Computability

voorjaar 2023

https://liacs.leidenuniv.nl/~vlietrvan1/computability/
college 6, 16 maart 2023
9. Undecidable Problems
9.1. A Language That Can't Be Accepted, and a Problem That Can't Be Decided
9.2. Reductions and the Halting Problem
9.3. More Decision Problems Involving Turing Machines

Huiswerkopgave

inleverdatum voor 0.2 punt: 24 maart 2023, 23.59 uur doel bij nakijken eerste inzendingen: vóór 30 maart

9. Undecidable Problems

9.1. A Language

That Can't Be Accepted,
and a Problem That Can't Be Decided

A slide from lecture 4

Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language
$L \subseteq \Sigma^{*}$,
if $L(T)=L$.
T decides L,
if T computes the characteristic function $\chi_{L}: \Sigma^{*} \rightarrow\{0,1\}$

A language L is recursively enumerable, if there is a TM that accepts L,
and L is recursive,
if there is a TM that decides L.

A slide from lecture 4

Definition 7.33. An Encoding Function

Assign numbers to each state:
$n\left(h_{a}\right)=1, n\left(h_{r}\right)=2, n\left(q_{0}\right)=3, n(q) \geq 4$ for other $q \in Q$.

Assign numbers to each tape symbol:
$n\left(a_{i}\right)=i$.

Assign numbers to each tape head direction:
$n(R)=1, n(L)=2, n(S)=3$.

A slide from lecture 4

Definition 7.33. An Encoding Function (continued)

For each move m of T of the form $\delta(p, \sigma)=(q, \tau, D)$

$$
e(m)=1^{n(p)} 01^{n(\sigma)} 01^{n(q)} 01^{n(\tau)} 01^{n(D)} 0
$$

We list the moves of T in some order as $m_{1}, m_{2}, \ldots, m_{k}$, and we define

$$
e(T)=e\left(m_{1}\right) 0 e\left(m_{2}\right) 0 \ldots 0 e\left(m_{k}\right) 0
$$

If $z=z_{1} z_{2} \ldots z_{j}$ is a string, where each $z_{i} \in \mathcal{S}$,

$$
e(z)=01^{n\left(z_{1}\right)} 01^{n\left(z_{2}\right)} 0 \ldots 01^{n\left(z_{j}\right)} 0
$$

	$e\left(T_{0}\right)$	$e\left(T_{1}\right)$	$e\left(T_{2}\right)$	$e\left(T_{3}\right)$	$e\left(T_{4}\right)$	$e\left(T_{5}\right)$	$e\left(T_{6}\right)$	$e\left(T_{7}\right)$	$e\left(T_{8}\right)$	$e\left(T_{9}\right)$
$L\left(T_{0}\right)$	1	0	1	0	0	1	0	0	0	1
$L\left(T_{1}\right)$	0	1	1	1	0	0	0	0	1	0
$L\left(T_{2}\right)$	1	0	0	1	0	0	1	0	0	0
$L\left(T_{3}\right)$	0	0	0	0	0	0	0	0	0	0
$L\left(T_{4}\right)$	0	0	0	0	1	0	0	0	0	0
$L\left(T_{5}\right)$	0	0	1	1	0	1	0	1	0	0
$L\left(T_{6}\right)$	0	0	0	0	0	0	0	0	1	0
$L\left(T_{7}\right)$	1	1	1	1	1	1	1	1	1	1
$L\left(T_{8}\right)$	0	1	0	1	0	1	0	1	0	1
$L\left(T_{9}\right)$	0	0	0	0	0	0	0	0	0	0
\ldots						\ldots				

	$e\left(T_{0}\right)$	$e\left(T_{1}\right)$	$e\left(T_{2}\right)$	$e\left(T_{3}\right)$	$e\left(T_{4}\right)$	$e\left(T_{5}\right)$	$e\left(T_{6}\right)$	$e\left(T_{7}\right)$	$e\left(T_{8}\right)$	$e\left(T_{9}\right)$
$L\left(T_{0}\right)$	1	0	1	0	0	1	0	0	0	1
$L\left(T_{1}\right)$	0	1	1	1	0	0	0	0	1	0
$L\left(T_{2}\right)$	1	0	0	1	0	0	1	0	0	0
$L\left(T_{3}\right)$	0	0	0	0	0	0	0	0	0	0
$L\left(T_{4}\right)$	0	0	0	0	1	0	0	0	0	0
$L\left(T_{5}\right)$	0	0	1	1	0	1	0	1	0	0
$L\left(T_{6}\right)$	0	0	0	0	0	0	0	0	1	0
$L\left(T_{7}\right)$	1	1	1	1	1	1	1	1	1	1
$L\left(T_{8}\right)$	0	1	0	1	0	1	0	1	0	1
$L\left(T_{9}\right)$	0	0	0	0	0	0	0	0	0	0
\ldots						\ldots				
NSA	0	0	1	1	0	0	1	0	1	1

Hence, NSA is not recursively enumerable.

