
Overview

reg. languages FA reg. grammar reg. expression

determ. cf. languages DPDA

cf. languages PDA cf. grammar

cs. languages LBA cs. grammar

re. languages TM unrestr. grammar

Automata Theory Context-Free Languages Regular operations 253 / 324

Grammar

From lecture 7:

AnBn = { anbn | n ≥ 0 } ⊆ {a, b}∗

Example

– Λ ∈ AnBn (basis)

– for every x ∈ AnBn, also axb ∈ AnBn (induction)

S → Λ
S → aSb

S ⇒ aSb ⇒ aaSbb ⇒ aa bb

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaa bbb

if S ⇒∗ x then also S ⇒∗ axb

Automata Theory Context-Free Languages Regular operations 254 / 324

Context-free languages

From lecture 7:

Definition

context-free grammar (CFG) 4-tuple G = (V ,Σ, S ,P)
– V alphabet variables / nonterminals

– Σ alphabet terminals disjoint V ∩ Σ = ∅

– S ∈ V axiom, start symbol

– P finite set rules, productions
of the form A→ α, A ∈ V , α ∈ (V ∪ Σ)∗

derivation step α = α1Aα2 ⇒G α1γα2 = β for A→ γ ∈ P

Definition

language generated by G

L(G) = { x ∈ Σ∗ | S ⇒∗

G
x }

[M] Def 4.6 & 4.7

Automata Theory Context-Free Languages Regular operations 255 / 324

Regular operations and CFL

From lecture 7:

Using building blocks

Theorem

If L1, L2 are CFL, then so are L1 ∪ L2, L1L2 and L∗1.

[M] Thm 4.9

Hence, CFL is closed onder union, concatenation, star

Automata Theory Context-Free Languages Regular operations 256 / 324

Closure

Regular languages are closed under
– Boolean operations (complement, union, intersection, minus)
– Regular operations (union, concatenation, star)
– Reverse (mirror)
– [inverse] Homomorphism

Automata Theory Context-Free Languages Regular operations 257 / 324

Non-context-free languages

Fact, proof follows →֒later

Theorem

the languages

– AnBnCn = { anbncn | n ≥ 0 } and
– XX = {xx | x ∈ {a, b}∗ }
are not context-free

[M] E 6.3, E 6.4

AnBnCn is the intersection of two context-free languages
[M] E 6.10

The complement of both AnBnCn and XX is context-free.
[M] E 6.11

Hence, CFL is not closed under intersection, complement

Automata Theory Context-Free Languages Regular operations 258 / 324

Regular languages and CF grammars

S → S1 | S2 union
S → S1S2 concatenation
S → SS1 | Λ star

CFG for ∅. . .
CFG for {σ}. . .

Example

L = bba(ab)∗ + (ab + ba∗b)∗ba

[M] E 4.11

Automata Theory Context-Free Languages Regular grammars 259 / 324

Regular languages and CF grammars

S → S1 | S2 union
S → S1S2 concatenation
S → SS1 | Λ star

Example

L = bba(ab)∗ + (ab + ba∗b)∗ba
S → S1 | S2
S1 → S1ab | bba
S2 → TS2 | ba T → ab | bUb U → aU | Λ

[M] E 4.11

Automata Theory Context-Free Languages Regular grammars 260 / 324

above

We have seen constructions to apply the regular operations (union,
concatenation and star) to context-free grammars. These we can now
use to build CFG for regular expressions.

There is a better way to build CFG for regular languages. Use finite

automata, and simulate these using a very simple type of context-free

grammar. These simple grammars are called regular.

Regular languages and CF grammars

systematic approach

Example

S A B

a

b
a

b

b

a

Automata Theory Context-Free Languages Regular grammars 261 / 324

Regular languages and CF grammars

systematic approach

Example

S A B

a

b
a

b

b

a

axiom S initial state
S → bA | aS transitions
A→ bA | aB
B → bA | aS
B → Λ accepting state

path / derivation for bbaaba. . .

Automata Theory Context-Free Languages Regular grammars 262 / 324

Definition

regular grammar (or right-linear grammar)
productions are of the form
– A→ σB variables A,B , terminal σ
– A→ Λ variable A

Special type of context-free grammar

Theorem

A language L is regular,

if and only if there is a regular grammar generating L.

