Last week's quiz

Let G be a context-free grammar with start variable S and the following productions:

$$
S \rightarrow a S b S|b S a S| \Lambda
$$

a. Show that $L(G)=A E q B=\left\{x \in\{a, b\}^{*} \mid n_{a}(x)=n_{b}(x)\right\}$
b. Is G ambiguous? Motivate your answer.

Solutions

- exercises
- homework
- exams

Normal form

unwanted in CFG:

- variables not used in successful derivations $S \Rightarrow^{*} x \in \Sigma^{*}$

Useful etc.

$$
\text { CFG } G=(V, \Sigma, S, P)
$$

Definition

variable A is live if $A \Rightarrow^{*} x$ for some $x \in \Sigma^{*}$.
variable A is reachable if $S \Rightarrow^{*} \alpha A \beta$ for some $\alpha, \beta \in(\Sigma \cup V)^{*}$.
variable A is useful if there is a derivation of the form $S \Rightarrow^{*} \alpha A \beta \Rightarrow^{*} x$ for some string $x \in \Sigma^{*}$.
useful implies live and reachable. conversely, ...
[M] Exercise 4.51, 4.52, 4.53

Useful etc.

$$
\text { CFG } G=(V, \Sigma, S, P)
$$

Definition

variable A is live if $A \Rightarrow^{*} x$ for some $x \in \Sigma^{*}$.
variable A is reachable if $S \Rightarrow^{*} \alpha A \beta$ for some $\alpha, \beta \in(\Sigma \cup V)^{*}$.
variable A is useful if there is a derivation of the form $S \Rightarrow^{*} \alpha A \beta \Rightarrow^{*} x$ for some string $x \in \Sigma^{*}$.
useful implies live and reachable.
For $S \rightarrow A B \mid b$ and $A \rightarrow a$, variable A is live and reachable, not useful.
[M] Exercise 4.51, 4.52, 4.53

Recursion, and an algorithm

Live variables

Construction

$-N_{0}=\varnothing$
$-N_{i+1}=N_{i} \cup\left\{A \in V \mid A \rightarrow \alpha\right.$ in P, with $\left.\alpha \in\left(N_{i} \cup \Sigma\right)^{*}\right\}$
$N_{1}=\left\{A \in V \mid A \rightarrow x\right.$ in P, with $\left.x \in \Sigma^{*}\right\}$
$N_{0} \subseteq N_{1} \subseteq N_{2} \subseteq \cdots \subseteq V$
there exists a k such that $N_{k}=N_{k+1}$
A is live iff $A \in \bigcup_{i \geq 0} N_{i}=N_{k}$
(minimal) depth of derivation tree $A \Rightarrow^{*} x$

Recursion, and an algorithm

Live variables

Construction

$-N_{0}=\varnothing$

- $N_{i+1}=N_{i} \cup\left\{A \in V \mid A \rightarrow \alpha\right.$ in P, with $\left.\alpha \in\left(N_{i} \cup \Sigma\right)^{*}\right\}$

Exercise 4.53(c_i).

$$
\begin{array}{ll}
S \rightarrow A B C \mid B a B & A \rightarrow a A|B a C| \text { aaa } \\
B \rightarrow b B b \mid a & C \rightarrow C A \mid A C
\end{array}
$$

Algorithm, ctd.

Reachable variables

Construction

$-N_{0}=\{S\}$

- $N_{i+1}=N_{i} \cup\left\{A \in V \mid B \rightarrow \alpha_{1} A \alpha_{2}\right.$ in P, with $\left.B \in N_{i}\right\}$
$N_{0} \subseteq N_{1} \subseteq N_{2} \subseteq \cdots \subseteq V$
there exists a k such that $N_{k}=N_{k+1}$
A is reachable iff $A \in \bigcup_{i \geq 0} N_{i}=N_{k}$
(minimal) length of derivation $S \Rightarrow^{*} \alpha A \beta$

Algorithm, ctd.

