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2.1(a) States count the number of a’s read so far.
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2.1(d) States keep track of the first two characters read.
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2.1(f) States represent whether the number of a’s read so far is even or odd
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2.1(g) States represent whether the number of a’s read so far is even or odd and whether the
number of b’s read so far is even or odd.
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2.1(g2) When you consider the language of strings over {a, b} in which either the number of a’s
or the number of b’s is odd (or both), you can take almost the same finite automaton.
Only the accepting states and the nonaccepting states must be exchanged, because the
language is the complement of the language from 2.1(g).
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2.21(e) Let al and am be two different elements of {an | n ≥ 0}. Without loss of generality, assume
that l < m. We now give two different solutions, which are both correct:

– The idea is to let z consist of only b’s: just enough to make alz an element of L. This
number of b’s should, on the other hand, be too small to make amz an element of L.

Extension z must contain ⌊ l

2
⌋ + 1 b’s to make alz an element of L. One can verify

that this works well both if l is even and if l is odd. Can we be certain that with
this z, the string amz is not an element of L? To answer this question we compare
nb(a

mz) to na(a
mz).

Let us first assume that l is odd. Then

2nb(a
mz) = 2(⌊

l

2
⌋+ 1)

= 2(
l − 1

2
+ 1)

= l − 1 + 2 = l + 1 ≤ m = na(a
mz)

The last inequality holds because l < m. Indeed, in this case, amz is not an element
of L.

Now, let us assume that l is even. Then

2nb(a
mz) = 2(⌊

l

2
⌋+ 1)

= 2(
l

2
+ 1)

= l + 2

If m = l + 1, then this final number l + 2 is larger than m = na(a
mz). In that case,

amz is also an element of L, and z does not distinguish al and am with respect to L.
For example, if l = 8 and m = 9, then z = b4+1 = b5 does not distinguish al and am.

Hence, if l is even, the proposed string z does not suit our needs. A small adjustment
is, however, suffcient. If l is even, then we may simply prepend an a to z, thus making
the number of a’s in alz odd, after all: z = a · b⌊

l

2
⌋+1. One can verify that this string

z does distinguish al and am if l is even.

– A simpler solution, but maybe harder to think of. The string z = ambm, containing
equally many a’s and b’s, works for all l and m with l < m. Indeed,

na(a
lz) = l +m < 2m = 2nb(a

lz)

na(a
mz) = m+m = 2m = 2nb(a

=z)
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Hence, alz ∈ L, whereas amz /∈ L.

2.22(d) Hint: note that j = i is also a multiple of i.

2.22(e) Suppose that L can be accepted by a finite automaton M . Let n be the number of states
of M .

We choose x = a2n−1bn. Indeed |x| = 3n − 1 ≥ n and na(x) = 2n − 1 < 2n = 2nb(x), so
x ∈ L (note that there are many other strings x that could be used to find a contradiction).

Let u, v, w be arbitrary strings in {a, b}∗ such that x = a2n−1bn = uvw, |uv| ≤ n and
|v| ≥ 1. Then obviously, uv consists of only a’s. In particular, so does v, say v = ak for
some k with 1 ≤ k ≤ n.

Now consider the string x′ = uv2w (hence, we choose m = 2). We have x′ = uv2w =
uvvw = a2n−1+kbn. As na(x

′) = 2n − 1 + k ≥ 2n − 1 + 1 = 2n = 2nb(x
′), x′ does not

satisfy na(x
′) < 2nb(x

′), and so x′ /∈ L, regardless of what u, v and w look like exactly.

This contradicts the pumping lemma for regular languages. Therefore, the assumption
that L can be accepted by a finite automaton must be wrong. We conclude that L cannot
be accepted by a finite automaton.

2.24 The proof of this generalization of the pumping lemma is very similar to that of the
pumping lemma itself.

Assume that language L is accepted by an FA M . Let n be the number of states of M .

Now, let x be an arbitrary element of L satisfying |x| ≥ n, and let x1x2x3 be an arbitrary
decomposition of x (hence, x = x1x2x3) such that |x2| = n.

In processing input x, M first reads the letters of x1, then those of x2, and then those
of x3. While reading the n letters of x2, M moves from state to state. Doing so, it ‘sees’
n+1 states, from just before the first letter of x2 until just after the last of x2. As M only
has n different states, it must see at least one state q at least two times while reading the
letters of x2.

Let u be the prefix of x2 after which M is in state q for the first time (after having
read x1), and let u′ be the prefix of x2 after which M is in state q for the second time.
Obviously, u is a prefix of u′. Hence, u′ = uv for some string v satisfying |v| ≥ 1. Let w
be the final part of x2, after prefix u′ = uv: x2 = uvw.

When M processes input x = x1x2x3 = x1uvwx3, it traverses a cycle from state q just
before substring v to state q just after substring v. M might skip this cycle (corresponding
to input x1uv

0wx3) or traverse this cycle multiple times (input x1uv
mwx3 for somem ≥ 2).

In all cases M ends up in the same state as it does for input x = x1uv
1wx3, which is an

accepting state.

We conclude that for every m ≥ 0, M accepts x1uv
mwx3, i.e., x1uv

mwx3 ∈ L.
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