Proof. . .
[M] Def 4.13, Thm 4.14

Automata Theory Context-Free Languages Regular grammars 263 / 324

Expressions

4.4 Derivation trees and ambiguity

A derivation. . .

S → a | S + S | S ∗ S | (S) Σ = {a,+, ∗, (,)}

S ⇒ S + S ⇒ S + (S)⇒ S + (S ∗ S)⇒
S + (a ∗ S)⇒ a+ (a ∗ S)⇒ a+ (a ∗ a)

[M] E 4.2, Fig 4.15

Automata Theory Context-Free Languages Derivation trees and ambiguity 264 / 324

Leftmost derivation

Definition

A derivation in a context-free grammar is a leftmost derivation, if at each
step, a production is applied to the leftmost variable-occurrence in the
current string.
A rightmost derivation is defined similarly.

[M] D 4.16

derivation step α = α1Aα2 ⇒G α1γα2 = β for A→ γ ∈ P

The derivation step is leftmost iff α1 ∈ Σ∗

We write α
ℓ
⇒ β

Automata Theory Context-Free Languages Derivation trees and ambiguity 265 / 324

Expressions

S → a | S + S | S ∗ S | (S) Σ = {a,+, ∗, (,)}

S ⇒ S + S ⇒ S + (S)⇒ S + (S ∗ S)⇒
S + (a ∗ S)⇒ a+ (a ∗ S)⇒ a+ (a ∗ a)

Derivation tree. . .
[M] E 4.2, Fig 4.15

Automata Theory Context-Free Languages Derivation trees and ambiguity 266 / 324

Expressions

S

S + S

a (S)

S * S

a a

S → a | S + S | S ∗ S | (S) Σ = {a,+, ∗, (,)}

S ⇒ S + S ⇒ S + (S)⇒ S + (S ∗ S)⇒ S + (a ∗
S)⇒ a+ (a ∗ S)⇒ a+ (a ∗ a)

Leftmost derivation. . .

[M] E 4.2, Fig 4.15

Automata Theory Context-Free Languages Derivation trees and ambiguity 267 / 324

Expressions

S

S + S

a (S)

S * S

a a

S → a | S + S | S ∗ S | (S) Σ = {a,+, ∗, (,)}

S ⇒ S + S ⇒ S + (S)⇒ S + (S ∗ S)⇒ S + (a ∗
S)⇒ a+ (a ∗ S)⇒ a+ (a ∗ a)

Leftmost derivation:
S

ℓ
⇒ S + S

ℓ
⇒ a+ S

ℓ
⇒ a+ (S)

ℓ
⇒ a+ (S ∗ S)

ℓ
⇒

a+ (a ∗ S)
ℓ
⇒ a+ (a ∗ a)

[M] E 4.2, Fig 4.15

Automata Theory Context-Free Languages Derivation trees and ambiguity 268 / 324

Well-formed formula

ψ ::= p | (¬ψ) | (ψ ∧ ψ) | (ψ ∨ ψ) | (ψ → ψ)

p

q p

q

r

¬

(¬p) ∧

((¬p) ∧ q)

¬

(¬r)∨

(q ∨ (¬r))∧

(p ∧ (q ∨ (¬r)))→

(((¬p) ∧ q)→ (p ∧ (q ∨ (¬r))))

[H&R] Fig 1.3

Automata Theory Context-Free Languages Derivation trees and ambiguity 269 / 324

Well-formed formula

S ::= p | q | r | (¬S) | (S ∧ S) | (S ∨ S) | (S → S)
parse tree vs. derivation tree2

p

q p

q

r

¬

∧

¬

∨

∧

→

S

p

S

q

S

p S

q S

r

S

¬

S

∧

S

¬

S

∨

S

∧

S

→()

() ()

()

()

()

2with all brackets explicit

Automata Theory Context-Free Languages Derivation trees and ambiguity 270 / 324

Ambiguity

Definition

A context-free grammar G is ambiguous, if for at least one x ∈ L(G), x
has more than one derivation tree.

