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Chapter 1

Preface

These lecture notes are meant to accompany the lectures of the course Com-
putability, Spring 2021. They are based on the lecture slides of this course,
which are in turn based on the book

John C. Martin, Introduction to Languages and the Theory of
Computation, 4th edition, McGraw Hill, 2010/2011.

Because of this two-step relation with the book, many definitions, results and
exercises in these lecture notes are literal copies from the book. We even use
the same numbering of definitions, results and exercises, to allow the reader
to easily look up the original text for further or alternative explanation.

The course deals with selected topics from Chapters 7, 8 and 9 from the
book:

7 Turing machines

8 Recursive(ly enumerable) languages / general grammars

9 Undecidable problems

Due to the limited time available to write these lecture notes, they do not
contain much more than the prior knowledge that students following this
course are assumed to have.
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Chapter 2

Prior Knowledge

From Automata Theory

1.4 Languages

An alphabet Σ is a finite set of symbols, e.g., Σ = {a, b}, Σ = {a, b, c} or
Σ = {0, 1}. The set of all finite strings over an alphabet Σ is denoted by
Σ∗. For example,

{a, b}∗ = {Λ, a, b, aa, ab, ba, ba, aaa, . . .}

Here, the symbol Λ denotes the empty string, i.e., the string consisting of
zero symbols. Note that, although the elements of Σ∗ have finite length,
there are infinitely many of them. A language L over an alphabet Σ is
a subset of Σ∗. Nothing more, nothing less. For example, Σ∗ itself is a
language over Σ, and so is the empty set ∅. Also, the set {Λ} is a language
(over any alphabet Σ).

Note the difference between the empty string Λ, the empty set ∅, and
the set {Λ} consisting of the empty string only. The empty string Λ is a
string, whereas ∅ and {Λ} are sets of strings, and thus languages. The set ∅
contains zero strings, whereas {Λ} contains one string, the empty string.

The canonical order is an ordering of strings, where shorter strings come
before longer strings, and where strings of the same length are ‘alphabeti-
cally’ ordered. For example,

Λ, a, b, aa, ab, ba, ba, aaa, . . .

is a list of the (‘first’) elements of Σ∗ in canonical order. The canonical order
is defined for any language. For example, the (first) elements of Pal = {x ∈
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{a, b}∗ | x = xr} (the set of palindromes over {a, b}) in canonical order are:

Λ, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, . . .

2.1 Finite Automata

The simplest model of computation we studied is the finite automaton (FA).
It has a finite number of states. These states are the only type of memory
the automaton has. That is, the only way for the automaton to remember
anything relevant about the input read so far, is by the state it is in.

Example.

An FA accepting {a, b}∗{ba}

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏
✍✌
✎☞

✲ ✲ ✲
✛S A B

b a

b

✞☎a
❄

✞☎b
❄

❦

a

This finite automaton accepts all strings in {a, b}∗ that end with ba. The
tree states keep track of how much of the desired suffix ba we have read so
far. In state S, we have not read anything of this suffix. In state A, we have
just read b. In state B, we have just read ba. That is, the string we have
read so far, ends with ba, and thus we can accept this string. That is why
B is the (only) accepting state.

2.4 The Pumping Lemma

Regular languages are the languages that can be accepted by a finite automa-
ton. The pumping lemma for regular languages intuitively states that any
regular language can be ‘pumped up’. In particular, if a language L ⊆ Σ∗ is
accepted by a finite automaton M having n states, then each string x ∈ L
with |x| ≥ n can be pumped up in the first n letters. To be precise: there
exist u, v, w ∈ Σ∗, such that

1. x = uvw (i.e., x can be split into u, v and w)

2. |uv| ≤ n (in particular, substring v occurs within the first n letters of
x)
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3. for i = 0, 1, 2, . . ., uviw ∈ L (i.e., we can pump up (or down) v)

The proof of this pumping lemma is very intuitive:
Since x is accepted byM , x follows a path throughM ending in an accepting
state. M has only n different states, whereas x consists of at least n letters.
Hence, the first n steps of the path (actually, any n steps of the path)
through M for x must visit at least one state multiple times. Let p be such
a state, and let v be the substring of x traversed between the first and the
second visit of state p. Let u and w be the substrings of x, before and after
v, respectively. Indeed x = uvw, and |uv| ≤ n.

Then instead of the path through M for x = u · v · w, we could as well
traverse the path for u ·w (skipping the subpath from state p back to itself),
for u ·v ·v ·w (traversing this subpath two times), for u ·v ·v ·v ·w (traversing
this subpath three times), etcetera. Each of these alternative paths ends in
the same state as the path for x, which is an accepting state since x ∈ L.
We conclude that all strings uviw are accepted by M and thus are elements
of L.

Most often, the pumping lemma for regular languages is used to prove
that some language L is not regular, simply because it does not satisfy the
pumping lemma. To this end, one shows that pumping up (and/or down) a
particular string x ∈ L yields a string that is not an element of L, while it
should be according to the pumping lemma.
Example.

The language L = AnBn = {aibi | i ≥ 0} is not regular, because pumping
the string x = anbn (with n the size of the finite automaton from the pump-
ing lemma) would yield a string with fewer (if pumped down) or more (if
pumped up) than n a’s, but still n b’s.

Example.

The language SimplePal = {xcxr | x ∈ {a, b}∗} is not regular, because
pumping the string x = ancan (again, with n the size of the finite automaton
from the pumping lemma) would yield a string with fewer (if pumped down)
or more (if pumped up) than n a’s to the left of the c, but still n a’s to the
right of the c.

3.1 Regular Languages and Regular Expressions

A regular language over an alphabet Σ is a language derived from the empty
language ∅ and the languages {a} (with a ∈ Σ), by means of the operators
union, concatenation and Kleene star.
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A regular expression over an alphabet Σ is an expression over the empty
expression and expressions a (with a ∈ Σ), by means of the operators +,
concatenation and Kleene star. In principle, the order of application of the
operators in a regular expression is determined by brackets. Brackets may,
however, be left out when they are redundant with respect to the following
rules of precedence: Kleene star comes before concatenation, which in turn
comes before +.

Each regular language can be described by a regular expression. Usually,
there are more than one regular expressions describing the same regular
language. Conversely, each regular expression describes a unique regular
language.

Example.

An example of a regular language is {a, b}∗{ba}. A regular expression de-
scribing this language is (a + b)∗ba. Another regular expression describing
the same language is (b+ a)∗ba.

3.2 Nondeterministic Finite Automata

By default, a finite automaton is deterministic, which means that for each
state p and each symbol a from the input alphabet Σ, there is one transition
from p with label a (to some state q). There do not exist Λ-transitions. In
other, more formal terms, we have a transition function δ : Q × Σ → Q,
where Q is the set of states of the finite automaton.

A nondeterministic finite automaton (NFA) is an extension of a finite
automaton. For each state p and each symbol a from the input alphabet Σ, it
has zero or more transitions from p with label a (to different states q). Each
state p may also have zero or more Λ-transitions (to different states q). In
other, more formal terms, we have a transition function δ : Q× (Σ∪{Λ}) →
2Q, where 2Q is the set of all subsets (including ∅) of Q.

3.3 The Nondeterminism in an NFA Can Be Elim-
inated

As said, a nondeterministic finite automaton (NFA) is an extension of a finite
automaton. Each FA is (in fact) also an NFA. Hence, each regular language,
i.e., each language that is accepted by an FA, can also be accepted by an
NFA. It is less obvious that each language that is accepted by an NFA can
also be accepted by an FA. One might imagine that NFAs are ‘stronger’
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than FAs, i.e. that NFAs can accept more languages than just the regular
languages. This is, however, not the case.

Using the so-called subset construction, each NFAM can be transformed
into an FA M ′ accepting the same language. The term ‘subset construction’
refers to the states in the FA M ′ that is constructed: the states of M ′

correspond to subsets of states of M , namely all states that M may be in
after reading a certain string.

3.4 Kleene’s Theorem, Part 1

In the foregoing, we already mixed up the terms ‘language accepted by a
finite automaton’ and ‘regular language’. It is not obvious that each regular
language as defined in Section 3.1 can be accepted by a finite automaton
and vice versa. Kleene’s theorem states that this is the case, indeed.

Part 1 of the theorem states that each regular language L over an al-
phabet Σ can be accepted by a finite automaton. The proof is by induction
on the structure of the regular expression describing L. First, we give NFAs
(in fact, FAs) accepting the basic regular languages ∅ and {a} (with a ∈ Σ).
Next, given two NFAs M1 and M2 accepting regular languages L1 and L2,
respectively, we describe how to construct an NFA accepting L1 ∪ L2, an
NFA accepting L1 · L2 and an NFA accepting L∗

1
(or L∗

2
). As each regular

language is the result of a finite number of applications of (some of) these
operations on the basic regular language, each regular language can be ac-
cepted by an NFA. But then each regular language can also be accepted by
an FA (see Section 3.3).

3.5 Kleene’s Theorem, Part 2

Part 2 of Kleene’s theorem states that each language that is accepted by a
finite automaton, can be described by a regular expression, and thus is a reg-
ular language. Indeed, the terms ‘language accepted by a finite automaton’
and ‘regular language’ are synonyms.

4.2 Context-Free Grammars

A context-free grammar G is a tuple (V,Σ, S, P ) where V and Σ are two
disjoint sets of symbols, V is the set of variables (or non-terminals), Σ is the
set of terminals, S ∈ V is the start variable and P is the set of productions.
Each production is of the form A → β, where A ∈ V and β ∈ (V ∪ Σ)∗.
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A production A → β can be applied to a string α, which means that
an occurrence of the variable A in α is replaced by β. For example, if
α = α1Aα2, then we may write: α1Aα2 ⇒ α1βα2. The language generated
by G is the set of strings x ∈ Σ∗ that can be derived from the start variable
S by successively applying productions from P . This language is denoted by
L(G). A language generated by a context-free grammar is called a context-
free language.

Example.

The context-free grammar (V,Σ, S, P ), with V = {S}, Σ = {a, b, c} and the
following productions:

S → aSa | bSb | c

generates the language SimplePal = {xcxr | x ∈ {a, b}∗}. For example, the
string abbcbba is derived as follows:

S ⇒ aSa ⇒ abSba ⇒ abbSbba ⇒ abbcbba

This example illustrates that context-free grammars can generate lan-
guages that are non-regular (see Section 2.4).

4.3 Regular Languages and Regular Grammars

A regular grammar (V,Σ, S, P ) is a context-free grammar whose productions
are restricted to two general forms: either A → σB or A → Λ, where
A,B ∈ V and σ ∈ Σ. For example, a production S → aSA is not allowed
in a regular grammar.

A finite automaton (Q,Σ, q0, A, δ) accepting a language L can easily
be transformed into a regular grammar (V,Σ, S, P ) generating the same
language. Just take V = Q, S = q0,
for each X,Y ∈ V and σ ∈ Σ, if δ(X,σ) = Y , then add production X → σY
to P ,
and for each X ∈ A (i.e., each accepting state X), add production X → Λ
to P .

Example.

Consider again the following FA accepting {a, b}∗{ba}:
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✒✑
✓✏

✒✑
✓✏

✒✑
✓✏
✍✌
✎☞

✲ ✲ ✲
✛S A B

b a

b

✞☎a
❄

✞☎b
❄

❦

a

The construction described yields the regular grammar ({S,A,B}, {a, b}, S, P ),
with productions

S → aS | bA A → bA | aB B → bA | aS | Λ

With exactly the converse construction, each regular grammar gener-
ating a language L, can be transformed into a (nondeterministic!) finite
automaton accepting the same language.

This implies that regular grammars can generate precisely the regular
languages. Because the class of regular grammars is a subset of the class of
context-free grammars, all regular languages can be generated by context-
free grammars. However, as we have seen in Section 4.2, context-free gram-
mars can also generate non-regular languages.

