Some more solutions to exercises in

 John C. Martin: Introduction to Languages

 John C. Martin: Introduction to Languages and The Theory of Computation

fourth edition

5.25(b) In this language, every b counts for two a 's.

A natural solution is to have the starting state q_{0} as the only accepting state, to have a state q_{a} to count an excess in a 's in the string (with A 's on the stack) and to have a stare q_{b} to count an excess in b 's in the string (with two A 's on the stack for every extra b).
From q_{a} and q_{b}, we can return to the accepting state q_{0} with a Λ-transition, when we see Z_{0} on top of the stack. In that case, we do not have an excess of a 's or b 's anymore. When we are in q_{a} and read a b, we should remove two A 's from the stack. We need to do this in two steps, with state q_{a}^{\prime} as an intermediate state. If, in q_{a}^{\prime}, we do not find on the stack the second A we wish to remove, we have an excess in b 's and move to q_{b}, pushing only one A onto the stack. The result is:

The above counter automaton is perfectly deterministic, but we may still prefer an automaton without Λ-transitions. The Λ-transitions from q_{a} and q_{b} back to q_{0} could be avoided by pushing one A less onto the stack on our way from q_{0} to q_{a} and q_{b}. This does, however, not work for the Λ-transitions from the intermediate state q_{a}^{\prime} to q_{a} and q_{b}.
In a more general pushdown automaton, we might try to use two different stack symbols: one to represent a single A and one to represent two A 's. This is, however, not allowed in a counter automaton, because we only have one stack symbol (in addition to Z_{0}).

The solution is to split q_{a} in different states for an odd number of A 's and an even number of A 's, to push only one A onto the stack for two a 's in the input, and to push one A less onto the stack (so we can easily recognize that an a or b we read restores the balance, because we see Z_{0} on top of the stack). The result is:

