
Section 5

Pushdown Automata

Automata Theory Pushdown Automata 336 / 397

Chapter

5 Pushdown Automata
Deterministic PDA
From CFG to PDA
From PDA to CFG

Automata Theory Pushdown Automata 337 / 397

Overview

reg. languages FA reg. grammar reg. expression

determ. cf. languages DPDA

cf. languages PDA cf. grammar

cs. languages LBA cs. grammar

re. languages TM unrestr. grammar

Automata Theory Pushdown Automata 338 / 397

just like FA, PDA accepts strings / language
just like FA, PDA has states
just like FA, PDA reads input one letter at a time
unlike FA, PDA has auxiliary memory: a stack
unlike FA, by default PDA is nondeterministic
unlike FA, by default Λ-transitions are allowed in PDA

Automata Theory Pushdown Automata 339 / 397

Why a stack?

AnBn = {aibi | i ≥ 0}

with x = aaabbb

SimplePal = {xcx r | x ∈ {a, b}∗}

with x = aabcbaa

Automata Theory Pushdown Automata 340 / 397

Stack in PDA contains symbols from certain alphabet.
Usual stack operations: pop, top, push
Extra possiblity: replace top element X by string α

Automata Theory Pushdown Automata 341 / 397

AnBn

AnBn = { anbn | n ≥ 0 }

initial q0, Z0

PDA. . .
[M] E 5.3

Automata Theory Pushdown Automata 342 / 397

AnBn

AnBn = { anbn | n ≥ 0 }

initial q0, Z0, accept A = {q0, q3}

q0 q1 q2 q3
a,Z0/aZ0 b, a/Λ

a, a/aa b, a/Λ

Λ,Z0/Z0

[M] E 5.3

Automata Theory Pushdown Automata 343 / 397

Stack in PDA contains symbols from certain alphabet.
Usual stack operations: pop, top, push
Extra possiblity: replace top element X by string α

Notation:
If stack contents is X1X2X3X4, then top element
is X1.
If we replace X by string α, then first symbol of α
ends up at top of stack.

X1

X2

X3

X4

α = Λ pop
α = X top
α = YX push
α = βX push∗

α = . . .
Top element X is required to do a move!

Automata Theory Pushdown Automata 344 / 397

AnBn

AnBn = { anbn | n ≥ 0 }

initial q0, Z0, accept A = {q0, q3}

q0 q1 q2 q3
a,Z0/aZ0 b, a/Λ

a, a/aa b, a/Λ

Λ,Z0/Z0

[M] E 5.3

q0 q1 q2
Λ,Z0/Z0

Λ, a/a

a,Z0/aZ0

a, a/aa b, a/Λ

Λ,Z0/Z0

Automata Theory Pushdown Automata 345 / 397

Using a stack/pushdown

SimplePal =
{ xcx r | x ∈ {a, b}∗ }

0 1 2
c

a,+a
b,+b

a, a/Λ

b, b/Λ

Λ,Z0/Z0

Z0

a

a
b b

a

a

Z0 Z0

0
a
0
a
0
b
0
c
1
b
1
a
1
a
1 2

[M] Fig 5.5

Automata Theory Pushdown Automata 346 / 397

Regular languages and CF grammars

From lecture 8:
systematic approach

Example

S A B

a

b
a

b

b

a

axiom S initial state
S → bA | aS transitions
A → bA | aB
B → bA | aS
B → Λ accepting state

Automata Theory Pushdown Automata 347 / 397

Intuition

a

input tape

· · · · · ·

δ

p

state

finite
control

stack

top

X

...

Automata Theory Pushdown Automata 348 / 397

Formalism

From lecture 2:

Definition (FA)

[deterministic] finite automaton 5-tuple M = (Q,Σ, q0,A, δ),
– Q finite set states;
– Σ finite input alphabet;
– q0 ∈ Q initial state;
– A ⊆ Q accepting states;
– δ : Q × Σ → Q transition function.

