
Overview

reg. languages FA reg. grammar reg. expression

determ. cf. languages DPDA

cf. languages PDA cf. grammar

cs. languages LBA cs. grammar

re. languages TM unrestr. grammar
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Grammar

From lecture 7:

AnBn = { anbn | n ≥ 0 } ⊆ {a, b}∗

Example

– Λ ∈ AnBn (basis)

– for every x ∈ AnBn, also axb ∈ AnBn (induction)

S → Λ
S → aSb

S ⇒ aSb ⇒ aaSbb ⇒ aa bb

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaa bbb

if S ⇒∗ x then also S ⇒∗ axb
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Context-free languages

From lecture 7:

Definition

context-free grammar (CFG) 4-tuple G = (V ,Σ, S ,P)
– V alphabet variables / nonterminals

– Σ alphabet terminals disjoint V ∩ Σ = ∅

– S ∈ V axiom, start symbol

– P finite set rules, productions
of the form A→ α, A ∈ V , α ∈ (V ∪ Σ)∗

derivation step α = α1Aα2 ⇒G α1γα2 = β for A→ γ ∈ P

Definition

language generated by G

L(G ) = { x ∈ Σ∗ | S ⇒∗

G
x }

[M] Def 4.6 & 4.7
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Regular operations and CFL

From lecture 7:

Using building blocks

Theorem

If L1, L2 are CFL, then so are L1 ∪ L2, L1L2 and L∗1.

[M] Thm 4.9

Hence, CFL is closed onder union, concatenation, star
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Closure

Regular languages are closed under
– Boolean operations (complement, union, intersection, minus)
– Regular operations (union, concatenation, star)
– Reverse (mirror)
– [inverse] Homomorphism
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Non-context-free languages

Fact, proof follows →֒later

Theorem

the languages

– AnBnCn = { anbncn | n ≥ 0 } and
– XX = {xx | x ∈ {a, b}∗ }
are not context-free

[M] E 6.3, E 6.4

AnBnCn is the intersection of two context-free languages
[M] E 6.10

The complement of both AnBnCn and XX is context-free.
[M] E 6.11

Hence, CFL is not closed under intersection, complement
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Regular languages and CF grammars

S → S1 | S2 union
S → S1S2 concatenation
S → SS1 | Λ star

CFG for ∅. . .
CFG for {σ}. . .

Example

L = bba(ab)∗ + (ab + ba∗b)∗ba

[M] E 4.11
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Regular languages and CF grammars

S → S1 | S2 union
S → S1S2 concatenation
S → SS1 | Λ star

Example

L = bba(ab)∗ + (ab + ba∗b)∗ba
S → S1 | S2
S1 → S1ab | bba
S2 → TS2 | ba T → ab | bUb U → aU | Λ

[M] E 4.11
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above

We have seen constructions to apply the regular operations (union,
concatenation and star) to context-free grammars. These we can now
use to build CFG for regular expressions.

There is a better way to build CFG for regular languages. Use finite

automata, and simulate these using a very simple type of context-free

grammar. These simple grammars are called regular.



Regular languages and CF grammars

systematic approach

Example

S A B

a

b
a

b

b

a
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Regular languages and CF grammars

systematic approach

Example

S A B

a

b
a

b

b

a

axiom S initial state
S → bA | aS transitions
A→ bA | aB
B → bA | aS
B → Λ accepting state

path / derivation for bbaaba. . .
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Definition

regular grammar (or right-linear grammar)
productions are of the form
– A→ σB variables A,B , terminal σ
– A→ Λ variable A

Special type of context-free grammar

Theorem

A language L is regular,

if and only if there is a regular grammar generating L.

Proof. . .
[M] Def 4.13, Thm 4.14
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Expressions

4.4 Derivation trees and ambiguity

A derivation. . .

S → a | S + S | S ∗ S | (S) Σ = {a,+, ∗, (, )}

S ⇒ S + S ⇒ S + (S)⇒ S + (S ∗ S)⇒
S + (a ∗ S)⇒ a+ (a ∗ S)⇒ a+ (a ∗ a)

[M] E 4.2, Fig 4.15

Automata Theory Context-Free Languages Derivation trees and ambiguity 264 / 324



Leftmost derivation

Definition

A derivation in a context-free grammar is a leftmost derivation, if at each
step, a production is applied to the leftmost variable-occurrence in the
current string.
A rightmost derivation is defined similarly.

