop, E is a minimal DNA expression, which satisfies
E∗

2 ≡ E. This implies in particular that the length |E| of E is constant. Further,
during the loop, ε̂ is an argument of E.

Initially, before the first iteration of the loop, ε̂ is the first argument of E. Hence,
there is no argument of E to the left of ε̂.

As we have seen in the proof of Claims 1 and 3, in every iteration of the loop, either
the number of arguments of E to the left of ε̂ increases by 1, or the variable stop is
set to true. The latter occurs only once, in the final iteration. Clearly, the number
of arguments to the left of ε̂ is bounded by the length of E. Because this length
is constant, the number of arguments to the left of ε̂ can only increase a bounded
number of times.

Consequently, the number of iterations of the while-loop is bounded.

This completes the proof of Theorem 11.9.

Recall that in Section 11.2, we have introduced algorithm NormalizeMinimal as the second
step of a two-step algorithm. The purpose of this two-step algorithm is to rewrite arbitrary
DNA expressions into the minimal normal form, and the first step consists of applying the
recursive function MakeMinimal. In Section 9.1 and Section 9.3, we have proved the cor-
rectness of MakeMinimal and worked out the implementation details of this function. By
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now, we have also proved the correctness of NormalizeMinimal2, which is an implement-
ation of NormalizeMinimal. This implies that the total, two-step algorithm is correct:

Corollary 11.10 Let E∗
1 be an arbitrary DNA expression, let E∗

2 be the result of applying
the recursive function MakeMinimal to E∗

1 , and let E∗
3 be the result of applying algorithm

NormalizeMinimal2 to E∗
2 . Then E∗

3 is a DNA expression in minimal normal form sat-
isfying E∗

3 ≡ E∗
1 .

We proceed by examining the complexity of algorithm NormalizeMinimal2. During
the while-loop of the algorithm, we traverse the DNA expression from left to right. There-
fore, we may expect the time complexity to be linear. We prove that this is indeed the
case.

In Section 9.3, we used a data structure with four specific features to prove that the
recursive function MakeMinimal requires linear time. For NormalizeMinimal2, we use
three of these features: the first, the second and the fourth feature.

First, we store the letters that a DNA expression E consists of in a doubly-linked list.
Then we can insert letters at a given position, or remove letters from a given position in
constant time.

Second, for each DNA subexpression of E, we connect the first letter (the opening
bracket) to the last letter (the closing bracket). In addition, for each N -word-argument
of an operator, we connect the first letter to the last letter. Both types of connections are
two-way: we can step directly from the first letter to the last letter and vice versa. These
connections enable us to move from one end to the other end of a DNA subexpression or
an N -word-argument in constant time.3

Finally, for each operator ↑ or ↓ in E, we maintain a circular, doubly-linked list of its
consecutive expression-arguments. This feature is not really crucial in the proof of the
linear time complexity. We use it only in line 7 of NormalizeMinimal2, to check if E is
alternating. As this test is performed only once, it would not harm if we had to traverse
the entire DNA expression for this. That would cost only linear time. However, since
we have already defined the lists of consecutive expression-arguments, we can as well use
them again here. They allow us to do the test in line 7 in constant time, because E is
alternating, if and only if the list of consecutive expression-arguments of its outermost
operator is empty.

Note that for each inner occurrence of ↑ or ↓ in E, the list of consecutive expression-
arguments is empty. Because E is minimal, it has all properties from Lemma 8.22. By
Property (DMin.4), each inner occurrence of ↑ or ↓ in E is alternating.

Examples of the three features of the data structure and their usage are given in
Section 9.3. In particular, Figure 9.16 and Figure 9.18 show all connections and lists for
some example DNA expressions.

For a given DNA expression E, the connections can be initialized in linear time.
For every basic operation (substitution) that is applied to E in the course of algorithm
NormalizeMinimal2, the connections can be updated in constant time.

We finally observe that, unlike, e.g., the function MakeMinimal, algorithm Normalize-
Minimal2 is not recursive. When we apply it to a minimal DNA expression E∗

2 , we do
not have a cascade of calls of the algorithm, for different arguments. This implies that

3In Section 9.3, we described an additional type of connection. If the N -word-arguments of an operator
were not necessarily maximal N -word occurrences, then we also connected the first letter and the last
letter of every maximal N -word occurrence in E. We do not need such connections now.
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the time (and space) required for passing the parameter of NormalizeMinimal2 is not an
issue in the analysis of its complexity. 4

We now have

Theorem 11.11 Let E∗
2 be an arbitrary minimal DNA expression. The time required by

algorithm NormalizeMinimal2 for E∗
2 is linear in |E∗

2 |.
Proof: First, we observe that algorithm NormalizeMinimal2 requires at least linear time
in the worst case. Initializing the desired data structure already costs linear time, but
even after that, it may take linear time to just read and check the DNA expression. For
example, let α be an arbitrary N -word, let p ≥ 1, and let E∗

2 be an ↑-expression with 2p
arguments: the N -word α, an l-expression 〈l α〉, the N -word α, an l-expression 〈l α〉,
etc. Hence,

E∗
2 =

〈
↑ α 〈l α〉 . . . α 〈l α〉︸ ︷︷ ︸

p times

〉
.

It is easily verified that E∗
2 is in minimal normal form already, and that |E∗

2 | = 3+ p · (3+
2 · |α|), which is linear in p. The while-loop in NormalizeMinimal2 has 2p iterations. In
every iteration, we check one argument ε̂ of E = E∗

2 , and move on to the next argument,
without changing anything. This takes time which is linear in p and thus in the length
|E∗

2 | of E∗
2 .