Reachable variables

Construction

- $N_{0}=\{S\}$
$-N_{i+1}=N_{i} \cup\left\{A \in V \mid B \rightarrow \alpha_{1} A \alpha_{2}\right.$ in P, with $\left.B \in N_{i}\right\}$
$N_{0} \subseteq N_{1} \subseteq N_{2} \subseteq \cdots \subseteq V$
there exists a k such that $N_{k}=N_{k+1}$
A is reachable iff $A \in \bigcup_{i \geq 0} N_{i}=N_{k}$
(minimal) length of derivation $S \Rightarrow^{*} \alpha A \beta$
- remove all non-live variables (and productions that contain them)
- remove all unreachable variables (and their productions)
then all variables are useful

Algorithm, ctd.

Reachable variables
Construction
$-N_{0}=\{S\}$

- $N_{i+1}=N_{i} \cup\left\{A \in V \mid B \rightarrow \alpha_{1} A \alpha_{2}\right.$ in P, with $\left.B \in N_{i}\right\}$

Exercise 4.53(c_i)., ctd
$S \rightarrow B a B$

$$
A \rightarrow a A \mid \text { aaa }
$$

$$
B \rightarrow b B b \mid a
$$

Algorithm, ctd.

- remove all non-live variables (and productions that contain them)
- remove all unreachable variables (and productions)
then all variables are useful
does not work the other way around ...

Exercise 4.53(c_i)., revisited

$$
\begin{array}{ll}
S \rightarrow A B C \mid B a B & A \rightarrow a A|B a C| \text { aaa } \\
B \rightarrow b B b \mid a & C \rightarrow C A \mid A C
\end{array}
$$

unwanted in CFG:

- variables not used in successful derivations $S \Rightarrow^{*} x \in \Sigma^{*}$

And also:
$-A \rightarrow \Lambda \quad A$ variable $\quad \Lambda$-productions

$$
\begin{gathered}
S \rightarrow A B|a B \quad A \rightarrow B S| b S \quad B \rightarrow b b \mid \wedge \\
S \Rightarrow A B \Rightarrow B S B \Rightarrow S B \Rightarrow S
\end{gathered}
$$

unwanted in CFG:

- variables not used in successful derivations $S \Rightarrow^{*} x \in \Sigma^{*}$
$-A \rightarrow \Lambda \quad A$ variable $\quad \Lambda$-productions
And also:
$-A \rightarrow B \quad A, B$ variables unit productions [chain rules]

$$
\begin{array}{rl}
S \rightarrow A \mid a B & A \rightarrow B \mid b S \\
S \Rightarrow A \Rightarrow S \mid \Lambda \\
S \Rightarrow S
\end{array}
$$

Normal form

Let / be length of a string in a derivation
Let t be number of terminals in a string in a derivation
If G has no Λ-productions, and no unit productions, then $I+t$ strictly increases in every step of a derivation Proof . . .

Hence, a string $x \in \Sigma^{*}$ can only be generated in derivations of at most $2|x|-1$ steps
unwanted in CFG:

- variables not used in successful derivations $S \Rightarrow^{*} x \in \Sigma^{*}$
$-A \rightarrow \Lambda \quad A$ variable $\quad \Lambda$-productions
$-A \rightarrow B \quad A, B$ variables unit productions [chain rules]
restricted CFG, with 'nice' form
Chomsky normal form $\quad A \rightarrow B C, A \rightarrow \sigma$
Greibach normal form (\boxtimes) $\quad A \rightarrow \sigma B_{1} \ldots B_{k}$

Removing Λ-productions

Idea:

Example

```
A ->BCDCB
B->b|\Lambda
C->c|\Lambda
D->d
```


Definition

variable A is nullable iff $A \Rightarrow{ }^{*} \Lambda$
Theorem

- if $A \rightarrow \wedge$ then A is nullable
- if $A \rightarrow B_{1} B_{2} \ldots B_{k}$ and all B_{i} are nullable, then A is nullable
[M] Def 4.26 / Exercise 4.48