[M] D 4.16

derivation step α = α1Aα2 ⇒G α1γα2 = β for A→ γ ∈ P

The derivation step is leftmost iff α1 ∈ Σ∗

We write α
ℓ
⇒ β
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Expressions

S → a | S + S | S ∗ S | (S) Σ = {a,+, ∗, (, )}

S ⇒ S + S ⇒ S + (S)⇒ S + (S ∗ S)⇒
S + (a ∗ S)⇒ a+ (a ∗ S)⇒ a+ (a ∗ a)

Derivation tree. . .
[M] E 4.2, Fig 4.15
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Expressions

S

S + S

a ( S )

S * S

a a

S → a | S + S | S ∗ S | (S) Σ = {a,+, ∗, (, )}

S ⇒ S + S ⇒ S + (S)⇒ S + (S ∗ S)⇒ S + (a ∗
S)⇒ a+ (a ∗ S)⇒ a+ (a ∗ a)

Leftmost derivation. . .

[M] E 4.2, Fig 4.15
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Expressions

S

S + S

a ( S )

S * S

a a

S → a | S + S | S ∗ S | (S) Σ = {a,+, ∗, (, )}

S ⇒ S + S ⇒ S + (S)⇒ S + (S ∗ S)⇒ S + (a ∗
S)⇒ a+ (a ∗ S)⇒ a+ (a ∗ a)

Leftmost derivation:
S

ℓ
⇒ S + S

ℓ
⇒ a+ S

ℓ
⇒ a+ (S)

ℓ
⇒ a+ (S ∗ S)

ℓ
⇒

a+ (a ∗ S)
ℓ
⇒ a+ (a ∗ a)

[M] E 4.2, Fig 4.15
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Well-formed formula

ψ ::= p | (¬ψ) | (ψ ∧ ψ) | (ψ ∨ ψ) | (ψ → ψ)

p

q p

q

r

¬

(¬p) ∧

((¬p) ∧ q)

¬

(¬r)∨

(q ∨ (¬r))∧

(p ∧ (q ∨ (¬r)))→

(((¬p) ∧ q)→ (p ∧ (q ∨ (¬r))))

[H&R] Fig 1.3
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Well-formed formula

S ::= p | q | r | (¬S) | (S ∧ S) | (S ∨ S) | (S → S)
parse tree vs. derivation tree2

p

q p

q

r

¬

∧

¬

∨

∧

→

S

p

S

q

S

p S

q S

r

S

¬

S

∧

S

¬

S

∨

S

∧

S

→( )

( ) ( )

( )

( )

( )

2with all brackets explicit
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Ambiguity

Definition

A context-free grammar G is ambiguous, if for at least one x ∈ L(G ), x
has more than one derivation tree.

Otherwise: unambiguous [M] D 4.18
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Ambiguity (1)

S

S * S

aS + S

a a

S

S + S

a S * S

a a

Σ = {a,+, ∗, (, )}

S → a | S + S | S ∗ S | (S)

a+ a ∗ a
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leftmost derivation ←→ derivation tree

Theorem

If G is a context-free grammar, then for every x ∈ L(G ), these three

statements are equivalent:

1 x has more than one derivation tree

2 x has more than one leftmost derivation

3 x has more than one rightmost derivation

Proof. . .
[M] Thm 4.17
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Ambiguity

leftmost derivation ←→ derivation tree

Theorem

If G is a context-free grammar, then for every x ∈ L(G ), these three

statements are equivalent:

1 x has more than one derivation tree

2 x has more than one leftmost derivation

3 x has more than one rightmost derivation

[M] Thm 4.17

Definition

A context-free grammar G is ambiguous, if for at least one x ∈ L(G ), x
has more than one derivation tree (or, equivalently, more than one
leftmost derivation).

Otherwise: unambiguous [M] D 4.18
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Ambiguity (1)

S

S * S

aS + S

a a

S

S + S

a S * S

a a

Σ = {a,+, ∗, (, )}

S → a | S + S | S ∗ S | (S)

a+ a ∗ a

S
ℓ
⇒ S ∗ S

ℓ
⇒ S + S ∗ S

ℓ
⇒ a + S ∗ S

ℓ
⇒

a+ a ∗ S
ℓ
⇒ a+ a ∗ a

S
ℓ
⇒ S+S

ℓ
⇒ a+S

ℓ
⇒ a+S∗S

ℓ
⇒ a+a∗S

ℓ
⇒

a+ a ∗ a

leftmost derivation ←→ derivation tree
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Ambiguity (2)

S

S + S

aS + S

a a

S

S + S

a S + S

a a

Σ = {a,+, ∗, (, )}

S → a | S + S | S ∗ S | (S)

a+ a+ a

Leftmost for 1:
S

ℓ
⇒ S + S

ℓ
⇒ S + S + S

ℓ
⇒ a + S + S

ℓ
⇒

a+ a+ S
ℓ
⇒ a+ a+ a

Derivation for 2:
S ⇒ S + S ⇒ S + S + S ⇒ a + S + S ⇒
a+ a+ S ⇒ a+ a+ a
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Ambiguity (2)