It may be even more convincing to revisit Example 11.8. For the DNA expressions
Eq considered there, NormalizeMinimal2 performs a linear number of rewriting steps .
Together, these steps require time that is linear in |Eq|.

We now prove that algorithm NormalizeMinimal2 also requires at most linear time
in the worst case. For an arbitrary minimal DNA expression E∗

2 , let us use TNM2(E
∗
2) to

denote the time required by algorithm NormalizeMinimal2 for E∗
2 .

We first zoom in on line 13 of NormalizeMinimal2, where we check if ε̂ is a ↓-expression
with at least one ↑-argument. If so, then we need the first ↑-argument Ei as the centre
for the substitution in line 14.

It is easy to decide if ε̂ is a ↓-expression. If this is the case, then we can check if it
has an ↑-argument and (if necessary) determine Ei, by simply examining the arguments
of ε̂ from left to right. Of course, we can stop this iteration, as soon as we encounter an
↑-argument, which then is Ei.

With this implementation of line 13 in mind, we define four constants, which are upper
bounds on the time spent in specific parts of the algorithm:

c1 is the maximum time required by NormalizeMinimal2 for an l-expression E∗
2 .

Hence, c1 is the maximum time required for executing lines 3–5 and 23 of the al-
gorithm.

c2 is the maximum time required by NormalizeMinimal2 for an ↑-expression E∗
2 , except

the time spent in (the iterations of) the while-loop.

Hence, c2 is the maximum time required for executing lines 3, 4, 6–11, 22, 23 and
the first test of the condition of the while-loop in line 12 of the algorithm.

4In fact, we could easily establish that the time (and space) required for passing the parameter for
a single application of the algorithm is constant, just like we have done for a call of MakeMinimal in
Section 9.3.
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c3 is the maximum time required by NormalizeMinimal2 for one iteration of the while-
loop, except the time spent for examining the arguments of a ↓-expression ε̂, as
described above.

Hence, c3 is the maximum time required for executing part of line 13, lines 14–21
and one test of the condition of the while-loop in line 12 of the algorithm.

c4 is the maximum time required by NormalizeMinimal2 for examining one argument of
a ↓-expression ε̂, in line 13 of the algorithm, as described above.

It follows from the observations made at the description of the three features of the data
structure, that c1, c2, c3 and c4 are indeed constants.

Note that for a particular DNA expression, the time required by a part of the algorithm
may be much less than specified by the corresponding constant. For example, if an
argument ε̂ in line 13 is not a ↓-expression, then we certainly do not have to perform
the substitution in line 14. We execute lines 16–19 instead, which probably costs less
time. Then the total time required for this iteration of the while-loop is less than c3.

Let the constant c∗ be defined by

c∗ = max
{c1
4
,
c2
3
, c3, c4

}
.

If E∗
2 is an l-expression, then by Theorem 7.5, E∗

2 = 〈l α1〉 for an N -word α1. Because
an N -word has at least length 1, |E∗

2 | = 3 + |α1| ≥ 4. In this case,

TNM2(E
∗
2) ≤ c1 ≤

c1
4
· |E∗

2 | ≤ c∗ · |E∗
2 |,

where the last inequality follows from c∗ ≥ c1
4
.

From now on, we assume that E∗
2 is an ↑-expression or a ↓-expression. We first analyse

the effect of the while-loop on the ‘working DNA expression’ E. By Theorem 11.9(2), the
number of iterations of the loop is finite, say it is N . As we have established in the proof
of Theorem 11.9(1) and (3), throughout the while-loop, E is a minimal ↑-expression and
ε̂ is an argument of E.

In the first iteration (in fact, at the beginning of the first iteration), ε̂ is the first
argument of the ↑-expression E. As we have also seen in the proof of Theorem 11.9(1)
and (3), in every iteration of the loop except the last one, the number of arguments of
E to the left of ε̂ increases by 1. In fact, in the jth iteration (with 1 ≤ j ≤ N − 1), we
append an argument ε̂j to the sequence of arguments to the left of ε̂. In the last iteration,
ε̂ is the last argument of E, and E is not modified any further.

Hence, in the successive iterations, E has the following shapes: 〈↑ ε̂ . . .〉, 〈↑ ε̂1ε̂ . . .〉,
〈↑ ε̂1ε̂2ε̂ . . .〉, . . . , 〈↑ ε̂1ε̂2 . . . ε̂N−1ε̂〉. When we define ε̂N as the argument ε̂ in the last
iteration, the DNA expression E∗

3 resulting from algorithm NormalizeMinimal2 equals
〈↑ ε̂1ε̂2 . . . ε̂N−1ε̂N〉.

We examine the time spent in the jth iteration of the while-loop. Let us use Tj to
denote this time.

• If, in this iteration, ε̂ is not a ↓-expression, then the iteration costs at most c3 time
and ε̂j = ε̂. As |ε̂j| ≥ 1 (note that ε̂j = ε̂ may an N -word of length 1), we have

Tj ≤ c3 ≤ c3 · |ε̂j| ≤ c∗ · |ε̂j|,

where the last inequality follows from c∗ ≥ c3.
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• If ε̂ is a ↓-expression 〈↓ ε1 . . . εn〉 for some n ≥ 1 and N -words and DNA expressions
ε1, . . . , εn, then we consider two subcases. If ε̂ does not have any ↑-argument, then
we spend at most c4 · n time on examining the n arguments of ε̂, which implies that

Tj ≤ c3 + c4 · n. (11.12)

In this case, ε̂j = ε̂ = 〈↓ ε1 . . . εn〉. By Lemma 8.27(6), ε̂j has at least one argument
〈l α〉 for an N -word α. Hence, ε̂j contains at least two occurrences of operators
(its outermost operator ↓ and l), each of which is accompanied by its own opening
bracket and closing bracket. This implies that |ε̂j| ≥ 6 + n, which is equivalent to
n ≤ |ε̂j| − 6. When we combine this with (11.12), we obtain

Tj ≤ c3 + c4 · n ≤ c3 + c4 · (|ε̂j| − 6) = c4 · |ε̂j|+ c3 − 6c4.

