Pumping lemma for regular languages

From lecture 2:

Theorem

Suppose L is a language over the alphabet Σ. If L is accepted by a finite automaton M, and if n is the number of states of M, then
\forall for every $x \in L$ satisfying $|x| \geqslant n$
$\exists \quad$ there are three strings u, v, and w, such that $x=u v w$ and the following three conditions are true:
(1) $|u v| \leqslant n$,
(2) $|v| \geqslant 1$
\forall and (3) for all $m \geqslant 0, u v^{m} w$ belongs to L

Pumping lemma for regular languages

From lecture 2:
Theorem
If L is a regular language, then
$\exists \quad$ there exists a constant $n \geqslant 1$
such that
\forall for every $x \in L$
with $|x| \geqslant n$
$\exists \quad$ there exists a decomposition $x=u v w$
with (1) $|u v| \leqslant n$,
and (2) $|v| \geqslant 1$
such that
(3) for all $m \geqslant 0, u v^{m} w \in L$

Pumping lemma for regular languages

From lecture 2: To contradict the pumping lemma, we prove the negation:
Theorem
If
for every $n \geqslant 1$
\exists there exists $x \in L$
with $|x| \geqslant n$
such that
$\forall \quad$ for every decomposition $x=u v w$
with (1) $|u v| \leqslant n$,
and (2) $|v| \geqslant 1$
\exists (3) there exists $m \geqslant 0$,
such that
$u v^{m} w \notin L$
then L is not a regular language.

Pumping lemma as a game

Given a language L, to prove L is not a regular language:
(1) Opponent picks n.
(2) We choose a string $x \in L$ with $|x| \geqslant n$.
(3) Opponent picks u, v, w with $x=u v w,|u v| \leqslant n,|v| \geqslant 1$.
(4) If we can find $m \geqslant 0$ such that $u v^{m} w \notin L$, then we win.

If we can always win, then L does not fulfil the pumping lemma.
\approx [VU Automata \& Complexity] L3

Example

$L=\left\{x \in\{a, b\}^{*} \mid n_{a}(x)>n_{b}(x)\right\}$ is not accepted by FA
[M] E 2.31

Unary languages

$L \subseteq\{a\}^{*}$

Example

$L=\left\{a^{i^{2}} \mid i \geqslant 0\right\}$ is not accepted by FA
$L=\{\Lambda, a$, aааа а ааааааааа,$\ldots\}$
[M] E 2.32

Fun fact
$L^{4}=\{a\}^{*}$
Lagrange's four-square theorem

The length of $u v^{2} w$ cannot be a square: we will show it is strictly in between two consecutive squares.
$\left|u v^{2} w\right|=|z|+|v|>|z|=n^{2}$.
$\left|u v^{2} w\right|=|z|+|v| \leqslant n^{2}+n<(n+1)^{2}$.

C programs

Let L be the set of legal C programs. $x=\operatorname{main}()\{\{\{\ldots\}\}\}$
[M] E 2.33

Excercise 2.24

Prove the following generalization of the pumping lemma, which can sometimes make it unnecessary to break the proof into cases.

If L can be accepted by an FA, then there is an integer n
such that for any $x \in L$ with $|x| \geqslant n$
and for any way of writing x as $x_{1} x_{2} x_{3}$ with $\left|x_{2}\right|=n$,
there are strings u, v and w such that
a. $x_{2}=u v w$
b. $|v| \geqslant 1$
c. For every $m \geqslant 0, x_{1} u v^{m} w x_{3} \in L$

Not a characterization

$$
L=\left\{a^{i} b^{j} c^{j} \mid i \geqslant 1 \text { and } j \geqslant 0\right\} \cup\left\{b^{j} c^{k} \mid j, k \geqslant 0\right\}
$$

- can be pumped, as in the pumping lemma
- is not accepted by FA
[M] E 2.39

Let $n=1$ be the number of states of M.
For every $x \in L,|x| \geqslant 1$, it is either the case that (a) $x=a^{i} b^{j} c^{j}$ where $i \geqslant 1$ and $j \geqslant 0$ or (b) $x=b^{j} c^{k}$ where $j \geqslant 1, k \geqslant 0$ or $j \geqslant 0, k \geqslant 1$. For both cases $\exists u, v, w, x=u v w,|u v| \leqslant 1,|v| \geqslant 1$. This implies $|u|=0$ and $u=\Lambda$, while either (a) $v=a$ or (b) $v=b$ or $v=c$. $\forall m \geqslant 0, u v^{m} w \in L:$
(a) $u v^{m} w=\Lambda a^{m} a^{i-1} b^{j} c^{j}$
$m=0, i=1: b^{j} c^{j} \in L$ (rhs), $i>1 a^{i-1} b^{j} c^{j} \in L$ (lhs)
$m \geqslant 1, i \geqslant 1: a^{m} a^{i-1} b^{j} c^{j} \in L$ (lhs)
(b) $u v^{m} w$
$m \geqslant 0, j \geqslant 1: b^{m} b^{j-1} c^{k} \in L$ (rhs)
$m \geqslant 0, j=0, k \geqslant 1: c^{m} c^{k-1} \in L(\mathrm{rhs})$
Analogous for other n.
Remark: L does not fulfil the generalized pumping lemma, e.g., take $x=a b^{n} c^{n}$ and $x_{2}=b^{n}$.

