
Computability

voorjaar 2021

https://liacs.leidenuniv.nl/~vlietrvan1/computability/

college 4, 25 februari 2021

7.7. Nondeterministic Turing Machines

7.6. The Church-Turing Thesis

7.8. Universal Turing Machines

8.1. Recursively Enumerable and Recursive

1

https://liacs.leidenuniv.nl/~vlietrvan1/computability/


Example 7.30. The Language of Prefixes of Elements of L.

Let L = L(T ). Then

P (L) = {x ∈ Σ∗ | xy ∈ L for some y ∈ Σ∗}

L = {abba}. . .

2



Example 7.30. The Language of Prefixes of Elements of L.

Let L = L(T ). Then

P (L) = {x ∈ Σ∗ | xy ∈ L for some y ∈ Σ∗}

Deterministic TM accepting P (L) may execute following algo-

rithm for input x:

y = Λ;

while (T does not accept xy)

y is next string in Σ∗ (in canonical order);

accept;

but. . .

3



✧✦
★✥

✧✦
★✥

✧✦
★✥

✧✦
★✥

✧✦
★✥

✧✦
★✥

✧✦
★✥

✧✦
★✥

✲ ✲ ✲ ✲ ✲ ✲ ✲

❄

ha
∆/∆,R a/a,R b/b,R b/b,R a/a,R ∆/∆,S

a/a,R

☞✌✛

a/a,R
b/b,R

∆/∆,R

Is x = a ∈ P (L) ?

4



Example 7.30. The Language of Prefixes of Elements of L.

Let L = L(T ). Then

P (L) = {x ∈ Σ∗ | xy ∈ L for some y ∈ Σ∗}

NB → G → Delete → PB → T

5



Theorem 7.31.

For every nondeterministic TM T = (Q,Σ,Γ, q0, δ),

there is an ordinary (deterministic) TM T1 = (Q1,Σ,Γ1, q1, δ1)

with L(T1) = L(T ).

Moreover, if there is no input on which T can loop forever,

then T1 also halts on every input.

The proof of this result does not have to be known for the exam.

6



N.B.

• NTM is not directly useful as algorithm to test membership

of string x

• acceptance of string x:

– there exists a run of NTM for x that leads to acceptance

– not: repeat running NTM for x until it accepts

7



Nondeterminism

• TMs

• PDAs

• FAs

8



NP completeness / complexity

• nondeterminism

• size of input

9



Complexity

• size of input

bool prime (int n)

{

p = 2;

while (p < n and p is not divisor of n)

p++;

if (p == n)

return true;

else

return false;

}

10



7.6. The Church-Turing Thesis

Turing machine is general model of computation.

Any algorithmic procedure that can be carried out at all

(by human computer, team of humans, electronic computer)

can be carried out by a TM.

(Alonzo Church, 1930s)

11



Evidence for Church-Turing thesis:

1. Nature of the model.

2. Various enhancements of TM do not change computing

power.

3. Other theoretical models of computation have been proposed.

Various notational systems have been suggested as ways of de-

scribing computations. All of them equivalent to TM.

4. No one has suggested any type of computation that ought

to be considered ‘algorithmic procedure’ and cannot be imple-

mented on TM.

12



Once we adopt Church-Turing thesis,

• we have definition of algorithmic procedure

• we may omit details of TMs

13



7.8. Universal Turing Machines

14



Definition 7.32. Universal Turing Machines

A universal Turing machine is a Turing machine Tu that works

as follows. It is assumed to receive an input string of the form

e(T )e(z), where

• T is an arbitrary TM,

• z is a string over the input alphabet of T ,

• and e is an encoding function whose values are strings in {0,1}∗.

The computation performed by Tu on this input string satisfies

these two properties:

1. Tu accepts the string e(T )e(z) if and only if T accepts z.

2. If T accepts z and produces output y, then Tu produces output

e(y).

15



Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine, or

at most one string z.

3. If w = e(T ) or w = e(z), there should be an algorithm for

decoding w.

Computability e itself. . .