If, on the other hand, ε̂ does have an ↑-argument, then let εi = Ei = 〈↑ εi,1εi,2 . . .
εi,m−1εi,m〉 for some m ≥ 1 and N -words and DNA expressions εi,1, εi,2, . . . , εi,m−1,
εi,m be the first ↑-argument of ε̂. In order to find Ei, we have to examine i arguments
of ε̂, This costs at most c4 · i time, which implies that

Tj ≤ c3 + c4 · i. (11.13)

In this case, ε̂j = 〈↓ ε1 . . . εi−1εi,1〉, which is a ↓-expression with i arguments. We can
now proceed in the same way as in the previous subcase, and find that i ≤ |ε̂j| − 6.
When we combine this with (11.13), we obtain

Tj ≤ c3 + c4 · i ≤ c3 + c4 · (|ε̂j| − 6) = c4 · |ε̂j|+ c3 − 6c4.

In both subcases (ε̂ without or with an ↑-argument), we find that Tj ≤ c4 · |ε̂j| +
c3 − 6c4.

Now, if c3 ≤ 6c4, then

Tj ≤ c4 · |ε̂j| ≤ c∗ · |ε̂j|,

where the last inequality follows from c∗ ≥ c4. If, on the other hand c3 > 6c4, which
is equivalent to c4 <

c3
6
, then

Tj ≤ c3 + c4 · (|ε̂j| − 6) < c3 +
c3
6
· (|ε̂j| − 6) =

c3
6
· |ε̂j| < c3 · |ε̂j| ≤ c∗ · |ε̂j|,

where the last inequality follows from c∗ ≥ c3.

In each case, we have obtained that Tj ≤ c∗ · |ε̂j|. Now, it is not difficult to derive an
upper bound on TNM2(E

∗
2):

TNM2(E
∗
2) ≤ c2 + T1 + · · ·+ TN

≤ c∗ · 3 + c∗ · |ε̂1|+ · · ·+ c∗ · |ε̂N |
= c∗ · | 〈↑ ε̂1 . . . ε̂N〉 | = c∗ · |E∗

3 | = c∗ · |E∗
2 |,

where the second inequality follows from c∗ ≥ c2
3
, and the last equality follows from the

fact that E∗
2 and E∗

3 are equivalent, minimal DNA expressions.
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Indeed, the time required by NormalizeMinimal2 is at most linear in the length |E∗
2 |

of E∗
2 . This completes the proof of Theorem 11.11.

As part of Theorem 9.40, we established that the data structure we propose to carry out
the recursive function MakeMinimal efficiently, has linear size. For NormalizeMinimal2,
we only use part of this data structure: three of the four features. We obviously do not
need more than linear space for this.

For each DNA expression, the first feature, the doubly-linked list containing the DNA
expression, does require linear space. For the second feature and the fourth feature of the
data structure, the space requirements depend on the DNA expression. We cannot reuse
Example 9.39 to demonstrate that there exist inputs to NormalizeMinimal2 for which
these two features also require linear space. The DNA expressions Ep from that example
are not minimal, which is required for NormalizeMinimal2. It is, however, not difficult
to find an example that suits the current context.

Example 11.12 Let α be an arbitrary N -word, and let Ep be defined by

Ep =

〈
↑ 〈l α〉 〈l α〉 . . . 〈l α〉︸ ︷︷ ︸

p times

〉
(p ≥ 2).

It is easy to see that for any p ≥ 2, Ep is a minimal DNA expression, with |Ep| =

3 + p · (3 + |α|) = 3 + 3p + p · |α| and S(Ep) =
(

α
c(α)

)
△

(
α

c(α)

)
△
. . .
(

α
c(α)

)
︸ ︷︷ ︸

p− 1 times

. In fact,

by Lemma 8.18(2), Ep is the only minimal DNA expression with this semantics, which
implies in particular that Ep is in minimal normal form already. In addition, for any
p ≥ 2,

• Ep contains p+ 1 pairs of matching brackets. Hence, the second feature of the data
structure requires p+1 connections (in both directions) between an opening bracket
and the corresponding closing bracket.

• Ep contains p occurrences of the N -word α (in fact, maximal N -word occurrences),
each of which serves as the argument of an operator l. Hence, the second feature
of the data structure requires p connections (in both directions) between the first
letter and the last letter of such an N -word-argument.

• the outermost operator ↑ of Ep has p arguments 〈l α〉, which are, in particular,
consecutive expression-arguments. Hence, the fourth feature of the data structure
requires a circular, doubly-linked list for this operator containing the last p − 1
arguments (each of which is the second of two consecutive expression-arguments).

Both specified sets of connections require space that is linear in p, and thus in |Ep|. The
same goes for the doubly-linked list.5

5 The outermost (and only) operator ↑ in the DNA expressions Ep from this example does not have
any non-l-arguments. Hence, these DNA expressions would not be suitable to demonstrate that the third
feature of the data structure we use to perform MakeMinimal efficiently, can really require linear space.
For the sake of completeness, we like to mention that there do exist minimal DNA expressions for which
all four features of the data structure require linear space. We leave it to the reader to verify that the
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We conclude

Theorem 11.13 Let E∗
2 be an arbitrary minimal DNA expression. The space required by

algorithm NormalizeMinimal2 for E∗
2 is linear in |E∗

2 |.
Hence, both the time complexity and the space complexity of NormalizeMinimal2 are
linear. By Corollary 9.38 and Theorem 9.40, the same holds for the time complexity and
the space complexity of the recursive function MakeMinimal.