A slide from lecture 4

Some Crucial features of any encoding function e :

1. It should be possible to decide algorithmically, for any string $w \in\{0,1\}^{*}$, whether w is a legitimate value of e.
2. A string w should represent at most one Turing machine with a given input alphabet Σ, or at most one string z.
3. If $w=e(T)$ or $w=e(z)$, there should be an algorithm for decoding w.

Set-up of constructing language NSA that is not RE:

1. Start with list of $R E$ languages over $\{0,1\}$
(which are subsets of $\left.\{0,1\}^{*}\right): L\left(T_{0}\right), L\left(T_{1}\right), L\left(T_{2}\right), \ldots$ each one associated with specific element of $\{0,1\}^{*}$ (namely $e\left(T_{i}\right)$)
2. Define another language NSA by:

$$
e\left(T_{i}\right) \in N S A \Longleftrightarrow e\left(T_{i}\right) \notin L\left(T_{i}\right)
$$

3. Conclusion: for all $i, N S A \neq L\left(T_{i}\right)$

Hence, NSA is not RE

Set-up of constructing language NSA that is not RE:

1. Start with collection of RE languages over $\{0,1\}$ (which are subsets of $\{0,1\}^{*}$): $\{L(T) \mid$ TM $T\}$ each one associated with specific element of $\{0,1\}^{*}$ (namely $e(T)$)
2. Define another language NSA by:
$e(T) \in N S A \Longleftrightarrow e(T) \notin L(T)$
3. Conclusion: for all TM T, NSA $\neq L(T)$ Hence, NSA is not RE

Set-up of constructing language that is not RE:

1. Start with list of RE languages over $\{0,1\}$
(which are subsets of $\{0,1\}^{*}$): $L\left(T_{0}\right), L\left(T_{1}\right), L\left(T_{2}\right), \ldots$ each one associated with specific element of $\{0,1\}^{*}$
2. Define another language L by:
$x \in L \Longleftrightarrow x \notin$ (language that x is associated with)
3. Conclusion: for all $i, L \neq L\left(T_{i}\right)$ Hence, L is not RE

Set-up of constructing language L that is not RE:

1. Start with list of RE languages over $\{0,1\}$
(which are subsets of $\left.\{0,1\}^{*}\right): L\left(T_{0}\right), L\left(T_{1}\right), L\left(T_{2}\right), \ldots$ each one associated with specific element of $\{0,1\}^{*}$ (namely x_{i})
2. Define another language L by:

$$
x_{i} \in L \Longleftrightarrow x_{i} \notin L\left(T_{i}\right)
$$

3. Conclusion: for all $i, L \neq L\left(T_{i}\right)$ Hence, L is not RE

Every infinite list $x_{0}, x_{1}, x_{2}, \ldots$ of different elements of $\{0,1\}^{*}$ yields language L that is not RE

	\wedge	0	1	00	01	10	11	000	001	010	\ldots
$L\left(T_{0}\right)$	1	0	1	0	0	1	0	0	0	1	\cdots
$L\left(T_{1}\right)$	0	1	1	1	0	0	0	0	1	0	\cdots
$L\left(T_{2}\right)$	1	0	0	1	0	0	1	0	0	0	\cdots
$L\left(T_{3}\right)$	0	0	0	0	0	0	0	0	0	0	\cdots
$L\left(T_{4}\right)$	0	0	0	0	1	0	0	0	0	0	\cdots
$L\left(T_{5}\right)$	0	0	1	1	0	1	0	1	0	0	\cdots
$L\left(T_{6}\right)$	0	0	0	0	0	0	0	0	1	0	\cdots
$L\left(T_{7}\right)$	1	1	1	1	1	1	1	1	1	1	\cdots
$L\left(T_{8}\right)$	0	1	0	1	0	1	0	1	0	1	\cdots
$L\left(T_{9}\right)$	0	0	0	0	0	0	0	0	0	0	\cdots
\ldots						\ldots					
newL	0	0	1	1	0	0	1	0	1	1	\cdots

Hence, newL is not recursively enumerable.

Definition 9.1. The Languages NSA and SA

Let

$$
\begin{aligned}
\text { NSA } & =\{e(T) \mid T \text { is a TM, and } e(T) \notin L(T)\} \\
S A & =\{e(T) \mid T \text { is a TM, and } e(T) \in L(T)\}
\end{aligned}
$$

(NSA and SA are for "non-self-accepting" and "self-accepting.")

A slide from lecture 4

Some Crucial features of any encoding function e :

1. It should be possible to decide algorithmically, for any string $w \in\{0,1\}^{*}$, whether w is a legitimate value of e.
2. A string w should represent at most one Turing machine with a given input alphabet Σ, or at most one string z.
3. If $w=e(T)$ or $w=e(z)$, there should be an algorithm for decoding w.

Theorem 9.2. The language NSA is not recursively enumerable. The language SA is recursively enumerable but not recursive.

Proof. . .

Exercise 9.2.

Describe how a universal Turing machine could be used in the proof that $S A$ is recursively enumerable.

Given a TM T, does T accept the string $e(T)$?

Decision problem: problem for which the answer is 'yes' or 'no':

Given ..., is it true that ...?

Given an undirected graph $G=(V, E)$, does G contain a Hamiltonian path?

Given a list of integers $x_{1}, x_{2}, \ldots, x_{n}$, is the list sorted?

Self-Accepting: Given a TM T, does T accept the string $e(T)$?
instances...

Decision problem: problem for which the answer is 'yes' or 'no':

Given ... , is it true that ... ?
yes-instances of a decision problem:
instances for which the answer is 'yes'
no-instances of a decision problem:
instances for which the answer is 'no'

Self-Accepting: Given a TM T, does T accept the string $e(T)$?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances
2. NSA: strings representing no-instances
3. ...

Self-Accepting: Given a TM T, does T accept the string $e(T)$?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances
2. NSA: strings representing no-instances
3. E^{\prime} : strings not representing instances

For general decision problem P, an encoding e of instances I as strings $e(I)$ over alphabet Σ is called reasonable, if

1. there is algorithm to decide if string over Σ is encoding $e(I)$
2. e is injective
3. string $e(I)$ can be decoded

A slide from lecture 4

Some Crucial features of any encoding function e :

1. It should be possible to decide algorithmically, for any string $w \in\{0,1\}^{*}$, whether w is a legitimate value of e.
2. A string w should represent at most one Turing machine with
a given input alphabet Σ, or at most one string z.
3. If $w=e(T)$ or $w=e(z)$, there should be an algorithm for decoding w.

For general decision problem P and reasonable encoding e,

$$
\begin{aligned}
& Y(P)=\{e(I) \mid I \text { is yes-instance of } P\} \\
& N(P)=\{e(I) \mid I \text { is no-instance of } P\} \\
& E(P)=Y(P) \cup N(P)
\end{aligned}
$$

$E(P)$ must be recursive

Definition 9.3. Decidable Problems

If P is a decision problem, and e is a reasonable encoding of instances of P over the alphabet Σ, we say that P is decidable if $Y(P)=\{e(I) \mid I$ is a yes-instance of $P\}$ is a recursive language.

Theorem 9.4. The decision problem Self-Accepting is undecidable.

Proof. . .

For every decision problem, there is complementary problem P^{\prime}, obtained by changing 'true' to 'false' in statement.

Non-Self-Accepting:
Given a TM T, does T fail to accept $e(T)$?

Theorem 9.5. For every decision problem P, P is decidable if and only if the complementary problem P^{\prime} is decidable.

Proof. . .

SA vs. NSA

Self-Accepting vs. Non-Self-Accepting

9.2. Reductions and the Halting Problem

(Informal) Examples of reductions

1. Recursive algorithms
2. Given NFA M and string x, is $x \in L(M)$?
3. Given FAs M_{1} and M_{2}, is $L\left(M_{1}\right) \subseteq L\left(M_{2}\right)$?

Theorem 2.15.