Construction

$-N_{0}=\varnothing$
$-N_{i+1}=N_{i} \cup\left\{A \in V \mid A \rightarrow \alpha\right.$ in P, with $\left.\alpha \in N_{i}^{*}\right\}$
$N_{1}=\{A \in V \mid A \rightarrow \Lambda$ in $P\}$
$N_{0} \subseteq N_{1} \subseteq N_{2} \subseteq \cdots \subseteq V$
there exists a k such that $N_{k}=N_{k+1}$
A is nullable iff $A \in \bigcup_{i \geq 0} N_{i}=N_{k}$

Construction

- identify nullable variables
- for every production $A \rightarrow \alpha$ add $A \rightarrow \beta$, where β is obtained from α by removing one or more nullable variables - remove all Λ-productions

Grammar for $\left\{a^{i} b^{j} c^{k} \mid i=j\right.$ or $\left.i=k\right\}$

$$
\begin{aligned}
& S \rightarrow T U \mid V \\
& T \rightarrow a T b \mid \Lambda \\
& U \rightarrow c U \mid \Lambda \\
& V \rightarrow a V c \mid W \\
& W \rightarrow b W \mid \Lambda
\end{aligned}
$$

Example nullable

Grammar for $\left\{a^{i} b^{j} c^{k} \mid i=j\right.$ or $\left.i=k\right\}$

$$
\begin{aligned}
& S \rightarrow T U \mid V \\
& T \rightarrow a T b \mid \Lambda \\
& U \rightarrow c U \mid \Lambda \\
& V \rightarrow a V c \mid W \\
& W \rightarrow b W \mid \Lambda
\end{aligned}
$$

$N_{1}=\{T, U, W\}$, variables with Λ at right-hand side productions
$N_{2}=\{T, U, W\} \cup\{S, V\}$, variables with $\{T, U, W\}^{*}$ at rhs productions
$N_{3}=N_{2}=\{T, U, W, S, V\}$, all variables found, no new

Example nullable, ctd

add all productions, where (any number of) nullable variables are removed...

$$
\begin{aligned}
& S \rightarrow T U \mid V \\
& T \rightarrow a T b \mid \Lambda \\
& U \rightarrow c U \mid \Lambda \\
& V \rightarrow a V c \mid W \\
& W \rightarrow b W \mid \Lambda
\end{aligned}
$$

[m] Ex. 4.31

Example nullable, ctd

add all productions, where (any number of) nullable variables are removed

$$
\begin{array}{ll}
S \rightarrow T U \mid V & S \rightarrow T|U| \Lambda \\
T \rightarrow a T b \mid \Lambda & T \rightarrow a b \\
U \rightarrow c U \mid \Lambda & U \rightarrow c \\
V \rightarrow a V c \mid W & V \rightarrow a c \mid \Lambda \\
W \rightarrow b W \mid \Lambda & W \rightarrow b
\end{array}
$$

remove all Λ-productions. . .
[m] Ex. 4.31

Example nullable, ctd

add all productions, where (any number of) nullable variables are removed

$$
\begin{array}{ll}
S \rightarrow T U \mid V & S \rightarrow T|U| \Lambda \\
T \rightarrow a T b \mid \Lambda & T \rightarrow a b \\
U \rightarrow c U \mid \Lambda & U \rightarrow c \\
V \rightarrow a V c \mid W & V \rightarrow a c \mid \Lambda \\
W \rightarrow b W \mid \Lambda & W \rightarrow b
\end{array}
$$

remove all Λ-productions

$$
\begin{aligned}
& S \rightarrow T U|V| T \mid U \\
& T \rightarrow a T b \mid a b \\
& U \rightarrow c U \mid c \\
& V \rightarrow a V c|W| a c \\
& W \rightarrow b W \mid b
\end{aligned}
$$

[M] Ex. 4.31

Removing Λ-productions

Theorem
 For every CFG G there is CFG G_{1} without Λ-productions such that $L\left(G_{1}\right)=L(G)-\{\Lambda\}$.