S

S + S

aS + S

a a

S

S + S

a S + S

a a

Σ = {a,+, ∗, (, )}

S → a | S + S | S ∗ S | (S)

a+ a+ a

Leftmost for 1:
S

ℓ
⇒ S + S

ℓ
⇒ S + S + S

ℓ
⇒ a + S + S

ℓ
⇒

a+ a+ S
ℓ
⇒ a+ a+ a

Derivation for 2:
S ⇒ S + S ⇒ S + S + S ⇒ a + S + S ⇒
a+ a+ S ⇒ a+ a+ a

Leftmost for 2:
S

ℓ
⇒ S + S

ℓ
⇒ a + S

ℓ
⇒ a + S + S

ℓ
⇒

a+ a+ S
ℓ
⇒ a+ a+ a

leftmost derivation ←→ derivation tree
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above

This example is a little weird. In the derivation step S+S ⇒ S+S+S

we cannot really see which S has been rewritten.



(un)ambiguous grammars

Expr
ambiguous:

S → a | S + S | S ∗ S | (S)
[M] E 4.20

a+ a ∗ a
unambiguous:

. . .
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(un)ambiguous grammars

Expr
ambiguous:

S → a | S + S | S ∗ S | (S)
[M] E 4.20

a+ a ∗ a
unambiguous:

S → S + T | T
T → T ∗ F | F
F → a | (S)
[M] Thm 4.25

The proof of the unambiguity does not have to be known for the exam
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Expressions railroad diagram

Expression
Terme

+

Terme
Facteur

×

Facteur
Variable

( Expression )

Variable
X

Y

Z right associative

http://math.et.info.free.fr/TikZ/index.html Chapitre 7
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Equal number

AeqB = { x ∈ {a, b}∗ | na(x) = nb(x) }

aaabbb, ababab, aababb, . . .

S → Λ | aB | bA
A→ aS | bAA A generates na(x) = nb(x) + 1

B → bS | aBB B generates na(x) + 1 = nb(x)

Derivation for aababb:

S ⇒ aB ⇒ aaBB ⇒ aabSB ⇒ . . . (different options)

(1) aabB ⇒ aabaBB ⇒ aababSB ⇒ aababB ⇒ aababbS ⇒ aababb

(2) aabaBB ⇒ aababSB ⇒ aababB ⇒ aababbS ⇒ aababb

(2’) aabaBB ⇒ aabaBbS ⇒ aababSbS ⇒ aababSb ⇒ aababb

[M] E 4.8
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above

When a string has multiple variables, like aabSB in the above example,
then we are not forced to rewrite the first variable, we can as well
rewrite another one.
Thus we can do aabSB ⇒ aabB , but also aabSB ⇒ aabSaBB , for
instance.

below

In detail, two different derivation trees for the same string, correspond-
ing to derivations (1) and (2,2’) respectively, together with two associ-
ated leftmost derivations.

Given these two trees we conclude the grammar is ambiguous.



Derivation tree & leftmost derivations

S1

a B2

a B3

b S4

Λ

B5

a B6

b S7

Λ

B8

b S9

Λ

S ⇒ aB ⇒ aaBB ⇒ aabSB ⇒

aabB ⇒ aabaBB ⇒ aababSB ⇒

aababB ⇒ aababbS ⇒ aababb

S1

a B2

a B3

b S4

a B5

b S6

Λ

B7

b S8

Λ

S ⇒ aB ⇒ aaBB ⇒ aabSB ⇒
aabaBB ⇒ aababSB ⇒ aababB ⇒
aababbS ⇒ aababb
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Dangling else

S → if ( E ) S | if ( E ) S else S | . . .

if ( E ) if ( E ) S else S

[M] E 4.19
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Dangling else

S → if ( E ) S | if ( E ) S else S | . . .

S

if ( E ) S

if ( E ) S else S

S

if ( E ) S else S

if ( E ) S

[M] E 4.19
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Dangling else

ambiguous:

S → if ( E ) S | if ( E ) S else S | A | . . .

unambiguous. . .

[M] E 4.19

Automata Theory Context-Free Languages Derivation trees and ambiguity 285 / 324



Dangling else

ambiguous:

S → if ( E ) S | if ( E ) S else S | A | . . .

unambiguous:

S → S1 | S2
S1 → if ( E ) S1 else S1 | A | . . . (matched)
S2 → if ( E ) S | if ( E ) S1 else S2 (open)

[M] E 4.19
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(un)ambiguous grammars

Balanced
ambiguous:

S → SS | (S) | Λ (more or less the definition of balanced)

unambiguous:

S → (S)S | Λ
[M] Exercise 4.45
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Ambiguous

Some cf languages are inherently ambiguous

Ambiguity is undecidable
[M] Theorem 9.20
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Quiz

Let G be a context-free grammar with start variable S and the following
productions:

S → aSbS | bSaS | Λ

a. Show that L(G ) = AEqB = {x ∈ {a, b}∗ | na(x) = nb(x)}
b. Is G ambiguous? Motivate your answer.
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