4.4 Derivation Trees

A derivation tree represents the structure of a string derived in a context-
free grammar. For each production A → X1 . . . Xn applied in the derivation,
the corresponding node labelled by A has n ordered children labelled by
X1, . . . , Xn respectively, read from left to right. If n = 0 (i.e., the production
is A → Λ), the node labelled by A has a child labelled by Λ.

4.5 Simplified Forms and Normal Forms

As said, the class of regular grammars is a subset of the class of context-free
grammars. A subset that can generate only regular languages.

There exist other classes of context-free grammars which can generate
(nearly) all context-free languages. One such class consists of the context-
free grammars in Chomsky normal form. In such a grammar (V,Σ, S, P ),
the productions are (again) restricted to two general forms: either A → BC
or A → σ, where A,B,C ∈ V and σ ∈ Σ. It can be proved that for each
context-free grammar G, there exists a context-free grammar G′ in Chomsky
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normal form, such that L(G′) = L(G) \ {Λ}. That is, apart from the empty
string, L(G) can be generated by a context-free grammar in Chomsky normal
form.

5.1 Definitions and Examples (of Pushdown Au-
tomata)

A pushdown automaton (PDA) is a finite automaton, extended with a stack.
Initially, the stack contains only the initial stack symbol Z0. Transitions in
the automaton not only depend on the current state and the next input
letter to be read, but also on the current top symbol on the stack. As a
result of a transition, this top symbol is replaced by a string of symbols.
If this string is empty, the top symbol is effectively just popped from the
stack.

By default, pushdown automata may have Λ-transitions, and may be
nondeterministic: there may be more than one transitions from the same
state on the same input letter (or Λ) and the same top stack symbol.

A second source of nondeterminism is the combination of Λ-transitions
and ‘letter-transitions’: for a given state and a given top stack symbol, there
may be both Λ-transitions and transitions with an input letter. When, in
this case, the next letter to be read is indeed this input letter, we may (or
may not) postpone reading this letter by following a Λ-transition.

Example 5.3 A Pushdown Automaton Accepting SimplePal = {xcxr | x ∈
{a, b}∗}.

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏
✍✌
✎☞

✲ ✲ ✲q0 q1 q2
c Λ, Z0/Z0

✞☎b,+b

❄

✞☎b, b/Λ

❄

a,+a a, a/Λ

At the initial state q0, symbols a and b read from the input are pushed onto
the stack. When the special middle symbol c is read, the PDA moves to
state q1 without altering the stack. At state q1 symbols are popped from
the stack, only if they equal the next input symbol. Otherwise, the PDA
just crashes. When all symbols a and b have been popped from the stack
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(the top symbol is Z0, again), the PDA moves to accepting state q2 with a
Λ-transition.

Example 5.7 A Pushdown Automaton Accepting Pal

Pal = {x ∈ {a, b}∗ | x = xr}

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏
✍✌
✎☞

✲ ✲ ✲q0 q1 q2

a
b
Λ Λ, Z0/Z0

✞☎b,+b

❄

✞☎b, b/Λ

❄

a,+a a, a/Λ

The elements of language Pal do not have a special middle symbol c. Hence,
there is no way for the PDA to recognize what the middle of the word is.
Therefore, while pushing symbols onto the stack in state q0, it nondetermin-
istically decides what to do with the next input symbol, say a:

• The PDA may assume that a is still part of the first half of the input
string, and therefore also push it onto the stack in state q0.

• The PDA may assume that a is the middle symbol of the input string
(which means that the length of the input string is odd), and move to
state q1, while reading a.

• The PDA may assume that a is the first symbol of the second half of
the input string (which means that the length of the input string is
even), and move to state q1 without reading a yet (corresponding to
the Λ-transition.

The options for input symbol b in state q0 are the same. Once the PDA has
reached state q1, it continues its operation in exactly the same way as the
PDA in Example 5.3.

5.2 Deterministic Pushdown Automata

As said before, by default, a pushdown automaton may be nondeterministic.
A deterministic pushdown automaton is a pushdown automaton in which

• for each combination of state q, stack symbol X and input symbol a,
there is at most one transition, and
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• for each combination of state q and stack symbol X, if there exists an
Λ-transition, then there does not exist any transition for this state q,
stack symbol X and any input symbol a.

The PDA from Example 5.3 is deterministic. On the other hand, the PDA
from Example 5.7 is not deterministic. There are, e.g., two transitions in
state q0, any stack symbol and input symbol a. Moreover, there is an Λ-
transition from q0 to q1 for any stack symbol.

There exist languages that can be accepted by a PDA but cannot be
accepted by a deterministic PDA. An example of such a language is Pal ,
that was accepted by the PDA in Example 5.7.

Hence, unlike for finite automata, a deterministic pushdown automaton
is not equally powerful as a (general) pushdown automaton.

5.3 A PDA from a Given CFG

Every context-free language can be accepted by a pushdown automaton. In
Automata Theory, we have seen two constructions from a given CFG G to
a PDA accepting L(G):

• a construction yielding the so-called nondeterministic top-down PDA
corresponding to G, NT (G).

• a construction yielding the so-called nondeterministic bottom-up PDA
corresponding to G, NB(G).

Students following the course Compiler Construction may recognize NT (G)
in the top-down parser and NB(G) in the bottom-up parser occurring in
that course.

5.4 A CFG from a Given PDA

Every language that can be accepted by a pushdown automaton can be
generated by a context-free grammar. This implies that the context-free
languages are exactly the languages that can be accepted by PDAs. Recall,
however, that there exist languages, like Pal , that can be accepted by a PDA,
but not by a deterministic PDA. Hence, not all context-free languages can
be accepted by deterministic PDAs.

In the course Automata Theory, it is explained how a CFG can be con-
structed from a given PDA M . You may remember that this was a pretty
complicated construction.
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6.5 The Pumping Lemma for Context-Free Lan-
guages

Although the class of context-free languages is larger than the class of regular
languages, there are still many languages that are not context-free. For
example, it is plausible that there cannot be a PDA accepting the language
AnBnCn = {aibici | i ≥ 0}, and hence no CFG generating the language.
A PDA is able to count the a’s on its stack, by pushing a symbol onto the
stack for every a it reads. However, in order to check that the number of b’s
following the a’s is equal, it has to pop all these symbols. By then, it has
no way to check that also the number of c’s following the b’s is equal.

It is also plausible that there cannot be a PDA accepting the language
XX = {xx | x ∈ {a, b}∗}. A PDA might push all symbols of the first half of
its input string onto the stack. It may even guess the middle of the string.
By then, the only way to compare the first letter of the second half of the
string to the first letter of the first half of the string (which resides at the
bottom of the stack), is by removing all other symbols from the stack. After
that the PDA cannot compare the other symbols of the second half to the
other symbols of the first half of the string, anymore.

In Section 2.4, we used the pumping lemma for regular languages to
prove that certain languages are not regular. We use the pumping lemma
for context-free languages to prove that certain languages are not context-
free.

The pumping lemma for regular languages was based on the path through
a finite automaton for a long sting x. In contrast, the pumping lemma for
context-free languages is not based on the operation of a PDA accepting a
language, but on the derivation of a string in a CFG.

If a string derived with the grammar is long enough, there should be a
nonterminal A in this derivation that generates itself, together with some
non-empty substrings. That is, there should be a derivation of our string,
containing the following sentential forms:

S ⇒∗ vAz ⇒∗ v wAy z ⇒∗ vw x yz

Apparently the substring wAy can be derived from A. But then this part
of the derivation can be repeated, over and over again:

S ⇒∗ vAz ⇒∗ v wAy z ⇒∗ vw wAy yz ⇒∗ vwmxymz

The underlying cause of this is exactly the context-freeness of the grammar:
no matter what the context is in which the variable A occurs, we can derive
the same strings from it. It does not matter if it occurs in vAz or in vwAyz.
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We can also visualize this argument with derivation tree. If the sting
derived is long enough, then there must be a node in the tree labelled by a
variable A, which has as a descendent another node labelled by A, as in