Proof $L(G)-\{\Lambda\} \subseteq L\left(G_{1}\right) \ldots$
[M] Thm 4.27

Removing Λ-productions

Theorem

For every CFG G there is CFG G_{1} without Λ-productions such that $L\left(G_{1}\right)=L(G)-\{\Lambda\}$.

Proof $L(G)-\{\Lambda\} \subseteq L\left(G_{1}\right)$
$G=(V, \Sigma, S, P)$
Consider arbitrary $x \in L(G)-\{\Lambda\}$
$S \Rightarrow{ }_{G}^{*} x$, i.e., $S \Rightarrow{ }_{G}^{n} x$ for some $n \geq 1$
Needed: $S \Rightarrow{ }_{G_{1}}^{*} x$
We prove more general statement:
For all $A \in V, n \geq 1$ and $x \in \Sigma^{*}-\{\Lambda\}$, if $A \Rightarrow{ }_{G}^{n} x$, then $A \Rightarrow{ }_{G_{1}}^{*} x$, using induction on n
Basis, $n=1$: If $A \Rightarrow_{G} x$, then also $A \Rightarrow_{G_{1}} x$

Removing Λ-productions

Theorem

For every CFG G there is CFG G_{1} without Λ-productions such that $L\left(G_{1}\right)=L(G)-\{\Lambda\}$.

Proof $L(G)-\{\Lambda\} \subseteq L\left(G_{1}\right)$ (continued)
Induction hypothesis: Let $k \geq 1$, and suppose that for all $A \in V, n \leq k$ and $x \in \Sigma^{*}-\{\Lambda\}$, if $A \Rightarrow{ }_{G}^{n} x$, then $A \Rightarrow{ }_{G_{1}}^{*} x$
Induction step: Consider $A \Rightarrow{ }_{G}^{k+1} x$
then $A \Rightarrow_{G} X_{1} X_{2} \ldots X_{m} \Rightarrow_{G}^{k} x=x_{1} x_{2} \ldots x_{m}$, for some $m \geq 1$ and $X_{1}, X_{2}, \ldots, X_{m} \in V \cup \Sigma$
Three cases:

1. X_{i} is terminal
2. X_{i} is variable and $x_{i} \neq \Lambda$
3. X_{i} is variable and $x_{i}=\Lambda$
[M] Thm 4.27

Removing unit productions

Idea:

$$
\begin{aligned}
& \text { Example } \\
& A \rightarrow B \mid a C b \\
& B \rightarrow C|B b| B c \\
& C \rightarrow c \mid A B C
\end{aligned}
$$

Removing unit productions

Assume Λ-productions have been removed
Variable B is A-derivable, if

- $B \neq A$, and
$-A \Rightarrow^{*} B$ (using only unit productions)

Construction

- $N_{1}=\{B \in V \mid B \neq A$ and $A \rightarrow B$ in $P\}$
$-N_{i+1}=N_{i} \cup\left\{C \in V \mid C \neq A\right.$ and $B \rightarrow C$ in P, with $\left.B \in N_{i}\right\}$
$N_{1} \subseteq N_{2} \subseteq \cdots \subseteq V$
there exists a k such that $N_{k}=N_{k+1}$
B is A-derivable iff $B \in \bigcup_{i \geq 1} N_{i}=N_{k}$

Removing unit productions

Construction

- for each $A \in V$, identify A-derivable variables
- for every pair (A, B) where B is A-derivable, and every production $B \rightarrow \alpha$ add $A \rightarrow \alpha$
- remove all unit productions

Grammar for $\left\{a^{i} b^{j} c^{k} \mid i=j\right.$ or $\left.i=k\right\}$

$$
\begin{aligned}
& S \rightarrow T U|V| T \mid U \\
& T \rightarrow a T b \mid a b \\
& U \rightarrow c U \mid c \\
& V \rightarrow a V c|W| a c \\
& W \rightarrow b W \mid b
\end{aligned}
$$