Decision problems

Decision problem: problem for which the answer is 'yes' or 'no':
Given is it true that . . ?

Given an undirected graph $G=(V, E)$, does G contain a Hamiltonian path?
Given a list of integers $x_{1}, x_{2}, \ldots, x_{n}$, is the list sorted?
decidable $\Longleftrightarrow \exists$ algorithm that decides

Decision problems

$$
\begin{aligned}
& M=\left(Q, \Sigma, \delta, q_{0}, A\right) \\
& \text { membership problem } \quad x \in L(M) \text { ? }
\end{aligned}
$$

Specific to M : Given $x \in \Sigma^{*}$, is $x \in L(M)$?

Arbitrary M : Given FA M with alphabet Σ, and $x \in \Sigma^{*}$, is $x \in L(M)$?

Decidable, easy
[M] E 2.34

Decision problems

Theorem
The following two problems are decidable

1. Given an fA M, is $L(M)$ nonempty?
2. Given an $F A M$, is $L(M)$ infinite?
[M] E 2.34

Decision problems

Lemma

Let M be an $F A$ with n states and let $L=L(M)$.
L is nonempty,
if and only if L contains an element x with $|x|<n$ (at least one such element).

Decision problems

Theorem
The following two problems are decidable

1. Given an fA M, is $L(M)$ nonempty?
2. Given an $F A M$, is $L(M)$ infinite?
[M] E 2.34

Decision problems

Lemma

Let M be an $F A$ with n states and let $L=L(M)$.
L is infinite,
if and only if L contains an element x with $|x| \geqslant n$ (at least one such element).

cf. [M] Exercise 2.26

Decision problems

Lemma

Let M be an $F A$ with n states and let $L=L(M)$.
L is infinite,
if and only if L contains an element x with $|x| \geqslant n$ (at least one such element).
Lemma
Let M be an $F A$ with n states and let $L=L(M)$.
L contains an element x with $|x| \geqslant n$ (at least one such element) if and only if L contains an element x with $n \leqslant|x|<2 n$ (at least one such element).

x ends with $a a$

From lecture 1:

Example

$L_{1}=\left\{x \in\{a, b\}^{*} \mid x\right.$ ends with $\left.a a\right\}$

[M] E. 2.1

Same state, same future

Distinguishing strings

Definition

Let L be language over Σ, and let $x, y \in \Sigma^{*}$.
Then x, y are distinguishable wrt L (L-distinguishable),
if there exists $z \in \Sigma^{*}$ with

$$
x z \in L \text { and } y z \notin L \quad \text { or } \quad x z \notin L \text { and } y z \in L
$$

Such z distinguishes x and y wrt L.
Equivalent definition:
let $L / x=\left\{z \in \Sigma^{*} \mid x z \in L\right\}$
x and y are L-distinguishable if $L / x \neq L / y$.
Otherwise, they are L-indistinguishable.
The strings in a set $S \subseteq \Sigma^{*}$ are pairwise L-distinguishable, if for every pair x, y of distinct strings in S, x and y are L-distinguishable.

Definition independent of FAs
[M] D 2.20

x ends with $a a$

From lecture 1:

Example

$L_{1}=\left\{x \in\{a, b\}^{*} \mid x\right.$ ends with $\left.a a\right\}$

$$
S=\{\Lambda, a, a a\}
$$

Example

$L_{1}=\left\{x \in\{a, b\}^{*} \mid x\right.$ ends with $\left.a a\right\}$
L_{1} / x for $x=\Lambda, a, b, a a \ldots$

Theorem
Suppose $M=\left(Q, \Sigma, q_{0}, A, \delta\right)$ is an $F A$ accepting $L \subseteq \Sigma^{*}$.
If $x, y \in \Sigma^{*}$ are L-distinguishable, then $\delta^{*}\left(q_{0}, x\right) \neq \delta^{*}\left(q_{0}, y\right)$.
For every $n \geqslant 2$, if there is a set of n pairwise L-distinguishable strings in Σ^{*}, then Q must contain at least n states.

Hence, indeed: if $\delta^{*}\left(q_{0}, x\right)=\delta^{*}\left(q_{0}, y\right)$, then x and y are not L-distinguishable.

Proof. . .
[M] Thm 2.21

Practice induction

Exercise 2.5.

Suppose $M=\left(Q, \Sigma, q_{0}, A, \delta\right)$ is an FA, q is an element of Q, and x and y are strings in Σ^{*}. Using stuctural induction on y, prove the formula

$$
\delta^{*}(q, x y)=\delta^{*}\left(\delta^{*}(q, x), y\right)
$$

Distinguishing states

$$
L=\{a a, a a b\}^{*}\{b\}
$$

[M] E 2.22

Distinguishing states

$$
L=\{a a, a a b\}^{*}\{b\}
$$

[M] E 2.22

Previous challenge

Partial answer
$\Sigma=\{I, d, \ldots, *, /\}$
$L_{2}=\{w \mid w$ is a (multi-line) C-style comment $\}$

Next challenge?

Can you find a language that satisfies the generalized version of the pumping lemma but is not accepted by a finite automaton?