16



T1 :

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✲ ✲ ✲
✲ ✲

✛ ✛

❄

q0 q1 q2 q3 q4

ha

∆/∆, R a/a,R a/a,R a/b,R

∆/∆, L a/a,R

b/b, S

✬ ✩
❄

∆/∆, L

L(T1) = . . .

17



T1 :

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✲ ✲ ✲
✲ ✲

✛ ✛

❄

q0 q1 q2 q3 q4

ha

∆/∆, R a/a,R a/a,R a/b,R

∆/∆, L a/a,R

b/b, S

✬ ✩
❄

∆/∆, L

T2 :

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✲ ✲ ✲
✲ ✲

✛ ✛

❄

p q r s t

ha

∆/∆, R a/a,R a/a,R a/b,R

∆/∆, L a/a,R

b/b, S

✬ ✩
❄

∆/∆, L

18



T1 :

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✲ ✲ ✲
✲ ✲

✛ ✛

❄

q0 q1 q2 q3 q4

ha

∆/∆, R a/a,R a/a,R a/b,R

∆/∆, L a/a,R

b/b, S

✬ ✩
❄

∆/∆, L

T3 :

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✲ ✲ ✲
✲ ✲

✛ ✛

❄

q0 q1 q2 q3 q4

ha

∆/∆, R a/a,R a/a,R a/c,R

∆/∆, L a/a,R

c/c, S

✬ ✩
❄

∆/∆, L

19



Assumptions:

1. Names of the states are irrelevant.

2. Tape alphabet Γ of every Turing machine T is subset

of infinite set S = {a1, a2, a3, . . .}, where a1 = ∆.

20



Definition 7.33. An Encoding Function

Assign numbers to each state:

n(ha) = 1, n(hr) = 2, n(q0) = 3, n(q) ≥ 4 for other q ∈ Q.

Assign numbers to each tape symbol:

n(ai) = i.

Assign numbers to each tape head direction:

n(R) = 1, n(L) = 2, n(S) = 3.

21



Definition 7.33. An Encoding Function (continued)

For each move m of T of the form δ(p, σ) = (q, τ,D)

e(m) = 1n(p)01n(σ)01n(q)01n(τ)01n(D)0

We list the moves of T in some order as m1,m2, . . . ,mk, and we

define

e(T ) = e(m1)0e(m2)0 . . .0e(mk)0

If z = z1z2 . . . zj is a string, where each zi ∈ S,

e(z) = 01n(z1)01n(z2)0 . . .01n(zj)0

22



Example 7.34. A Sample Encoding of a TM

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✲ ✲ ✲ ✲q0 p r ha
∆/∆,R

a/b,L
∆/∆,L ∆/∆,S

✓✏b/b,R

❄

✓✏b/b,L

❄

23



Example 7.34. A Sample Encoding of a TM

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✲ ✲ ✲ ✲q0 p r ha
∆/∆,R

a/b,L
∆/∆,L ∆/∆,S

✓✏b/b,R

❄

✓✏b/b,L

❄

111010111101010 0 11110111011110111010 0
111101101111101110110 0 111101011111010110 0
11111011101111101110110 0 1111101010101110 0

24



Does e(T ) completely specify T = (Q,Σ,Γ, q0, δ) ?

25



✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✲ ✲ ✲
✲ ✲

✛ ✛

❄

q0 q1 q2 q3 q4

ha

∆/∆, R a/a,R a/a,R a/b,R

∆/∆, L a/a,R

b/b, S

✬ ✩
❄

∆/∆, L

26



Definition 7.32. Universal Turing Machines

A universal Turing machine is a Turing machine Tu that works

as follows. It is assumed to receive an input string of the form

e(T )e(z), where

• T is an arbitrary TM,

• z is a string over the input alphabet of T ,

• and e is an encoding function whose values are strings in {0,1}∗.

The computation performed by Tu on this input string satisfies

these two properties:

1. Tu accepts the string e(T )e(z) if and only if T accepts z.

2. If T accepts z and produces output y, then Tu produces output

e(y).