Example unit productions

$$
\begin{aligned}
& S \rightarrow T U|V| T \mid U \\
& T \rightarrow a T b \mid a b \\
& U \rightarrow c U \mid c \\
& V \rightarrow a V c|W| a c \\
& W \rightarrow b W \mid b
\end{aligned}
$$

S-derivable: $\{V, T, U\},\{V, T, U, W\} \quad V$-derivable: $\{W\}$
New productions:

$$
\begin{aligned}
& S \rightarrow a T b|a b \quad S \rightarrow c U| c \quad S \rightarrow a V c|W| a c \quad S \rightarrow b W \mid b \\
& V \rightarrow b W \mid b
\end{aligned}
$$

Remove unit productions:

$$
\begin{aligned}
& S \rightarrow T U|a T b| a b|c U| c|a V c| a c|b W| b \\
& T \rightarrow a T b \mid a b \\
& U \rightarrow c U \mid c \\
& V \rightarrow a V c|a c| b W \mid b \\
& W \rightarrow b W \mid b
\end{aligned}
$$

Definition

CFG in Chomsky normal form productions are of the form

- $A \rightarrow B C$ variables A, B, C
- $A \rightarrow \sigma \quad$ variable A, terminal σ

Theorem
For every CFG G there is CFG G_{1} in CNF such that $L\left(G_{1}\right)=L(G)-\{\Lambda\}$.
[M] Def 4.29, Thm 4.30

Construction ChNF

Construction

(1) remove Λ-productions
(2) remove unit productions
(3) introduce variables for terminals $\quad X_{\sigma} \rightarrow \sigma$
(4) split long productions

$$
A \rightarrow a B a b A
$$

is replaced by

$$
X_{a} \rightarrow a \quad X_{b} \rightarrow b \quad A \rightarrow X_{a} B X_{a} X_{b} A
$$

$$
A \rightarrow A C B A
$$

is replaced by

$$
A \rightarrow A Y_{1} \quad Y_{1} \rightarrow C Y_{2} \quad Y_{2} \rightarrow B A
$$

Mind the order

ChNF, example

Grammar for $\left\{a^{i} b^{j} c^{k} \mid i=j\right.$ or $\left.i=k\right\}$

$$
\left.\begin{aligned}
& S \rightarrow T U \mid V \\
& T \rightarrow a T b \mid \Lambda
\end{aligned} \quad U \rightarrow c U \right\rvert\, \Lambda
$$

After removing Λ-productions and unit productions, we obtain (see before)

$$
\begin{aligned}
& S \rightarrow T U|a T b| a b|c U| c|a V c| a c|b W| b \\
& T \rightarrow a T b|a b \quad U \rightarrow c U| c \\
& V \rightarrow a V c|a c| b W|b \quad W \rightarrow b W| b
\end{aligned}
$$

Now introduce productions for the terminals. . .

ChNF, example

Grammar for $\left\{a^{i} b^{j} c^{k} \mid i=j\right.$ or $\left.i=k\right\}$

$$
\begin{aligned}
& S \rightarrow T U \mid V \\
& T \rightarrow a T b|\Lambda \quad U \rightarrow c U| \Lambda \\
& V \rightarrow a V c|W \quad W \rightarrow b W| \Lambda
\end{aligned}
$$

After removing Λ-productions and unit productions, we obtain (see before)

$$
\begin{aligned}
& S \rightarrow T U|a T b| a b|c U| c|a V c| a c|b W| b \\
& T \rightarrow a T b|a b \quad U \rightarrow c U| c \\
& V \rightarrow a V c|a c| b W|b \quad W \rightarrow b W| b
\end{aligned}
$$

Now introduce productions for the terminals:

$$
\begin{aligned}
& X_{a} \rightarrow a \quad X_{b} \rightarrow b \quad X_{c} \rightarrow c \\
& S \rightarrow T U\left|X_{a} T X_{b}\right| X_{a} X_{b}\left|X_{c} U\right| c\left|X_{a} V X_{c}\right| X_{a} X_{c}\left|X_{b} W\right| b \\
& T \rightarrow X_{a} T X_{b} \mid X_{a} X_{b} \\
& U \rightarrow X_{c} U \mid c \\
& V \rightarrow X_{a} V X_{c}\left|X_{a} X_{c}\right| X_{b} W \mid b \\
& W \rightarrow X_{b} W \mid b
\end{aligned}
$$

ChNF, example ctd.

