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38.3. More General Grammars

reg. languages FA reg. grammar reg. expression
determ. cf. languages | DPDA

cf. languages PDA cf. grammar

CS. languages LBA CS. grammar

re. languages ™ unrestr. grammar




A slide from lecture 1

FI2: Pumping Lemma for CFLs
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Definition 8.10. Unrestricted grammars

An unrestricted grammar is a 4-tuple G = (V,X,S, P), where V
and > are disjoint finite sets of variables and terminals, respec-
tively, S is an element of V called the start symbol, and P is a
finite set of productions of the form

a—

where o, 8 € (V UX)* and « contains at least one variable.



Notation as for CFGs:
Q :>E I}
L(G)={xze X" | S=5uz}

but when S =* zAy =" 2 ...

Notation — vs = vs F ...



Example 8.12. A Grammar Generating {a"b"c" | n > 1}



Example 8.12. A Grammar Generating {a"b"c" |n > 1}

S — SABC | LABC
BA -+ AB (CB —- BC (CA— AC

LA—a aA—>aa aB —ab bB—=bb bC —bc cC — cc



Example 8.11. A Grammar Generating {azk | k € N}

{a, a?,a* a8 al®, .. .} = {a, aa, aaaa, aaaaaaaa, acaaaaaaaaaaaaaa, . . .}
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Example 8.11. A Grammar Generating {an | k € N}

{a, a?, a* a8 al®, .. .} = {a, aa, aaaa, aaaaaaaa, acaaaaaaaaaaaaaa, . . .}

S — LaR
L— LD Da—aaD DR — R

L—->AN\N R—AN
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Example.
An Unrestricted Grammar Generating XX = {zz | x € {a,b}*}

First a CFG for Pal = {z € {a,b}" |z = z"}:

S—aSa | bSb | a | b | A
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Example.

An Unrestricted Grammar Generating XX = {zz | x € {a,b}*}

S — aAS |bBS | M
Aa - aA Ab—bA Ba—aB Bb—bB

AM — Ma BM — Mb M — A
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Theorem 8.13.
For every unrestricted grammar G, there is a Turing machine T
with L(T) = L(G).

Proof.

1. Move past input (= NB)

2. Simulate derivation in G on the tape of a Turing machine
3. (PB, followed by) Equal
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Theorem 8.13.
For every unrestricted grammar G, there is a Turing machine T
with L(T) = L(G).

Proof.
1. Move past input
2. Simulate derivation in G on the tape of a Turing machine:
Write S on tape
Repeat
a. Select production o« —
b. Select occurrence of « (if there is one)
Cc. Replace occurrence of a by g
until b. fails (caused by ...)
3. Equal
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A slide from lecture 4

Theorem 7.31.

For every nondeterministic TM T = (Q,>,I,qp,9),

there is an ordinary (deterministic) TM Ty = (Q1,>,11,q1,61)
with L(T7) = L(T).

Moreover, if there is no input on which 7' can loop forever,
then 737 also halts on every input.

The proof of this result does not have to be known for the exam.
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Example.

(The second part of) the construction from Theorem 8.13 to
obtain a TM simulating a derivation in the unrestricted grammar
with productions

S—aBS|N\N aB—Ba Ba—aB B—b

See next slide

N.B.:

In next slide, we simulate application of arbitrary production by
e first moving to arbitrary position in current string (at ¢»)

e only then selecting (and applying) a possible production

This implementation of the construction must be known for the

exXam
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b/b,R
A/S,L

a0 A/AR
i : ‘@ A/S,S
A/A L aj/a :
-2 :
) ,S | B,L
/ @ S/S,L
a/a,l
b/b,LU a
B/B,L |

S/S,L
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Theorem 8.14.

For every Turing machine T" with input alphabet 2,
there is an unrestricted grammar G

generating the language L(T) C X*.

Proof.
1. Generate (every possible) input string for T.

2. Simulate computation of 71" for this input string as derivation
in grammar.

3. If T reaches accept state, reconstruct original input string.
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(Part of) a slide from lecture 2
Notation:

description of tape contents: xzoy or zy
configuration xqy = xqyuQA = xqyAA

initial configuration corresponding to input x. qoAx
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A

b/b,R b, b,

qu A/AR =/Q\ a/$,L =/Q\ $/$,R =@ A/AS @

N N \Z/

Computation for £ = ba.
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Theorem 8.14.

For every Turing machine T" with input alphabet 2,
there is an unrestricted grammar G

generating the language L(T) C X*.

Proof.

1. Generate (every possible) input string for T' (two copies),
with additional (AA)’'s and state.

2. Simulate computation of T' for this input string as derivation
in grammar (on second copy).

3. If T reaches accept state, reconstruct original input string.
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3. If T' reaches accept state, reconstruct original input string. ..
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Theorem 8.14.
For every Turing machine T" with input alphabet 2,

there is an unrestricted grammar G
generating the language L(T) C >*.

Proof.

1. Generate (every possible) input string for T' (two copies),
with additional (AA)’'s and state.

2. Simulate computation of T for this input string as derivation
in grammar (on second copy).

3. If T reaches accept state, reconstruct original input string.

Ad 2. Move 6(p,a) = (¢q,b,R) of T
yields production p(o1a) — (o1b)q
Ad 3. Propagate h, all over the string
hao(o100) — 01, for o1 € X
ha(Dos) — A
25



Theorem 8.14.
For every Turing machine T" with input alphabet 2,

there is an unrestricted grammar G
generating the language L(T) C >*.

Proof.

1. Generate (every possible) input string for T' (two copies),
with additional (AA)'s and state.

2. Simulate computation of T for this input string as derivation
in grammar (on second copy).

3. If T reaches accept state, reconstruct original input string.

Ad 2. Move 6(p,a) = (¢q,b,R) of T
yields production p(o1a) — (o1b)q
Ad 3. Propagate hq all over the string (too few / many hg's. . .)
hao(o100) — 01, for o1 € X
ha(Aos) — A
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8.5. Not Every Language
IS Recursively Enumerable

reg. languages FA reg. grammar reg. expression
determ. cf. languages | DPDA

cf. languages PDA cf. grammar

CS. languages LBA CS. grammar

re. languages ™ unrestr. grammar
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