[M] D 2.11 Finite automaton

[L] D 2.1 Deterministic finite accepter, has ‘final’ states

Automata Theory Pushdown Automata 349 / 397

Pushdown automaton

Definition

PDA 7-tuple M = (Q,Σ, Γ, q0,Z0,A, δ)
Q states p, q
Σ input alphabet a, b w , x
Γ stack alphabet a, b,A,B α
q0 ∈ Q initial state
Z0 ∈ Γ initial stack symbol
A ⊆ Q accepting states

δ : . . . → . . .
transition function

from to

(p a X q α)
read pop push

︸ ︷︷ ︸

before
︸ ︷︷ ︸

after
Automata Theory Pushdown Automata 350 / 397

Pushdown automaton

Definition

PDA 7-tuple M = (Q,Σ, Γ, q0,Z0,A, δ)
Q states p, q
Σ input alphabet a, b w , x
Γ stack alphabet a, b,A,B α
q0 ∈ Q initial state
Z0 ∈ Γ initial stack symbol
A ⊆ Q accepting states

δ : Q × (Σ ∪ {Λ})× Γ → 2Q×Γ∗

transition function (finite)

In principle, Z0 may be removed from the stack,
but often it isn’t.

Automata Theory Pushdown Automata 351 / 397

SimplePal =
{ xcx r | x ∈ {a, b}∗ }

0 1 2
c

a,+a
b,+b

a, a/Λ

b, b/Λ

Λ,Z0/Z0

Q = {0, 1, 2}
Σ = {a, b, c}
Γ = {a, b,Z0}
q0 = 0
Z0 = Z0

A = {2}

Transition table:

State Input Stack Symbol Move(s)
p σ X δ(p, σ,X)
0 a Z0 (0, aZ0)
0 a a (0, aa)
0 a b (0, ab)
0 b Z0 (0, bZ0)
0 b a (0, ba)
0 b b (0, bb)
0 c Z0 (1,Z0)
0 c a (1, a)
0 c b (1, b)
1 a a (1,Λ)
1 b b (1,Λ)
1 Λ Z0 (2,Z0)
(all other combinations) none

Automata Theory Pushdown Automata 352 / 397

Pushing and popping

transition (q, α) ∈ δ(p, a,A)
p q

a,A/α

(p, a,A) 7→ (q, α)

p, q ∈ Q, a ∈ Σ ∪ {Λ}, A ∈ Γ, α ∈ Γ∗

intuitive formalized as convention

pop A (q,Λ) ∈ δ(p, a,A) α = Λ
p q

a,A/Λ

push A (q,AX) ∈ δ(p, a,X) for all X ∈ Γ
p q

a,+A

read a (q,X) ∈ δ(p, a,X) for all X ∈ Γ
p qa

Automata Theory Pushdown Automata 353 / 397

Differences in dialect

0 1 2
c

a,+a
b,+b

a, a/Λ

b, b/Λ

Λ,Z0/Z0

q0 q1 q2

c , a/a

c , b/b

c ,Z0/Z0

a, a/aa

b,Z0/bZ0

a,Z0/aZ0

b, b/bb

b, a/ba

a, b/ab

a, a/Λ

b, b/Λ

Λ,Z0/Z0

[M] Fig 5.5

Automata Theory Pushdown Automata 354 / 397

above

The same PDA twice.
First our version, where we allow some shortcuts in notation.

Second as depicted in the book.

Notation

Incorrect notations:

✍✌
✎☞

✍✌
✎☞

✲p qσ,Λ/α
top stack symbol required

✍✌
✎☞

✍✌
✎☞

✲p qσ,XY /α
remove/consider one stack symbol at a time

Automata Theory Pushdown Automata 355 / 397

Computation and language

M = (Q,Σ, Γ, q0,Z0,A, δ)

configuration (q, x , α) q ∈ Q, x ∈ Σ∗, α ∈ Γ∗

state, remaining input, stack with top left

step (p, ax ,Bα) ⊢M (q, x , βα) when (q, β) ∈ δ(p, a,B)
⊢n
M ⊢∗

M ⊢ ⊢n ⊢∗

Definition

String x accepted by M (by final state), if
(q0, x ,Z0) ⊢

∗ (q,Λ, α) for some q ∈ A, and some α ∈ Γ∗

Language accepted by M (by final state)
L(M) = { x ∈ Σ∗ | x accepted by M }

read complete input, end in accepting state, some path

[M] D 5.2

Automata Theory Pushdown Automata 356 / 397

Using a stack/pushdown

SimplePal =
{ xcxR | x ∈ {a, b}∗ }

0 1 2
c

a,+a
b,+b

a, a/Λ

b, b/Λ

Λ,Z0/Z0

Z0

a

a
b b

a

a

Z0 Z0

0
a
0
a
0
b
0
c
1
b
1
a
1
a
1 2

(0,aabcbaa, Z0) ⊢
(0, abcbaa, aZ0) ⊢
(0, bcbaa, aaZ0) ⊢
(0, cbaa,baaZ0) ⊢
(1, baa,baaZ0) ⊢
(1, aa, aaZ0) ⊢
(1, a, aZ0) ⊢
(1, Λ, Z0) ⊢
(2, Λ, Z0)