♠
✁✁
❅
❅

S
✁
✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁
✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

v z

♠
❆❆
�

�

A
✁
✁

✁
✁

✁
✁

✁
✁

✁
✁
✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

✁
✁
✁

✁
✁

✁
✁

❆
❆
❆
❆
❆
❆
❆

w y

♠A
✁
✁
✁

✁
✁

✁
✁

❆
❆
❆
❆
❆
❆
❆

x

But then we could obtain another valid derivation tree by replacing one
subtree rooted by A by the other. This may result in the following new
derivation trees:
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♠
✁✁
❅
❅

S
✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆

✁
✁
✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

v z

♠A
✁

✁
✁
✁

✁
✁
✁

❆
❆
❆
❆
❆
❆
❆

x

♠
✁✁
❅
❅

S
✁
✁

✁
✁

✁
✁

✁
✁

✁
✁
✁

✁
✁

✁
✁

✁
✁✁

❆
❆
❆
❆
❆
❆
❆
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In the left picture, we have replaced the larger subtree by the smaller
subtree, yielding a shorter string vxz In the right picture, we have replaced
the smaller subtree by the larger subtree, yielding a longer string vwwxyyz.
This way, we can pump up (or down, as in the first case) a string.

A formal description of this result is:

Theorem 6.1 The Pumping Lemma for Context-Free Languages

Suppose L is a context-free language. Then there is an integer n so that

for every u ∈ L with |u| ≥ n, u can be written as u = vwxyz, for some

strings v, w, x, y and z satisfying

1. |wy| > 0

2. |wxy| ≤ n

3. for every m ≥ 0, vwmxymz ∈ L

In Automata Theory, this pumping lemma was used to prove that, a.o.,
both the language AnBnCn and the language XX are not context-free.
There are many more non-context-free languages.



Chapter 7

Turing Machines

Till here, we have seen three classes of languages: regular languages, deter-
ministic context-free languages, and (general) context-free languages. Each
class of languages corresponds to a certain type of machine that can accept
exactly those languages. Regular languages and context-free languages can
be generated by regular grammars and context-free grammars, respectively.
Finally the regular languages can be specified by regular expressions. We
thus have the following situation:

reg. languages FA reg. grammar reg. expression

determ. cf. languages DPDA

cf. languages PDA cf. grammar

The regular languages form a proper subset of the deterministic context-
free languages, which in turn form a proper subset of the context-free lan-
guages. However, as we have seen in Section 6.5, there are many languages
which are not even context-free.

In particular, we mentioned AnBnCn = {aibici | i ≥ 0} and XX = {xx |
x ∈ {a, b}∗}. A ‘simple version’ of XX is the language L = {xcx | x ∈
{a, b}∗} This language is not context-free either.

It should not really come as a surprise that these languages cannot be
accepted by a pushdown automaton, i.e., by a finite automaton augmented
with a stack. As for AnBnCn, in order to check that the number of a’s
equals the number of b’s, we can push an a onto the stack for each a that
we read from input, and pop an a from the stack for each b that we read
subsequently. By then, the stack is empty (apart from the initial stack
symbol), and we have no way to check the number of c’s that follow. If,
instead of one stack, we had two stacks at our disposal, we could easily
accept AnBnCn (how?).
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Similarly, suppose we want to use a pushdown automaton to check if
a string in {a, b, c}∗ is an element of L = {xcx | x ∈ {a, b}∗}. We can
easily push all symbols we read, in the order of reading, onto the stack,
until we read a c. The symbols read before the c then correspond to the
first occurrence of x in the definition of L. We now have to check that the
subsequent symbols, the symbols after the c, form the same string x. In
particular, the first symbol we read after the c should be equal to the first
symbol of x. This symbol, however, resides at the bottom of the stack. In
order to look up this symbol, in order to know which symbol it is, we would
have to remove all other symbols of x from the stack. After having done
that, we have no way to verify that the next symbols we read equal the
second and later symbols of x. If, instead of a stack, we had a queue at our
disposal as auxiliary memory, we could easily accept the language L (how?).
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