Otherwise: unambiguous [M] D 4.18

Automata Theory Context-Free Languages Derivation trees and ambiguity 271 / 324

Ambiguity (1)

S

S * S

aS + S

a a

S

S + S

a S * S

a a

Σ = {a,+, ∗, (,)}

S → a | S + S | S ∗ S | (S)

a+ a ∗ a

Automata Theory Context-Free Languages Derivation trees and ambiguity 272 / 324

leftmost derivation ←→ derivation tree

Theorem

If G is a context-free grammar, then for every x ∈ L(G), these three

statements are equivalent:

1 x has more than one derivation tree

2 x has more than one leftmost derivation

3 x has more than one rightmost derivation

Proof. . .
[M] Thm 4.17

Automata Theory Context-Free Languages Derivation trees and ambiguity 273 / 324

Ambiguity

leftmost derivation ←→ derivation tree

Theorem

If G is a context-free grammar, then for every x ∈ L(G), these three

statements are equivalent:

1 x has more than one derivation tree

2 x has more than one leftmost derivation

3 x has more than one rightmost derivation

[M] Thm 4.17

Definition

A context-free grammar G is ambiguous, if for at least one x ∈ L(G), x
has more than one derivation tree (or, equivalently, more than one
leftmost derivation).

Otherwise: unambiguous [M] D 4.18

Automata Theory Context-Free Languages Derivation trees and ambiguity 274 / 324

Ambiguity (1)

S

S * S

aS + S

a a

S

S + S

a S * S

a a

Σ = {a,+, ∗, (,)}

S → a | S + S | S ∗ S | (S)

a+ a ∗ a

S
ℓ
⇒ S ∗ S

ℓ
⇒ S + S ∗ S

ℓ
⇒ a + S ∗ S

ℓ
⇒

a+ a ∗ S
ℓ
⇒ a+ a ∗ a

S
ℓ
⇒ S+S

ℓ
⇒ a+S

ℓ
⇒ a+S∗S

ℓ
⇒ a+a∗S

ℓ
⇒

a+ a ∗ a

leftmost derivation ←→ derivation tree

Automata Theory Context-Free Languages Derivation trees and ambiguity 275 / 324

Ambiguity (2)

S

S + S

aS + S

a a

S

S + S

a S + S

a a

Σ = {a,+, ∗, (,)}

S → a | S + S | S ∗ S | (S)

a+ a+ a

Leftmost for 1:
S

ℓ
⇒ S + S

ℓ
⇒ S + S + S

ℓ
⇒ a + S + S

ℓ
⇒

a+ a+ S
ℓ
⇒ a+ a+ a

Derivation for 2:
S ⇒ S + S ⇒ S + S + S ⇒ a + S + S ⇒
a+ a+ S ⇒ a+ a+ a

Automata Theory Context-Free Languages Derivation trees and ambiguity 276 / 324

Ambiguity (2)

S

S + S

aS + S

a a

S

S + S

a S + S

a a

Σ = {a,+, ∗, (,)}

S → a | S + S | S ∗ S | (S)

a+ a+ a

Leftmost for 1:
S

ℓ
⇒ S + S

ℓ
⇒ S + S + S

ℓ
⇒ a + S + S

ℓ
⇒

a+ a+ S
ℓ
⇒ a+ a+ a

Derivation for 2:
S ⇒ S + S ⇒ S + S + S ⇒ a + S + S ⇒
a+ a+ S ⇒ a+ a+ a

Leftmost for 2:
S

ℓ
⇒ S + S

ℓ
⇒ a + S

ℓ
⇒ a + S + S

ℓ
⇒

a+ a+ S
ℓ
⇒ a+ a+ a

leftmost derivation ←→ derivation tree
Automata Theory Context-Free Languages Derivation trees and ambiguity 277 / 324

above

This example is a little weird. In the derivation step S+S ⇒ S+S+S

we cannot really see which S has been rewritten.

(un)ambiguous grammars

Expr
ambiguous:

S → a | S + S | S ∗ S | (S)
[M] E 4.20

a+ a ∗ a
unambiguous:

. . .

Automata Theory Context-Free Languages Derivation trees and ambiguity 278 / 324

(un)ambiguous grammars

Expr
ambiguous:

S → a | S + S | S ∗ S | (S)
[M] E 4.20

a+ a ∗ a
unambiguous:

S → S + T | T
T → T ∗ F | F
F → a | (S)
[M] Thm 4.25

The proof of the unambiguity does not have to be known for the exam

Automata Theory Context-Free Languages Derivation trees and ambiguity 279 / 324

Expressions railroad diagram

Expression
Terme

+

Terme
Facteur

×

Facteur
Variable

(Expression)

Variable
X

Y

Z right associative

http://math.et.info.free.fr/TikZ/index.html Chapitre 7

Automata Theory Context-Free Languages Derivation trees and ambiguity 280 / 324

Equal number

AeqB = { x ∈ {a, b}∗ | na(x) = nb(x) }

aaabbb, ababab, aababb, . . .

S → Λ | aB | bA
A→ aS | bAA A generates na(x) = nb(x) + 1

B → bS | aBB B generates na(x) + 1 = nb(x)

Derivation for aababb:

S ⇒ aB ⇒ aaBB ⇒ aabSB ⇒ . . . (different options)

(1) aabB ⇒ aabaBB ⇒ aababSB ⇒ aababB ⇒ aababbS ⇒ aababb

(2) aabaBB ⇒ aababSB ⇒ aababB ⇒ aababbS ⇒ aababb

(2’) aabaBB ⇒ aabaBbS ⇒ aababSbS ⇒ aababSb ⇒ aababb

[M] E 4.8

Automata Theory Context-Free Languages Derivation trees and ambiguity 281 / 324

above

When a string has multiple variables, like aabSB in the above example,
then we are not forced to rewrite the first variable, we can as well
rewrite another one.
Thus we can do aabSB ⇒ aabB , but also aabSB ⇒ aabSaBB , for
instance.

below

In detail, two different derivation trees for the same string, correspond-
ing to derivations (1) and (2,2’) respectively, together with two associ-
ated leftmost derivations.

Given these two trees we conclude the grammar is ambiguous.

Derivation tree & leftmost derivations

S1

a B2

a B3

b S4

Λ

B5

a B6

b S7

Λ

B8

b S9

Λ

S ⇒ aB ⇒ aaBB ⇒ aabSB ⇒

aabB ⇒ aabaBB ⇒ aababSB ⇒

aababB ⇒ aababbS ⇒ aababb

S1

a B2

a B3

b S4

a B5

b S6

Λ

B7

b S8

Λ

S ⇒ aB ⇒ aaBB ⇒ aabSB ⇒
aabaBB ⇒ aababSB ⇒ aababB ⇒
aababbS ⇒ aababb

Automata Theory Context-Free Languages Derivation trees and ambiguity 282 / 324

Dangling else

S → if (E) S | if (E) S else S | . . .

if (E) if (E) S else S

[M] E 4.19

Automata Theory Context-Free Languages Derivation trees and ambiguity 283 / 324

Dangling else

S → if (E) S | if (E) S else S | . . .

S

if (E) S

if (E) S else S

S

if (E) S else S

if (E) S

[M] E 4.19

Automata Theory Context-Free Languages Derivation trees and ambiguity 284 / 324

Dangling else

ambiguous:

S → if (E) S | if (E) S else S | A | . . .

unambiguous. . .

[M] E 4.19

Automata Theory Context-Free Languages Derivation trees and ambiguity 285 / 324

Dangling else

ambiguous:

S → if (E) S | if (E) S else S | A | . . .

unambiguous:

S → S1 | S2
S1 → if (E) S1 else S1 | A | . . . (matched)
S2 → if (E) S | if (E) S1 else S2 (open)

[M] E 4.19

Automata Theory Context-Free Languages Derivation trees and ambiguity 286 / 324

(un)ambiguous grammars

Balanced
ambiguous:

S → SS | (S) | Λ (more or less the definition of balanced)

unambiguous:

S → (S)S | Λ
[M] Exercise 4.45

Automata Theory Context-Free Languages Derivation trees and ambiguity 287 / 324

Ambiguous

Some cf languages are inherently ambiguous

Ambiguity is undecidable
[M] Theorem 9.20

Automata Theory Context-Free Languages Derivation trees and ambiguity 288 / 324

Quiz

Let G be a context-free grammar with start variable S and the following
productions:

S → aSbS | bSaS | Λ

a. Show that L(G) = AEqB = {x ∈ {a, b}∗ | na(x) = nb(x)}
b. Is G ambiguous? Motivate your answer.

Automata Theory Context-Free Languages Derivation trees and ambiguity 289 / 324