We can combine these complexities to find the complexity of the total two-step al-
gorithm to rewrite a given DNA expression E∗

1 into the normal form. We only need to
realize that the output of the first step, the function MakeMinimal, is a minimal DNA
expression E∗

2 that is equivalent to E∗
1 , which implies that |E∗

2 | ≤ |E∗
1 |. Then the time

and space required by the second step, algorithm NormalizeMinimal2, which are linear
in |E∗

2 |, are at most linear in |E∗
1 |. We thus have

Theorem 11.14 Let E∗
1 be an arbitrary DNA expression. Both the time and the space

required by the two-step algorithm to rewrite E∗
1 into the minimal normal form are linear

in |E∗
1 |.

Hence, the two-step algorithm is better than (a natural implementation of) the single-
pass recursive function MakeMinimalNF. That function would also yield the normal form
version of its input, but, by Theorem 11.3, would require at least quadratic time in the
worst case.

DNA expressions

Ep =

〈
↑ α 〈l α〉 〈l α〉 . . . α 〈l α〉 〈l α〉︸ ︷︷ ︸

p times

〉
(p ≥ 1)

are an example of this.



Chapter 12

Conclusions and Directions for
Future Research

In this thesis, we have introduced DNA expressions as a formal notation for DNAmolecules
that may contain nicks and gaps. However, there are (formal) DNA molecules that cannot
be represented by our expressions, the ones with nicks in both strands. For each expressible
formal DNA molecule, there are infinitely many DNA expressions denoting it. We have
rigorously analysed the ones with minimal length, the minimal DNA expressions.

For this, we first derived lower bounds on the length of a DNA expression denoting a
given formal DNA molecule. We subsequently described how to construct DNA expres-
sions that achieve the lower bounds, and thus are minimal. We also proved that there
do not exist minimal DNA expressions other than those obtained from the constructions.
Minimal DNA expressions are characterized by six syntactic properties, which can easily
be verified. This can be used to decide whether or not a given DNA expression is minimal.

As a combinatorial intermezzo, we determined the number of minimal DNA expressions
denoting a given molecule. For almost all types of expressible formal DNA molecules, the
number of minimal DNA expressions can be expressed in terms of the Catalan numbers.

We then described a recursive algorithm, which rewrites a given DNA expression into
an equivalent, minimal DNA expression. This is useful, e.g., to save space for storing
a description of the DNA molecule denoted. In the algorithm, step by step, the DNA
expression acquires the six properties that characterize minimal DNA expressions.

We finally introduced a (minimal) normal form for DNA expressions: a well-defined set
of properties such that for each expressible formal DNA moleculeX, there is a unique DNA
expression denoting X and satisfying those properties. Or actually, we defined the normal
form DNA expressions as specific minimal DNA expressions, and we proved that these
DNA expressions are characterized by five syntactic properties. We described a two-step
algorithm, which computes the normal form version of a given DNA expression. This can
be used, e.g., to decide if two DNA expressions are equivalent. The algorithm first rewrites
its input into an equivalent, minimal DNA expression, using the recursive algorithm for
minimality mentioned above. After that, it performs some additional rewriting steps to
acquire the (remaining) properties of the minimal normal form.

Both the algorithm for minimality and the algorithm for the minimal normal form are
elegant, because they do not refer to the semantics of the DNA expression involved. They
consist of (local) string manipulations on the DNA expression itself. We proved that both
algorithms are correct (they do what they are supposed to do), and that they require
linear time and space.

367
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Although the analysis of DNA expressions in this thesis is quite elaborate, one could
think of some more aspects to examine. For example, one might consider the detection of
submolecules: given two DNA expressions E1 and E2, is S(E1) a formal DNA submolecule
of S(E2)? Of course, this can easily be decided by computing S(E1) and S(E2), but can
it also be done by local rearrangements at the level of the DNA expressions? Perhaps, the
minimal normal form may be helpful for this.

The formal DNA molecules, which form the semantic basis of our notation, are a form-
alization of the double-word notation for DNA molecules. As mentioned in Section 2.2, a
rotation of a double word by an angle of 180° yields another double word representing the
same DNA molecule (see Figure 2.10). As it is, the two representations of the molecule
have their own DNA expression in minimal normal form. One could argue that only one
of the two should be the ‘true’ normal form representation of the molecule. In that case,
the definition of the normal form should be adjusted.

An idea we have not worked out in detail in this thesis, is the alternative implement-
ation of the recursive function MakeMinimalNF. We only described it in global terms at
the end of Section 11.1. In the process of rewriting a given DNA expression into the min-
imal normal form, this implementation maintains two DNA expressions, which are (based
on) operator-minimal ↑-expressions and operator-minimal ↓-expressions, respectively. It
would be interesting to work out the details of this implementation, and verify that its
complexity is linear, as opposed to that of a natural implementation of MakeMinimalNF.

As we have remarked in Section 4.1, the set of operators {↑, ↓, l} that we consider is
one of many possible choices. It could be an important research line for the future to
investigate other notations for DNA molecules.

One could think of an extension of the current notation, such that all formal DNA
molecules (also the ones with nicks in both strands) can be denoted. Perhaps, this can
be achieved by a ‘guard-operator’, which protects a DNA submolecule from the effects of
other operators. In particular, it may prevent a nick in one strand from being sealed by
an operator introducing nicks in the other strand.

Another extension could be an operator that makes two formal DNA molecules with
complementary sticky ends anneal. It would also be desirable to define operators that
make it possible to denote DNA molecules with a variety of other ‘imperfections’ than
nicks and gaps, such as, e.g., hairpin loops and circular strands, see Section 2.2.