Suppose $M_{1}=\left(Q_{1}, \Sigma, q_{1}, A_{1}, \delta_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, q_{2}, A_{2}, \delta_{2}\right)$ are finite automata accepting L_{1} and L_{2}, respectively.
Let M be the FA ($Q, \Sigma, q_{0}, A, \delta$), where

$$
\begin{aligned}
& Q=Q_{1} \times Q_{2} \\
& q_{0}=\left(q_{1}, q_{2}\right)
\end{aligned}
$$

and the transition function δ is defined by the formula

$$
\delta((p, q), \sigma)=\left(\delta_{1}(p, \sigma), \delta_{2}(q, \sigma)\right)
$$

for every $p \in Q_{1}$, every $q \in Q_{2}$, and every $\sigma \in \Sigma$.
Then

1. If $A=\left\{(p, q) \mid p \in A_{1}\right.$ or $\left.q \in A_{2}\right\}$, M accepts the language $L_{1} \cup L_{2}$.
2. If $A=\left\{(p, q) \mid p \in A_{1}\right.$ and $\left.q \in A_{2}\right\}$,
M accepts the language $L_{1} \cap L_{2}$.
3. If $A=\left\{(p, q) \mid p \in A_{1}\right.$ and $\left.q \notin A_{2}\right\}$,
M accepts the language $L_{1}-L_{2}$.

(Informal) Examples of reductions

3. SubsetFA: Given FAs M_{1} and M_{2}, is $L\left(M_{1}\right) \subseteq L\left(M_{2}\right)$?

3'. AcceptsNothingFA: Given FA M, is $L(M)=\emptyset$?

Definition 9.6. Reducing One Decision Problem to Another . . .

Suppose P_{1} and P_{2} are decision problems. We say P_{1} is reducible to $P_{2}\left(P_{1} \leq P_{2}\right)$

- if there is an algorithm
- that finds, for an arbitrary instance I of P_{1}, an instance $F(I)$ of P_{2},
- such that
for every I the answers for the two instances are the same, or I is a yes-instance of P_{1} if and only if $F(I)$ is a yes-instance of P_{2}.

Theorem 9.7.

Suppose P_{1} and P_{2} are decision problems, and $P_{1} \leq P_{2}$. If P_{2} is decidable, then P_{1} is decidable.

Informal proof:

Suppose that $P_{1} \leq P_{2}$, and that function F maps instance I_{1} of P_{1} to instance $I_{2}=F\left(I_{1}\right)$ of P_{2} with same answer yes/no

If we have an algorithm/TM A_{2} to solve P_{2}, then we also have an algorithm/TM A_{1} to solve P_{1}, as follows:
A_{1} :
Given instance I_{1} of P_{1},

1. construct $I_{2}=F\left(I_{1}\right)$;
2. run A_{2} on I_{2}.

$$
A_{1}: I_{1} \xrightarrow[F]{I_{2}} \underset{A_{2}}{ } \text { yes/no }
$$

A_{1} answers 'yes' for I_{1},
if and only if A_{2} answers 'yes' for I_{2},
if and only $I_{2}=F\left(I_{1}\right)$ is yes-instance of P_{2},
if and only if I_{1} is yes-instance of P_{1}

Two more decision problems:
Accepts: Given a TM T and a string w, is $w \in L(T)$?

Halts: Given a TM T and a string w, does T halt on input w ?

Theorem 9.8. Both Accepts and Halts are undecidable.
Proof.

1. Prove that Self-Accepting \leq Accepts ...

Definition 9.6. Reducing One Decision Problem to Another . . .

Suppose P_{1} and P_{2} are decision problems. We say P_{1} is reducible to $P_{2}\left(P_{1} \leq P_{2}\right)$

- if there is an algorithm
- that finds, for an arbitrary instance I of P_{1}, an instance $F(I)$ of P_{2},
- such that
for every I the answers for the two instances are the same, or I is a yes-instance of P_{1} if and only if $F(I)$ is a yes-instance of P_{2}.

Theorem 9.8. Both Accepts and Halts are undecidable.

Proof.

1. Prove that Self-Accepting \leq Accepts ...
2. Prove that Accepts \leq Halts ...

Application:

$$
\begin{aligned}
& \mathrm{n}=4 ; \\
& \text { while (} \mathrm{n} \text { is the sum of two primes) } \\
& \mathrm{n}=\mathrm{n}+2 \text {; }
\end{aligned}
$$

This program loops forever, if and only if Goldbach's conjecture is true.