27



Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with

a given input alphabet Σ, or at most one string z.

3. If w = e(T ) or w = e(z), there should be an algorithm for

decoding w.

Computability e itself. . .

28



reg. languages FA reg. grammar reg. expression

determ. cf. languages DPDA

cf. languages PDA cf. grammar

cs. languages LBA cs. grammar

re. languages TM unrestr. grammar

29



8. Recursively Enumerable Languages

8.1. Recursively Enumerable and Recur-
sive

30



7.6. The Church-Turing Thesis

Turing machine is general model of computation.

Any algorithmic procedure that can be carried out at all

(by human computer, team of humans, electronic computer)

can be carried out by a TM.

(Alonzo Church, 1930s)

31



A slide from lecture 2

Example 7.14. The Characteristic Function of a Set

χL(x) =

{

1 if x ∈ L
0 if x /∈ L

From computing χL to accepting L

From accepting L to computing χL

32



Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language

L ⊆ Σ∗,

if L(T ) = L.

T decides L,

if T computes the characteristic function χL : Σ∗ → {0,1}

A language L is recursively enumerable,

if there is a TM that accepts L,

and L is recursive,

if there is a TM that decides L.

33



Theorem 8.2.

Every recursive language is recursively enumerable.

Proof. . .

34



Theorem 8.3.

If L ⊆ Σ∗ is accepted by a TM T that halts on every input string,

then L is recursive.

Proof. . .

35



Corollary.

If L is accepted by a nondeterministic TM T , and if there is no

input string on which T can possibly loop forever,

then L is recursive.

Proof. . .

36



Theorem 7.31.

For every nondeterministic TM T = (Q,Σ,Γ, q0, δ),

there is an ordinary (deterministic) TM T1 = (Q1,Σ,Γ1, q1, δ1)

with L(T1) = L(T ).

Moreover, if there is no input on which T can loop forever,

then T1 also halts on every input.

The proof of this result does not have to be known for the exam.

37



Theorem 8.4. If L1 and L2 are both recursively enumerable

languages over Σ, then L1 ∪ L2 and L1 ∩ L2 are also recursively

enumerable.

Proof. . .

38



For L1 ∪ L2:

T2 ha hr ∞
T1
ha ha ha ha
hr ha hr ∞
∞ ha ∞ ∞

For L1 ∩ L2:

T2 ha hr ∞
T1
ha ha hr ∞
hr hr hr hr
∞ ∞ hr ∞

39



Exercise 8.2. Consider modifying the proof of Theorem 8.4 by

executing the two TMs sequentially instead of simultaneously.

Given TMs T1 and T2 accepting L1 and L2, respectively, and an

input string x, we start by making a second copy of x.

We execute T1 on the second copy; if and when this computation

stops, the tape is erased except for the original input, and T2 is

executed on it.

a. Is this approach feasible for accepting L1∪L2, thereby showing

that the union of recursively enumerable languages is recursively

enumerable? Why or why not?

b. Is this approach feasible for accepting L1 ∩L2, thereby show-

ing that the intersection of recursively enumerable languages is

recursively enumerable? Why or why not?

40



For intersection: not just T1 → T2

41



Theorem 8.5. If L1 and L2 are both recursive languages over

Σ, then L1 ∪ L2 and L1 ∩ L2 are also recursive.

Proof. Exercise 8.1.

42



Exercise 8.1.

Show that if L1 and L2 are recursive languages,

then L1 ∪ L2 and L1 ∩ L2 are also.

43



Theorem 8.6. If L is a recursive language over Σ, then its

complement L′ is also recursive.

Proof. . .

44



Theorem 8.7. If L is a recursively enumerable language,

and its complement L′ is also recursively enumerable,

then L is recursive

(and therefore, by Theorem 8.6, L′ is recursive).

Proof. . .

45



Corollary.

Let L be a recursively enumerable language.

Then

L′ is recursively enumerable,

if and only

if L is recursive.

46



Corollary.

There exist languages that are not recursively enumerable,

if and only if

there exist languages that are not recursive.

47



Huiswerkopgave

48