Rather than extending the present notation, one could also consider to start with
a completely new set of operators. As mentioned in Section 1.2, a possible motivation
for considering formal notations for DNA molecules is to provide a formal calculus for
the processing of DNA molecules. Such a calculus would have to contain operators that
correspond to various biochemical operations on DNA molecules, as well as expressions
for sorts of DNA molecules resulting from applications of these operators. This way, the
expressions not only denote DNA molecules, but they also implicitly describe how to
synthesize them from the basic elements A, C, G and T.

From the mathematical point of view, the set of operators acting on expressions de-
noting DNA molecules does not have to correspond exactly to the biochemical operations.
However, one should be able to express such operations by suitable compositions of math-
ematical operations.

The DNA expressions from this thesis can be considered as a first step towards a formal
calculus for DNA processing, including descriptions for more complex DNA molecules. To
finally achieve that goal, there are many more steps to be taken.



Samenvatting

Veel eigenschappen van mensen, dieren en planten worden (gedeeltelijk) bepaald door hun
genen. Voorbeelden van zulke eigenschappen bij de mens zijn bijvoorbeeld het geslacht, de
kleur van de ogen, en de aanleg voor bepaalde ziektes. Genetische informatie is opgeslagen
in DNA-moleculen, en een gen is een deel van een DNA-molecuul.

Iemands DNA is te vinden in vrijwel elke cel van het lichaam. DNA-moleculen kunnen
echter ook los van een cel en los van een lichaam bestaan. Ze kunnen in een laboratorium
gemaakt en verwerkt worden, en zijn in dat opzicht niet anders dan andere moleculen
waar in laboratoria mee gewerkt wordt.

Hoewel onderzoek naar DNA van nature door moleculair biologen wordt uitgevoerd,
zijn in de loop van de tijd ook informatici gëınteresseerd geraakt in het onderwerp. In het
vakgebied natural computing worden algoritmes onderzocht, die gëınspireerd zijn door de
natuur. Ook worden processen die voorkomen in de natuur, gëınterpreteerd en geanaly-
seerd als berekeningen.

Een tak van het veelomvattende gebied natural computing is DNA computing . Hier
wordt onderzocht hoe DNA-moleculen gebruikt kunnen worden om berekeningen uit te
voeren. Een concreet voorbeeld betreft een experiment van Leonard Adleman, die met
behulp van DNA in een laboratorium een kleine instantie van het gerichte Hamiltonpad
probleem oploste. Bij dit probleem (een variant van het handelsreizigersprobleem) is de
vraag, of er in een gegeven gerichte graaf een pad bestaat van een gegeven beginknoop
naar een gegeven eindknoop dat elke knoop precies één keer bezoekt. Bijvoorbeeld, in de
graaf in Figuur 12.1 is er zo’n pad van knoop 0, via achtereenvolgens de knopen 1, 2, 3, 4
en 5 naar knoop 6.

Om het experiment van Adleman te kunnen beschrijven (en ook om het onderwerp
van dit proefschrift te kunnen beschrijven), vertellen we eerst iets meer over DNA. DNA-
moleculen zijn opgebouwd uit nucleotiden. Een belangrijk onderdeel van een nucleotide
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Figuur 12.1: Graaf waarvoor Adleman het gerichte Hamiltonpad probleem oploste met
behulp van DNA-moleculen.

369



370 Samenvatting
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Figuur 12.2: Losse DNA-strengen die samen een dubbelstrengs DNA-molecuul vormen
dat overeenkomt met een pad in de graaf in Adlemans experiment. (a) Er ontstaan
waterstofbruggen tussen strengen die knoop 2, pijl (2, 3) en knoop 3 coderen. (b) Resultaat
nadat ook een streng voor de pijl (3, 4) in de graaf is vastgemaakt.

is de zogenaamde base. Er zijn vier verschillende mogelijke basen: adenine, cytosine,
guanine en thymine, aangeduid met hun beginletters A, C, G en T. Omdat een nucleotide
gekarakteriseerd wordt door zijn base, worden de vier letters ook wel gebruikt om een
complete nucleotide aan te duiden.

Nucleotiden kunnen met stevige esterbindingen aan elkaar gekoppeld worden en zo een
lange streng vormen, bijvoorbeeld ACATG. Daarnaast kunnen twee basen (en daarmee:
twee nucleotiden) met behulp van waterstofbruggen met elkaar verbonden worden. Hier-
door ontstaan zogeheten basenparen. Om precies te zijn: A kan met twee waterstofbruggen
met T verbonden worden, en C kan met drie waterstofbruggen met G verbonden worden.
Omdat deze waterstofbruggen zo specifiek zijn, worden A en T elkaars complement ge-
noemd, net als C en G. Wanneer we twee DNA-strengen hebben met complementaire

basen, kunnen ze een dubbelstrengs DNA-molecuul vormen, bijvoorbeeld
ACATG
TGTAC .1

De waterstofbruggen zijn veel zwakker dan de esterbindingen. Daardoor is het mogelijk
om de strengen van een dubbelstrengs DNA-molecuul van elkaar te scheiden. In een
organisme als de mens is dit ook van groot belang, bijvoorbeeld bij een proces als celdeling,
waarbij iedere cel een eigen kopie van het DNA moet krijgen.