[M] Fig 5.5

Automata Theory Pushdown Automata 357 / 397

Λ computations

0 1
Λ

a,+A
b,+B

Λ,A/Λ

Λ,Z0/Λ

Λ,B/Λ Λ,B/Λ

Λ,A/Λ

Automata Theory Pushdown Automata 358 / 397

above

Λ-computations can be very long in PDA, they can even loop.

In the example the input is read and stored on the tape, and at the

end of the input it is verified that the string contains an even number

of a’s.

Pal { y ∈ {a, b}∗ | y = y r }

Automata Theory Pushdown Automata 359 / 397

Pal { y ∈ {a, b}∗ | y = y r }

0 1 2
a, b,Λ

a,+a
b,+b

a, a/Λ

b, b/Λ

Λ,Z0/Z0

Q = {0, 1, 2}
Σ = {a, b}
Γ = {a, b,Z0}
q0 = 0
Z0 = Z0

A = {2}

Automata Theory Pushdown Automata 360 / 397

Computation tree

(0, baab,Z0)

(0, aab, bZ0) (1, aab,Z0) (1, baab,Z0)

(0, ab, abZ0) (1, ab, bZ0) (1, aab, bZ0) (2, aab,Z0) (2, baab,Z0)

(0, b, aabZ0) (1, b, abZ0) (1, ab, abZ0)

(0,Λ, baabZ0) (1,Λ, aabZ0) (1, b, aabZ0)

(1,Λ, baabZ0)

(1, b, bZ0)

(1,Λ,Z0)

(2,Λ,Z0)

final state, input read

[M] Fig 5.9

Automata Theory Pushdown Automata 361 / 397

above

Non-determinism at work. The PDA for palindromes cannot see what

is the middle of the input string, and has to guess. Only one of the

guesses leads to an accepting configuration.

Deterministic PDA

for each state and stack symbol
– on each symbol/Λ at most one transition
– not both symbol and Λ-transition

Definition

DPDA
δ(q, σ,X) ∪ δ(q,Λ,X) at most one element for each q ∈ Q, σ ∈ Σ,X ∈ Γ

[M] Def 5.10

DPDA ≈ DCFL = class of deterministic context-free languages

Automata Theory Pushdown Automata Deterministic PDA 362 / 397

DPDA for Balanced

Balanced = {balanced strings of brackets [and]}

[M] E 5.11

Automata Theory Pushdown Automata Deterministic PDA 363 / 397

DPDA for AeqB

[M] E 5.13

Automata Theory Pushdown Automata Deterministic PDA 364 / 397

DPDA for AeqB

0 1

a,Z0/aZ0

b,Z0/bZ0

a, a/aa

b, a/Λ

a, b/Λ

b, b/bb

Λ,Z0/Z0

Without Λ-transitions. . .

[M] E 5.13

Automata Theory Pushdown Automata Deterministic PDA 365 / 397

DPDA for AeqB

0 1

a,Z0/aZ0

b,Z0/bZ0

a, a/aa

b, a/Λ

a, b/Λ

b, b/bb

Λ,Z0/Z0

0 1

a,Z0/A

b,Z0/B

a, a/aa

b, a/Λ

a, b/Λ

b, b/bb

a,A/aA

b,B/bB

a,B/Z0

b,A/Z0

[M] E 5.13

Automata Theory Pushdown Automata Deterministic PDA 366 / 397

Pal { y ∈ {a, b}∗ | y = y r }

0 1 2
a, b,Λ

a,+a
b,+b

a, a/Λ

b, b/Λ

Λ,Z0/Z0

Q = {0, 1, 2}
Σ = {a, b, c}
Γ = {a, b,Z0}
q0 = 0
Z0 = Z0

A = {2}

Automata Theory Pushdown Automata Deterministic PDA 367 / 397

Theorem

The language Pal cannot be accepted by a deterministic pushdown
automaton.