Only a few productions that are too long:

$$
\begin{aligned}
& S \rightarrow X_{a} T X_{b} \mid X_{a} V X_{c} \\
& T \rightarrow X_{a} T X_{b} \\
& V \rightarrow X_{a} V X_{c}
\end{aligned}
$$

Split these long productions...

ChNF, example ctd.

Only a few productions that are too long:

$$
\begin{aligned}
& S \rightarrow X_{a} T X_{b} \mid X_{a} V X_{c} \\
& T \rightarrow X_{a} T X_{b} \\
& V \rightarrow X_{a} V X_{c}
\end{aligned}
$$

Split these long productions:

$$
\begin{array}{ll}
S \rightarrow X_{a} Y_{1} \mid X_{a} Y_{2} \\
Y_{1} \rightarrow T X_{b} & Y_{2} \rightarrow V X_{c} \\
T \rightarrow X_{a} Y_{3} & \\
V \rightarrow X_{a} Y_{4} & \\
Y_{3} \rightarrow T X_{b} & Y_{4} \rightarrow V X_{c}
\end{array}
$$

Note that we can reuse $Y_{1}\left(\approx Y_{3}\right)$ and $Y_{2}\left(\approx Y_{4}\right)$ for two productions

From lecture 8:

Definition

regular grammar (or right-linear grammar)
productions are of the form
$-A \rightarrow \sigma B$ variables A, B, terminal σ
$-A \rightarrow \Lambda \quad$ variable A

Theorem

A language L is regular,
if and only if there is a regular grammar generating L.
Proof. . .
[m] Def 4.13, Thm 4.14

Definition

CFG in Chomsky normal form productions are of the form

- $A \rightarrow B C$ variables A, B, C
- $A \rightarrow \sigma \quad$ variable A, terminal σ
[M] Def 4.29

Outlook

Chomsky NF for pumping lemma (later)

Operations on languages

$\operatorname{even}(L)=\{w \in L| | w \mid$ even $\}$
idea: new variables for even/odd length strings
Chomsky normal form to reduce number of possibilities.
grammar $G=(V, \Sigma, P, S)$ for L, in ChNF
new grammar $G=\left(V^{\prime}, \Sigma, P^{\prime}, S^{\prime}\right)$ for even (L)
variables: $V^{\prime}=\left\{X_{e}, X_{o} \mid X \in V\right\}$
axiom: $S^{\prime}=S_{e}$
productions: - for every $A \rightarrow B C$ in P we have in P^{\prime} :

$$
A_{e} \rightarrow B_{e} C_{e}\left|B_{o} C_{o} \quad A_{o} \rightarrow B_{e} C_{o}\right| B_{o} C_{e}
$$

- for every $A \rightarrow \sigma$ in P we have in $P^{\prime}: A_{\circ} \rightarrow \sigma$

ABOVE

We consider closure properties: given an operation X show that whenever L is regular/context-free, then also $X(L)$ is regular/context-free. This is done as follows: if L is regular/context-free, then we know there is a regular/context-free grammar G for L, and we show how to construct a new grammar G^{\prime} (of the same type) for $X(L)$, in terms of the original grammar G.