Adleman nu codeerde elke knoop in de graaf van Figuur 12.1 met een specifieke DNA-
streng van twintig nucleotiden. Daarnaast codeerde hij ook de aanwezige pijlen in de graaf
met DNA-strengen. Figuur 12.2 illustreert hoe hij dat precies deed. Laat Y2 de streng
van knoop 2 zijn en Y3 de streng van knoop 3. Dan codeerde Adleman de pijl van knoop 2
naar knoop 3 met een streng X2,3, die bestond uit het complement van de tweede helft van
Y2 en het complement van de eerste helft van Y3. Met behulp van X2,3 kunnen de strengen
Y2 en Y3 aan elkaar gekoppeld worden. Na de aanhechting van X3,4 kan vervolgens ook Y4

(de streng voor knoop 4) erachter gehangen worden, enzovoort.
Adleman deed nu flinke hoeveelheden van de DNA-strengen Y0, Y1, . . . , Y6 en X0,1, X0,3,

X0,6, . . . , X5,6 (overeenkomend met alle knopen en pijlen in zijn graaf) bij elkaar, en liet
ze onder de juiste condities met elkaar reageren. Na verloop van tijd onderzocht hij het
resultaat. Daarbij stelde hij met de nodige biomoleculaire trucs vast dat er tussen alle
gevormde dubbelstrengs DNA-moleculen, ook een molecuul was dat een pad codeerde van
knoop 0 naar knoop 6, dat elke knoop precies één keer bevatte. Probleem opgelost.

1De strengen moeten ook tegengestelde oriëntaties hebben, maar daar gaan we in deze samenvatting
verder niet op in.
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A C A TG

TGT A C
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A C A T

T T A CG
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Figuur 12.3: Twee afwijkingen van het standaard dubbelstrengs DNA-molecuul.
(a) Een molecuul met twee nicks. (b) Een molecuul met twee gaps.

Hoewel er diverse kanttekeningen bij het experiment van Adleman zijn te plaatsen,
toonde het aan dat je DNA-moleculen in principe kunt gebruiken om berekeningen uit te
voeren. Bij deze en andere berekeningen met DNA is het belangrijk dat je de moleculen
waarmee je begint en die er tijdens de berekening ontstaan precies kunt beschrijven. Ook
als het moleculen met ‘afwijkingen’ betreft.

Een mogelijke afwijking is dat er een esterbinding ontbreekt tussen twee naast elkaar
gelegen nucleotiden in dezelfde streng. De nucleotiden worden slechts bij elkaar gehouden
doordat hun complementen (en de complementen van aangrenzende nucleotiden) in de
andere streng met esterbindingen aan elkaar zitten. Zo’n ontbrekende esterbinding wordt
een nick genoemd. Het molecuul in Figuur 12.3(a) kent twee nicks: een nick in de bovenste
streng tussen de eerste A en de C, aangeduid met ▽, en een nick in de onderste streng
tussen de tweede T en de A, aangeduid met △.

Een andere mogelijke afwijking is dat een DNA-molecuul deels dubbelstrengs is en deels
enkelstrengs: niet alle nucleotiden in de twee strengen zijn voorzien van hun complement,
er zitten gaps in de strengen. Figuur 12.3(b) toont een voorbeeld van een DNA-molecuul
met twee gaps. Er zijn nog vele andere afwijkingen van DNA-moleculen denkbaar, maar
in dit proefschrift concentreren we ons op een formele notatie voor moleculen met nicks
en gaps.

We onderzoeken DNA-expressies – expressies om moleculen te beschrijven die nicks en
gaps kunnen bevatten. De feitelijke beschrijving van de resultaten hiervan begint na een
inleiding tot het onderwerp (Hoofdstuk 1) en een hoofdstuk met benodigde voorkennis
(Hoofdstuk 2), en valt uiteen in drie delen.

In Deel I kijken we naar DNA-expressies in het algemeen. Allereerst definiëren we
in Hoofdstuk 3 formele DNA-moleculen – een formalisatie van DNA-moleculen. Deze
vormen de semantische basis van onze expressies. Elke DNA-expressie zal als semantiek
(formele betekenis) een formeel DNA-molecuul hebben.

In Hoofdstuk 4 introduceren we dan de DNA-expressies. Deze expressies zijn gebaseerd
op deN -letters A, C, G en T en drie operatoren ↑, ↓ en l. De eenvoudigste DNA-expressies
ontstaan wanneer we een operator toepassen op een N -woord , dat wil zeggen: op een
niet-lege string van N -letters. We krijgen dan bijvoorbeeld 〈↑ ACATG〉, 〈↓ TGTAC〉
of 〈l ACATG〉 – de haakjes 〈 en 〉 leggen vast tot hoever de operatoren effect hebben.
Vervolgens kunnen we de operatoren ook toepassen op andere DNA-expressies. Ten slotte
kunnen we de operatoren ↑ en ↓ toepassen op combinaties van N -woorden en DNA-
expressies.
Voor een DNA-expressie E noteren we de semantiek als S(E). Er geldt bijvoorbeeld:

S(〈↑ ACATG〉) =
(
ACATG

−
)

een bovenste DNA-streng,

S(〈↓ TGTAC〉) =
( −
TGTAC

)
een onderste DNA-streng,
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S(〈l ACATG〉) =
(
ACATG
TGTAC

)
een dubbelstrengs molecuul,

S(〈↑ 〈l A〉C 〈↓ 〈l AT〉CG〉〉) =
(
A
T

)(
C
−
)(

AT
TA

)( −
CG

)
molecuul met twee gaps,

S(〈↓ 〈↑ C 〈l AT〉〉 〈l G〉〉) =
(
C
−
)(

AT
TA

)
▽
(
G
C

)
molecuul met gap en nick.

Verschillende DNA-expressies kunnen hetzelfde formele DNA-molecuul beschrijven. Zulke
expressies worden equivalent genoemd.