Proof. . .
[M] Thm 5.16

Automata Theory Pushdown Automata Deterministic PDA 368 / 397

Distinguishing strings

From lecture 3:

Definition

Let L be language over Σ, and let x , y ∈ Σ∗.
Then x , y are distinguishable wrt L (L-distinguishable),
if there exists z ∈ Σ∗ with

xz ∈ L and yz /∈ L or xz /∈ L and yz ∈ L
Such z distinguishes x and y wrt L.

[M] D 2.20

Automata Theory Pushdown Automata Deterministic PDA 369 / 397

Pal

From lecture 3:
Pal = {x ∈ {a, b}∗ | x = x r}

For Every Pair x , y of Distinct Strings in {a, b}∗, x and y Are
Distinghuishable with Respect to Pal .

[M] E. 2.27

Automata Theory Pushdown Automata Deterministic PDA 370 / 397

Theorem

The language Pal cannot be accepted by a deterministic pushdown
automaton.

Proof.
Assume M is DPDA for Pal .
No assumption on form transitions M.
M reads every string x ∈ {a, b}∗ completely, with one path.
There exist different strings r , s ∈ {a, b}∗, such that for every z ∈ {a, b}∗,
M treats rz and sz the same way.

Automata Theory Pushdown Automata Deterministic PDA 371 / 397

For a string x ∈ {a, b}∗, let yx be a string such that height of stack after
xyx is minimal.
Let αx be stack after xyx .
(state, top stack symbol) determines how suffix z is treated.
Infinitely many strings xyx . Why?
Finitely many pairs (q,X)
Different r = uyu and s = vyv arrive at same pair (q,A).
For any suffix z , rz and sz are treated the same:
rz ∈ Pal ⇐⇒ sz ∈ Pal .
Contradiction.

Automata Theory Pushdown Automata Deterministic PDA 372 / 397

aibjck j = i + k

S → AB
A → aAb | Λ
B → bBc | Λ

1 2 3 4 5

a,+A

Λ

b,A/Λ

Λ,Z0/Z0

b,+A

Λ

c ,A/Λ

Λ,Z0/Z0

0

Λ

1 2 2+

aibi

3 4 5
a,Z0/AZ0

b,Z0/AZ0

a,A/AA

b,A/Λ

b,A/Λ

Λ,Z0/Z0 b,Z0/AZ0

b,A/AA

c ,A/Λ

c ,A/Λ

Λ,Z0/Z0

bjc j

Automata Theory Pushdown Automata Deterministic PDA 373 / 397

AnB-not-n

{ aibj | i 6= j }

0 1 2

i>j

i<j

a,Z0/AZ0

b,Z0/Z0

a,A/AA

b,A/Λ

b,A/Λ

Λ,A/A

b,Z0/Z0 b,Z0/Z0

last b?

0 1 2

i>j

i=j i<j

a,Z0/AZ0

b,Z0/Z0

a,A/AA

b,A/Λ

b,A/Λ

Λ,Z0/Z0

Λ,A/A

b,Z0/Z0
b,Z0/Z0

Automata Theory Pushdown Automata Deterministic PDA 374 / 397

ambnam m, n ≥ 0

0 1 2
Λ,Z0/XZ0

a,X/XA

Λ,X/Y

b,Y /Y

Λ,Y /Λ

a,A/Λ

Λ,Z0/Z0

5

bn

1e

a2m

1o 2 3 4

a,+A
b,A/A

b,Z0/Z0

a,+A

b,A/A

b,A/A

a,A/Λ

a,A/Λ

Λ,Z0/Z0

b,Z0/Z0

Automata Theory Pushdown Automata Deterministic PDA 375 / 397

above

The first PDA is not deterministic. Actually it is working like a gram-
mar: in state 1 the following productions are simulated:
X → aXA | Y
Y → bY | Λ
A → a

The second automaton is deterministic. We have to distinguish the
cases where m = 0 (state 5) and n = 0 (states 1e and 1o).

⊠Special closure

pre(L) = { x#y | x ∈ L and xy ∈ L }

L = Pal = {Λ, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, abba, . . .}
pre(L) = . . .

L = {aibj | i < j} = {b, bb, abb, bbb, abbb, bbbb, aabbb, abbbb, . . .}
pre(L) = . . .

Automata Theory Pushdown Automata Deterministic PDA 376 / 397

Special closure

pre(L) = { x#y | x ∈ L and xy ∈ L }

CFL not closed under pre ⊠

DCFL is closed under pre ⊠

[M] Exercise 5.20 & 6.22

CFL not closed under complement
DCFL is closed under complement ⊠

(the obvious proof does not work)

CFL is closed under regular operations ∪, ·, ∗
DCFL is not closed under either of these ⊠

Automata Theory Pushdown Automata Deterministic PDA 377 / 397

⊠Non/determinism

language L x ∈ L, xy ∈ L

x

xy

K = { anbn | n ≥ 1 } ∪ { anbmcn | m, n ≥ 1 }
an bn an bm cn different behaviour on b’s

pre(K) = . . .

x

y

Automata Theory Pushdown Automata Deterministic PDA 378 / 397

⊠Construction pre

DCFL is closed under pre

pre(L) = { x#y | x , xy ∈ L }

0

1

accepting

2
3

4

0’

1’

2’
3’

4’

σ,X/α

#

σ,X/α

σ′,X ′/α′ σ′,X ′/α′

M = (Q,Σ, Γ, q0,Z0,A, δ) with L = L(M)
construct M1 = (Q1,Σ ∪ {#}, Γ, q1,Z1,A1, δ1) with L(M1) = pre(L)

– Q1 = Q ∪ Q ′ where Q ′ = { q′ | q ∈ Q } primed copy

– q1 = q0, Z1 = Z0

– A1 = A′ = { q′ | q ∈ A } accepting states in copy

– δ1(p
′, σ,X) = {(q′, α) | (q, α) ∈ δ(p, σ,X)} two copies

for all p ∈ A,X ∈ Γ: δ1(p,#,X) = {(p′,X)} move to primed copy

Automata Theory Pushdown Automata Deterministic PDA 379 / 397

⊠Better construction pre

DCFL is closed under pre

pre(L) = { x#y | x , xy ∈ L }

q1 0

1

accepting

2
3

4

0’

1’

2’
3’

4’

Λ,Z1/Z0Z1

σ,X/α

#

σ,X/α

σ′,X ′/α′ σ′,X ′/α′

M = (Q,Σ, Γ, q0,Z0,A, δ) with L = L(M)
construct M1 = (Q1,Σ∪{#}, Γ∪{Z1}, q1,Z1,A1, δ1) with L(M1) = pre(L)
– Q1 = Q ∪ Q ′∪{q1} where Q ′ = { q′ | q ∈ Q } primed copy

– A1 = A′ = { q′ | q ∈ A } accepting states in copy

– δ1(p
′, σ,X) = {(q′, α) | (q, α) ∈ δ(p, σ,X)} two copies

δ1(q1,Λ,Z1) = {(q0,Z0Z1)} Z1 under Z0

for all p ∈ A,X ∈ Γ1: δ1(p,#,X) = {(p′,X)} move to primed copy

Automata Theory Pushdown Automata Deterministic PDA 380 / 397

⊠above

For K = { anbn | n ≥ 1 } ∪ { anbmcn | m, n ≥ 1 }
we have pre(K) = K# ∪ {anbn#bkcn | n ≥ 1, k ≥ 0}.
This language is not context-free, but K is, and thus the context-free
languages are not closed under pre.

Again, this construction works because (for deterministic automata)
the computation on uv must extend the computation on u.

Note the resulting PDA might not be deterministic at accepting states
in original Q (like node 1 in the diagram), if that node has an outgoing
Λ-transition.
There is however a method that avoids Λ-transitions at accepting states.

Whenever (q, α) ∈ δ(p,Λ,A) for an accepting state p, just ‘predict’ the

next letter σ read, add a new state (q, σ), add ((q, σ), α) to δ(p, σ,A)

(which was empty beforehand, why?). Do this for every σ, and remove

the Λ-transition. Then keep simulating Λ-transitions, until σ is read.

Quiz

Homework 3!

Automata Theory Pushdown Automata Deterministic PDA 381 / 397