Even/odd markings

Operations on languages (2)

$L \subseteq\{a, b\}^{*}, \quad \operatorname{chop}(L)=\{x y \mid x a y \in L\} \quad$ remove some a in each string
idea: new variables for the task of removing letter a
grammar $G=(V,\{a, b\}, P, S)$ for L, in ChNF
new grammar $G=\left(V^{\prime},\{a, b\}, P^{\prime}, S^{\prime}\right)$ for $\operatorname{chop}(L)$
variables: $V^{\prime}=V \cup\{\hat{X} \mid X \in V\}$
axiom: $S^{\prime}=\hat{S}$
productions: keep all productions from P, and

- for every $A \rightarrow B C$ add $\hat{A} \rightarrow \hat{B} C \mid B \hat{C}$
- for every $A \rightarrow a$ add $\hat{A} \rightarrow \Lambda$

Chop markings

\boxtimes Attribute grammars

$$
\begin{array}{ll}
E \rightarrow E+T \mid T & \\
T \rightarrow T * F \mid F & \\
F \rightarrow(E) \mid \text { int } & \\
& \\
E \rightarrow E_{1}+T_{1} & E . v a l=\mathrm{E}_{1} \cdot \mathrm{val}+\mathrm{T}_{1} \cdot \mathrm{val} \\
E \rightarrow T_{1} & E . \mathrm{val}=\mathrm{T}_{1} \cdot \mathrm{val} \\
T \rightarrow T_{1} * F_{1} & T . \mathrm{val}=\mathrm{T}_{1} \cdot \mathrm{val} \cdot \mathrm{~F}_{1} \cdot \mathrm{val} \\
T \rightarrow F_{1} & T . \mathrm{val}=\mathrm{F}_{1} \cdot \mathrm{val} \\
F \rightarrow\left(E_{1}\right) & F . \mathrm{val}=\mathrm{E}_{1} \cdot \mathrm{val} \\
F \rightarrow \text { int } & F . \mathrm{val}=\operatorname{Int} \text { Val }(\mathrm{int})
\end{array}
$$

Box grammar

$$
((\langle 1,1\rangle \ominus\langle 2,1\rangle) \odot(\langle 1,1\rangle \odot\langle 1,3\rangle)) \ominus(\langle 1,1\rangle \odot\langle 2,2\rangle)
$$

$$
\begin{array}{ll}
\text { production } & \text { semantic rule } \\
R \rightarrow\left\langle E_{1}, E_{2}\right\rangle & R \cdot b=E_{1} \cdot v a l \quad R \cdot h=E_{2} \cdot v a l \\
R \rightarrow\left(R_{1} \oplus R_{2}\right) & R \cdot b=R_{1} \cdot b+R_{2} \cdot b \\
& R \cdot h=\max \left\{R_{1} \cdot h, R_{2} \cdot h\right\} \\
& R_{1} \cdot x=R \cdot x \quad R_{2} \cdot x=R \cdot x+R_{1} \cdot b \\
& R_{1} \cdot y=R \cdot y \quad R_{2} \cdot y=R \cdot y \\
R \rightarrow\left(R_{1} \ominus R_{2}\right) & R \cdot b=\max \left\{R_{1} \cdot b, R_{2} \cdot b\right\} \\
& R \cdot h=R_{1} \cdot h+R_{2} \cdot h \\
& R_{1} \cdot x=R \cdot x \quad R_{2} \cdot x=R \cdot x \\
& R_{1} \cdot y=R \cdot y \quad R_{2} \cdot y=R \cdot y+R_{1} \cdot h
\end{array}
$$

Evaluating attributes

$$
\begin{array}{ll}
R \rightarrow\left(R_{1} \oplus R_{2}\right) & R \cdot b=R_{1} \cdot b+R_{2} \cdot b \\
& R_{1} \cdot x=R \cdot x \quad R_{2} \cdot x=R \cdot x+R_{1} \cdot b \\
R \rightarrow\left(R_{1} \ominus R_{2}\right) & R \cdot b=\max \left\{R_{1} \cdot b, R_{2} \cdot b\right\} \\
& R_{1} \cdot x=R \cdot x \quad R_{2} \cdot x=R \cdot x
\end{array}
$$

Homework 3! (probably Wednesday)