In Hoofdstuk 5 leiden we een aantal algemene resultaten over DNA-expressies af. We
stellen bijvoorbeeld vast dat elk formeel DNA-molecuul X beschreven kan worden door
een DNA-expressie, behalve als X nicks in zowel de bovenste als de onderste streng bevat.
Verder bewijzen we een aantal resultaten over DNA-expressies die (bijna) equivalent zijn.

Deel II van dit proefschrift gaat over minimale DNA-expressies. Equivalente DNA-
expressies kunnen namelijk verschillende lengtes hebben. Minimale DNA-expressies zijn
de kortste expressies uit elke klasse van equivalente DNA-expressies. Anders gezegd: de
DNA-expressies met minimale lengte voor een bepaald formeel DNA-molecuul.

In Hoofdstuk 6 bepalen we ondergrenzen voor de lengte van DNA-expressies E. Deze
ondergrenzen worden uitgedrukt als functies van de semantiek S(E). We maken hierbij
onderscheid tussen verschillende soorten DNA-expressies: expressies met ↑, expressies
met ↓ en expressies met l. Wanneer een DNA-expressie de betreffende ondergrens bereikt,
weten we zeker dat er geen kortere DNA-expressie van hetzelfde soort voor hetzelfde
molecuul bestaat.

Vervolgens beschrijven we in Hoofdstuk 7 hoe je voor een gegeven formeel DNA-
molecuul een minimale DNA-expressie construeert. We doen dit voor alle mogelijke for-
mele DNA-moleculen waarvoor DNA-expressies bestaan: eerst moleculen zonder gaps en
nicks, vervolgens moleculen met gaps maar zonder nicks, en ten slotte moleculen met nicks
(in een van de strengen).

In Hoofdstuk 8 tonen we aan dat elke minimale DNA-expressie is opgebouwd volgens
een van de genoemde constructies; er bestaan dus geen andere. Om te kunnen zeggen
of een DNA-expressie minimaal is, hoeven we niet expliciet haar lengte te controleren,
of na te gaan of ze voldoet aan een van de constructies. We laten namelijk zien dat de
minimale DNA-expressies gekarakteriseerd worden door zes syntactische eigenschappen,
eigenschappen die je kunt controleren door puur naar de expressie als string te kijken,
zonder de semantiek te bepalen. Hoewel er dus vaste constructies zijn voor minimale
DNA-expressies, laten die constructies wel ruimte voor keuzes. Het gevolg daarvan is dat
er voor veel formele DNA-moleculen meer dan één minimale DNA-expressie bestaat. Voor
een gegeven molecuul berekenen we het aantal verschillende minimale DNA-expressies.

Wanneer een DNA-expressie E niet minimaal is, kun je benieuwd zijn naar een equi-
valente, minimale DNA-expressie. Je zou dan eerst de semantiek S(E) kunnen bepalen,
en vervolgens de geëigende constructie kunnen toepassen die een minimale DNA-expressie
oplevert. In dit proefschrift pakken we het anders aan. We beschrijven in Hoofdstuk 9
een recursief algoritme dat een gegeven DNA-expressie omschrijft naar een equivalent,
minimaal exemplaar. Het algoritme past de oorspronkelijke DNA-expressie, met lokale
transformaties, zó aan dat ze stap voor stap de zes eigenschappen krijgt die minimale
DNA-expressies karakteriseren. Daarmee wordt de expressie minimaal. We tonen aan dat
het algoritme lineaire tijd en lineair geheugen vereist, en dus efficiënt is. Daarnaast is het
algoritme elegant, omdat het volledig op stringniveau opereert – het maakt geen gebruik
van de semantiek, ook al zorgen we er natuurlijk wel over dat het resultaat equivalent is
aan de oorspronkelijke DNA-expressie.
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resultaat korte beschrijving
Definitie 3.2 (p. 35) formele DNA-moleculen
Definitie 4.1 (p. 47) DNA-expressies
Stelling 5.5 (p. 81) te beschrijven formele DNA-moleculen
Stelling 6.31 (p. 134) ondergrens voor lengte DNA-expressies
Stelling 7.5 (p. 138) minimale l-expressies
Stelling 7.24 (p. 158) constructie minimale, nickvrije

↑-expressies en ↓-expressies
Stelling 7.46 (p. 177) constructie minimale ↑-expressies

(en ↓-expressies) met nicks
Lemma 8.22 (p. 205), Stelling 8.26 (p. 211) karakterisatie minimale DNA-expressies
Gevolg 8.47 (p. 232) aantal minimale DNA-expressies
Figuur 9.15 (p. 285) algoritme voor minimaliteit
Definitie 10.1 (p. 314) minimale normaalvorm
Lemma 10.6 (p. 317), Stelling 10.8 (p. 322) karakterisatie minimale normaalvorm
Figuur 11.6 (p. 356) algoritme voor minimale normaalvorm

Tabel 12.1: Overzicht van belangrijkste resultaten uit het proefschrift.

Deel III van dit proefschrift gaat over een normaalvorm voor DNA-expressies, een
verzameling eigenschappen, zodat er voor elk molecuul precies één DNA-expressie be-
staat die die eigenschappen heeft. We definiëren de normaalvorm in Hoofdstuk 10. Zoals
gezegd, kunnen er in de constructie van een minimale DNA-expressie voor een gegeven
formeel DNA-molecuul vaak keuzes gemaakt worden. We maken nu heel specifieke keu-
zes, zodat er precies één DNA-expressie overblijft. Dit noemen we de DNA-expressie
in normaalvorm, en omdat het dus een minimale DNA-expressie is, spreken we van de
minimale normaalvorm. Vervolgens tonen we aan dat alle DNA-expressies in minimale
normaalvorm gekarakteriseerd worden door vijf syntactische eigenschappen.

Wanneer je voor een gegeven DNA-expressie E de equivalente DNA-expressie in mi-
nimale normaalvorm wil hebben, kun je de semantiek S(E) bepalen, en daarna de bij-
behorende DNA-expressie in normaalvorm construeren. Opnieuw kiezen we in dit proef-
schrift een andere benadering, die geen gebruik maakt van de semantiek. In Hoofdstuk 11
beschrijven we een tweestapsalgoritme dat een gegeven DNA-expressie rechtstreeks om-
schrijft naar de equivalente DNA-expressie in minimale normaalvorm. De eerste stap
bestaat eruit dat we de oorspronkelijke expressie met het recursieve algoritme uit Hoofd-
stuk 9 omschrijven in een equivalente, minimale DNA-expressie. In de tweede stap voeren
we op het resultaat van de eerste stap een aantal lokale transformaties uit, die ervoor
zorgen dat de expressie alle vijf de eigenschappen van de minimale normaalvorm krijgt.
Ook dit tweestapsalgoritme vereist lineaire tijd en lineair geheugen.

We kunnen dit algoritme ook gebruiken om te bepalen of twee willekeurige DNA-
expressies equivalent zijn. We schrijven dan eerst, met behulp van het algoritme, beide
DNA-expressies om naar de minimale normaalvorm. Als dit twee identieke DNA-expres-
sies oplevert (en alleen dan), zijn de oorspronkelijke DNA-expressies equivalent.

Aan het eind van dit proefschrift, in Hoofdstuk 12, trekken we de conclusies uit het
onderzoek, en doen we enkele suggesties voor nader onderzoek.

Tabel 12.1 bevat een overzicht van de belangrijkste resultaten uit dit proefschrift. De
inhoud van het proefschrift is ook schematisch weergegeven in Figuur 12.4. We kunnen
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〈↑ 〈l A〉C 〈↓ 〈l AT〉CG〉〉

minimale normaalvorm

Figuur 12.4: Schematische weergave van de inhoud van het proefschrift.

deze figuur als volgt lezen. Om (formele) DNA-moleculen te beschrijven, gebruiken we
letters voor de basen en operatoren ↑, ↓ en l. Dit resulteert in DNA-expressies. Elk formeel
DNA-molecuul kan beschreven worden door oneindig veel DNA-expressies. Sommige van
deze DNA-expressies zijn korter dan andere. We richten ons op degene met minimale
lengte, de minimale DNA-expressies. Er kunnen voor hetzelfde DNA-molecuul meerdere
minimale DNA-expressies bestaan. Slechts één daarvan is in minimale normaalvorm.
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Natural Computing (G. Rozenberg, T. Bäck, J.N. Kok, eds), Vol. 3, Springer (2012),
1073–1127. (Cited on page 2.)

Z. Li: Algebraic properties of DNA operations, Proceedings of the Fourth International
Meeting on DNA Based Computers, University of Pennsylvania, Philadelphia, USA,
June 15–19, 1998 , BioSystems 52 (L. Kari, H. Rubin, D.H. Wood, eds) (1999), 55–61.
(Cited on page 3.)

J.F.J. Laros, A. Blavier, J.T. den Dunnen, P.E.M. Taschner: A formalized description
of the standard human variant nomenclature in Extended Backus-Naur Form, BMC
Bioinformatics 12(Suppl 4):S5 (2011). (Cited on page 3.)

R.J. Lipton: DNA solution of hard computational problems, Science 268 (1995), 542–545.
(Cited on page 29.)

S. Murata, S. Kobayashi (eds): DNA Computing and Molecular Programming – 20th In-
ternational Conference, DNA 20, Kyoto, Japan, September 22–26, 2014 – Proceedings ,
Lecture Notes in Computer Science 8727, Springer (2014). (Cited on page 2.)
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K.R. Olmos Joffré. Strategies for Con-
text Sensitive Program Transformation.
Faculty of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning
about Java programs in PVS using JML.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2009-11

M.G. Khatib. MEMS-Based Stor-
age Devices. Integration in Energy-
Constrained Mobile Systems. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-
namic Analysis Techniques for Program
Comprehension. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-based
Network Intrusion Detection Systems.
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2009-14

H.L. Jonker. Security Matters: Pri-
vacy in Voting and Fairness in Digital Ex-
change. Faculty of Mathematics and Com-
puter Science, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping Trust
Management. Faculty of Electrical Engin-
eering, Mathematics & Computer Science,
UT. 2009-16

393



394 Titles in the IPA Dissertation Series since 2009

T. Chen. Clocks, Dice and Processes.
Faculty of Sciences, Division of Mathemat-
ics and Computer Science, VUA. 2009-17

C. Kaliszyk. Correctness and Availabil-
ity: Building Computer Algebra on top of
Proof Assistants and making Proof Assist-
ants available over the Web. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2009-18

R.S.S. O’Connor. Incompleteness &
Completeness: Formalizing Logic and
Analysis in Type Theory. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2009-19

B. Ploeger. Improved Verification Meth-
ods for Concurrent Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Ana-
lysis of Probabilistic Models. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strategies
for Parameter Optimization and Their Ap-
plications to Medical Image Analysis. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2009-22

J.H.P. Kwisthout. The Computational
Complexity of Probabilistic Networks. Fac-
ulty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for
Data-Oriented Law Enforcement. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2009-24

A.I. Baars. Embedded Compilers. Fac-
ulty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Control
for Dynamic Collaborative Environments.
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2009-26

J.F.J. Laros. Metrics and Visualisation
for Crime Analysis and Genomics. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2009-27

C.J. Boogerd. Focusing Automatic Code
Inspections. Faculty of Electrical Engin-
eering, Mathematics, and Computer Sci-
ence, TUD. 2010-01
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