EXAM SOLUTION AUTOMATA THEORY

Thursday 21 December 2023, 09:00-12:00

1. $[8 \mathrm{pt}] \mathrm{An}$ automaton with 5 states:

An automaton with 4 states (min nr. of states):

How-to: We consider an a having a weight of 1 while a b having a weight of 3 . Summing up the two and dividing the resulting number by 4 , if we obtain a remainder of 0 , the string belongs to the language, i.e., the state is accepting. In the second automaton, the name of a state represents the remainder when the number is divided by 4 . We may start the construction at state 0 , where no symbols are read so far, and consider what happens when we read an a, respectively a b.
2. $[9 \mathrm{pt}]$

state q	$\delta(q, a)$	$\delta(q, b)$
1	234	\emptyset
234	14	34
14	1234	\emptyset
34	14	4
1234	1234	34
4	14	\emptyset
\emptyset	\emptyset	\emptyset

How-to: Let us start at the same initial state as the given automaton, i.e., state $\{1\}$. Where could we go via an a transition? To states 2,3 or 4 . If we take the union of these, we obtain state $\{2,3,4\}$. Similarly, where could we go via a b transition? To no state, i.e., \emptyset. Now consider state $\{2,3,4\}$. For each of the states in this set, where could we go via an a transition? Again take the union of the resulting states. ... Mark as accepting all states which contain a state that is accepting in the given automaton.
3. $[20 \mathrm{pt}]$
(a) x_{1} is not suitable, e.g., $u=\lambda, v=a^{2}, w=a^{n-1} b^{n}$
x_{2} is suitable
x_{3} is not suitable, it does not necessarily have length $\geq n$
x_{4} is not suitable, e.g., $u=\lambda, v=b, w=b^{2 n-1}$
(b) $\left\{b^{k} \mid k \geq 1\right\}$
(c) $\left\{a^{i} b^{i} \mid i \geq 1\right\}$.

How-to:

(a) For contradicting the pumping lemma, we need to prove the negation:

$$
\begin{aligned}
& \text { If } \\
& \forall \text { for every } n \geq 1 \\
& \exists \quad \text { there exists } x \in L \\
& \quad \text { with }|x| \geq n \\
& \quad \text { such that } \\
& \forall \quad \text { for every decomposition } x=u v w \\
& \quad \text { with (1) }|u v| \leq n, \\
& \quad \text { and (2) }|v| \geq 1 \\
& \exists \text { (3) there exists } m \geq 0, \\
& \quad \text { such that } u v^{m} w \notin L
\end{aligned}
$$

then L is not a regular language.
A suitable string, x_{i}, is one which satisfies the above.
(b) Which strings $z \in \Sigma^{*}$ could we concatenate with $a^{2} b^{2}$ such that $a^{2} b^{2} \cdot z$ belongs to L_{1} ?
(c) Which strings $x \in \Sigma^{*}$ have the same L_{1} / x as $a^{2} b^{2}$, i.e., $L_{1} / x=L_{1} / a^{2} b^{2}$?
4. $[9 \mathrm{pt}]$
(a) $a b b$
(b) a
(c) b
(d) λ

How-to: One way to approach this exercise is by considering strings of increasing length: $\lambda, a, b, a a, a b, b a, b b, a a a, \ldots$, and for each of them check whether it satisfies r and/or s.
5. [14 pt]
(a) G_{1} has start variable S and the following productions:

$$
\begin{array}{ll}
S \rightarrow S_{1} \mid S_{2} & S_{1} \text { for } i>j, S_{2} \text { for } i<j \\
S_{1} \rightarrow a S_{1} b \mid T_{1} & T_{1} \text { for extra } a \text { 's } \\
T_{1} \rightarrow a T_{1} \mid a & \\
S_{2} \rightarrow a S_{2} b \mid T_{2} & T_{2} \text { for extra } b \text { 's } \\
T_{2} \rightarrow T_{2} b \mid b &
\end{array}
$$

This context-free grammar is unambiguous.
(b)

$$
S \Rightarrow S_{2} \Rightarrow a S_{2} b \Rightarrow a T_{2} b \Rightarrow a T_{2} b b \Rightarrow a b b b
$$

6. [11 pt]

Given that $V=\{S\}$ and $\Sigma=\{a, b\}$, the only possible productions in P are $S \rightarrow S S$ and $S \rightarrow a \mid b$.

- If G does not have any of the productions $S \rightarrow a$ and $S \rightarrow b$, then G cannot derive any terminal string: $L(G)=\emptyset$.
- If G contains at least one of the productions $S \rightarrow a$ and $S \rightarrow b$, then let $\Sigma^{\prime}=\{\sigma \in \Sigma \mid S \rightarrow \sigma \in P\}$ (the terminals that can actually be generated).
- If G does not contain the production $S \rightarrow S S$, then G can only directly generate the string(s) consisting of a single terminal from $\Sigma^{\prime}: L(G)=\Sigma^{\prime}$.
- If G does contain the production $S \rightarrow S S$, then G can generate all non-empty strings over $\Sigma^{\prime}: L(G)=\left(\Sigma^{\prime}\right)^{*} \backslash\{\Lambda\}=\Sigma^{\prime} \cdot\left(\Sigma^{\prime}\right)^{*}$.

7. [18 pt] L^{\prime} consists of strings in $\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0\right.$ and $\left.i+k \geq j\right\}$ and strings with letters a, b, c 'out of order'.
(a) The first four elements in the canonical (shortlex) order of L^{\prime} are: $\Lambda, a, c, a a$.
(b) M could be as follows:

M uses state 6 to accept any string where letters are 'out of order', i.e., a after b (transitions from states 2 and 3), or a or b after c (transitions from states 4 and 5). The other states are meant to accept the strings $a^{i} b^{j} c^{k}$ with $i+k \geq j$.
First, in state 1, we count the a 's that we read with symbols a on the stack. At that point, $j=k=0$, so the string is still in L^{\prime}.
Upon reading b^{j}, we remove an a from stack for every b read. Initially, as long as $j \leq i$, in state 2 , the string is still in L^{\prime}.
When we read a b with Z_{0} on top of the stack, we have reached $j>i$, and since k is still $0, i+k<j$. We move to non-accepting state 3 , pushing B onto the stack, to indicate the first extra b read. We count subsequent extra b 's in the input with b 's on the stack.
When we continue with c 's, we move to a new non-accepting state, state 4 , and remove a b from the stack for every c read. As long as B is on the stack (possibly with b 's on top of it), we have $i+k<j$.
When we read c with B on top of the stack, we reach equality: $i+k=j$. We remove B from stack, and move to accepting state 5 , where we may continue reading c 's as long as we wish.
We do not necessarily visit all five states $1-5$. There are shortcuts for cases where we read b or c earlier than described above.
M is indeed deterministic and does not have any Λ-transitions.
8. [11 pt]
(a)

$$
\begin{aligned}
Q & =\{1,2\} \\
\Sigma & =\{a, b\} \\
\Gamma & =\left\{a, b, Z_{0}\right\} \\
q_{0} & =1 \\
A & =\{1\}
\end{aligned}
$$

(b) We combine the states and the transitions of M_{1} and M_{2}, yielding:

