Pumping lemma for regular languages

From lecture 2:

Theorem

Suppose L is a language over the alphabet Σ . If L is accepted by a finite automaton M, and if n is the number of states of M, then

```
∀ for every x ∈ L
satisfying |x| ≥ n
∃ there are three strings u, v, and w,
such that x = uvw and the following three conditions are true:
(1) |uv| ≤ n,
(2) |v| ≥ 1
∀ and (3) for all m ≥ 0, uv<sup>m</sup>w belongs to L
```

[M] Thm. 2.29

Pumping lemma for regular languages

From lecture 2:

```
Theorem
If L is a regular language, then
    there exists a constant n \ge 1
       such that
A
    for every x \in L
        with |x| \ge n
    there exists a decomposition x = uvw
        with (1) |uv| \leq n,
       and (2) |\mathbf{v}| \ge 1
       such that
    (3) for all m \ge 0, uv^m w \in L
A
```

 $\langle \Xi \rangle$

Pumping lemma for regular languages

From lecture 2: To contradict the pumping lemma, we prove the negation:

Theorem	
lf	
\forall	for every $n \ge 1$
Ξ	there exists $x \in L$
	with $ x \ge n$
	such that
\forall	for every decomposition $x = uvw$
	with (1) $ uv \leq n$,
	and (2) $ v \ge 1$
Ξ	(3) there exists $m \ge 0$,
	such that
	$uv^mw \notin L$
then L is not a regular language.	

Given a language L, to prove L is not a regular language:

- Opponent picks n.
- 2 We choose a string $x \in L$ with $|x| \ge n$.
- 3 Opponent picks u, v, w with $x = uvw, |uv| \le n, |v| \ge 1$.
- ④ If we can find $m \ge 0$ such that $uv^m w \notin L$, then we win.

If we can always win, then L does not fulfil the pumping lemma.

 \approx [VU Automata & Complexity] L3

Example

 $L = \{ x \in \{a, b\}^* \mid n_a(x) > n_b(x) \}$ is not accepted by FA

[M] E 2.31

Automata Theory

< ∃ >

76 / 98

Unary languages

$$L \subseteq \{a\}^*$$

Example

 $L = \{ a^{i^2} \mid i \ge 0 \}$ is not accepted by FA

 $L = \{\Lambda, a, aaaa, aaaaaaaaaa, \ldots\}$ [M] E 2.32

Fun fact

 $L^4 = \{a\}^*$

Lagrange's four-square theorem

< ∃⇒

The length of uv^2w cannot be a square: we will show it is strictly in between two consecutive squares.

$$|uv^2w| = |z| + |v| > |z| = n^2.$$

$$|uv^2w| = |z| + |v| \le n^2 + n < (n+1)^2.$$

C programs

```
Let L be the set of legal C programs. x = \min()\{\{\{...\}\}\}\
```

[M] E 2.33

< ∃ >

Prove the following generalization of the pumping lemma, which can sometimes make it unnecessary to break the proof into cases.

```
If L can be accepted by an FA,
then there is an integer n
such that for any x \in L with |x| \ge n
and for any way of writing x as x_1x_2x_3 with |x_2| = n,
there are strings u, v and w such that
a. x_2 = uvw
b. |v| \ge 1
```

c. For every $m \ge 0$, $x_1 u v^m w x_3 \in L$

Not a characterization

- $L = \{ a^i b^j c^j \mid i \ge 1 \text{ and } j \ge 0 \} \cup \{ b^j c^k \mid j, k \ge 0 \}$
- can be pumped, as in the pumping lemma
- is not accepted by FA

[M] E 2.39

Automata Theory

<...₹. >

Let n = 1 be the number of states of M. For every $x \in L$, $|x| \ge 1$, it is either the case that (a) $x = a^i b^j c^j$ where $i \ge 1$ and $i \ge 0$ or (b) $x = b^j c^k$ where $i \ge 1, k \ge 0$ or $i \ge 0, k \ge 1$. For both cases $\exists u, v, w, x = uvw, |uv| \leq 1, |v| \geq 1$. This implies |u| = 0and $u = \Lambda$, while either (a) v = a or (b) v = b or v = c. $\forall m \geq 0, uv^m w \in L$: (a) $uv^m w = \Lambda a^m a^{i-1} b^j c^j$ $m = 0, i = 1: b^{j}c^{j} \in L \text{ (rhs)}, i > 1 a^{i-1}b^{j}c^{j} \in L \text{ (lhs)}$ $m \ge 1, i \ge 1$: $a^m a^{i-1} b^j c^j \in L$ (lhs) (b) $uv^m w$ $m \ge 0, \ i \ge 1$: $b^m b^{j-1} c^k \in L$ (rhs) $m \ge 0, i = 0, k \ge 1$: $c^m c^{k-1} \in L$ (rhs)

Analogous for other n.

Remark: L does not fulfil the generalized pumping lemma, e.g., take $x = ab^n c^n$ and $x_2 = b^n$.

Decision problem: problem for which the answer is 'yes' or 'no': *Given* ..., *is it true that* ...?

Given an undirected graph G = (V, E), does G contain a Hamiltonian path? Given a list of integers $x_1, x_2, ..., x_n$, is the list sorted?

decidable \iff \exists algorithm that decides

 $M = (Q, \Sigma, \delta, q_0, A)$ membership problem $x \in L(M)$?

Specific to *M*: Given $x \in \Sigma^*$, is $x \in L(M)$?

Arbitrary *M*: Given FA *M* with alphabet Σ , and $x \in \Sigma^*$, is $x \in L(M)$?

Decidable, easy

[M] E 2.34

Theorem

The following two problems are decidable

- 1. Given an FA M, is L(M) nonempty?
- 2. Given an FA M, is L(M) infinite?

[M] E 2.34

Lemma

Let M be an FA with n states and let L = L(M).

L is nonempty, if and only if *L* contains an element *x* with |x| < n(at least one such element).

Theorem

The following two problems are decidable

- 1. Given an FA M, is L(M) nonempty?
- 2. Given an FA M, is L(M) infinite?

[M] E 2.34

Lemma

Let M be an FA with n states and let L = L(M).

L is infinite, if and only if *L* contains an element *x* with $|x| \ge n$ (at least one such element).

cf. [M] Exercise 2.26

Lemma

```
Let M be an FA with n states and let L = L(M).
```

L is infinite, if and only if *L* contains an element *x* with $|x| \ge n$ (at least one such element).

Lemma

```
Let M be an FA with n states and let L = L(M).
```

L contains an element x with $|x| \ge n$ (at least one such element) if and only if L contains an element x with $n \le |x| < 2n$ (at least one such element).

x ends with aa

From lecture 1:

Example

 $L_1 = \{ x \in \{a, b\}^* \mid x \text{ ends with } aa \}$

[M] E. 2.1

Same state, same future

< ≣ ► 89 / 98

Distinguishing strings

Definition

Let *L* be language over Σ , and let $x, y \in \Sigma^*$. Then x, y are *distinguishable* wrt *L* (*L*-*distinguishable*), if there exists $z \in \Sigma^*$ with

 $xz \in L$ and $yz \notin L$ or $xz \notin L$ and $yz \in L$ Such z distinguishes x and y wrt L.

Equivalent definition:

let $L/x = \{ z \in \Sigma^* \mid xz \in L \}$

x and y are *L*-distinguishable if $L/x \neq L/y$. Otherwise, they are *L*-indistinguishable.

The strings in a set $S \subseteq \Sigma^*$ are *pairwise L-distinguishable*, if for every pair x, y of distinct strings in S, x and y are *L*-distinguishable.

Definition independent of FAs

[M] D 2.20

Automata Theory

x ends with aa

From lecture 1:

 $S = \{\Lambda, a, aa\}$

< ∃ >

Example

 $L_1 = \{ x \in \{a, b\}^* \mid x \text{ ends with } aa \}$

L_1/x for $x = \Lambda$, a, b, aa ...

Automata Theory

Distinguishing strings

< ≣ → 92 / 98

Theorem

Suppose $M = (Q, \Sigma, q_0, A, \delta)$ is an FA accepting $L \subseteq \Sigma^*$.

If x, $y \in \Sigma^*$ are L-distinguishable, then $\delta^*(q_0, x) \neq \delta^*(q_0, y)$.

For every $n \ge 2$, if there is a set of n pairwise L-distinguishable strings in Σ^* , then Q must contain at least n states.

Hence, indeed: if $\delta^*(q_0, x) = \delta^*(q_0, y)$, then x and y are not *L*-distinguishable.

Proof. . .

[M] Thm 2.21

Exercise 2.5.

Suppose $M = (Q, \Sigma, q_0, A, \delta)$ is an FA, q is an element of Q, and x and y are strings in Σ^* . Using stuctural induction on y, prove the formula

$$\delta^*(q, xy) = \delta^*(\delta^*(q, x), y)$$

Distinguishing states

 $L = \{aa, aab\}^* \{b\}$

[M] E 2.22

Automata Theory

Distinguishing states

$$L = \{aa, aab\}^* \{b\}$$

[M] E 2.22

Previous challenge Partial answer

 $\Sigma = \{ I, d, ..., *, / \}$ L₂ = { w | w is a (multi-line) C-style comment }

Automata Theory

< ≣ >

Next challenge?

Can you find a language that satisfies the generalized version of the pumping lemma but is not accepted by a finite automaton?