Exercise 4.38.

In each case below, show that the grammar is ambiguous, and find an equivalent unambiguous grammar.

- **a.** $S \rightarrow SS \mid a \mid b$ **b.** $S \rightarrow ABA$ $A \rightarrow aA \mid \Lambda$ $B \rightarrow bB \mid \Lambda$ **c.** $S \rightarrow aSb \mid aaSb \mid \Lambda$
- **d.** $S \rightarrow aSb \mid abS \mid \Lambda$

From lecture 8:

Exercise 4.45.

Use induction to prove that the CFG below is unambiguous.

b. The CFG with productions $S \to (S)S \mid \Lambda$

Exercise.

Let G be a context-free grammar with start variable S and the following productions:

$$S \to aSbS \mid bSaS \mid \Lambda$$

a. Show that $L(G) = AEqB = \{x \in \{a, b\}^* \mid n_a(x) = n_b(x)\}$

b. Is G ambiguous? Motivate your answer.

Exercise 4.53.

c. In each case, given the context-free grammar G, find an equivalent CFG with no useless variables.

ii. G has productions

 $\begin{array}{cccc} S \rightarrow AB \mid AC & A \rightarrow aAb \mid bAa \mid a & B \rightarrow bbA \mid aaB \mid AB \\ & C \rightarrow abCa \mid aDb & D \rightarrow bD \mid aC \end{array}$

Exercise 4.49.

In each case below, find a context-free grammar with no Λ -productions that generates the same language, except possibly for Λ , as the given CFG.

a.

$$S \to AB \mid \Lambda \qquad A \to aASb \mid a \qquad B \to bS$$

Exam, 19 December, 2022

Let G_1 be the context-free grammar with start variables S and the following productions:

 $S \rightarrow Sa \mid bb \mid AB$ $A \rightarrow aAb \mid BBa$ $B \rightarrow SB \mid a \mid \Lambda$

a. Determine the nullable variables in G_1 .

b. Give the context-free grammar G_2 resulting from G_1 by eliminating Λ -productions.

c. For each variable X in G_2 , give the set of X-derivable variables.

d. Give the context-free grammar G_3 resulting from G_2 by eliminating unit productions.

Exercise 4.50.

In each case, given the context-free grammar G, find a CFG G' in Chomsky normal form that generates the language $L(G) - \{\Lambda\}$.

a. G has productions

$$S \to ABA \qquad A \to aA \mid \wedge \qquad B \to bB \mid \wedge$$

b. *G* has productions

 $S \to aSa \mid bSb \mid \Lambda \qquad A \to aBb \mid bBa \qquad B \to aB \mid bB \mid \Lambda$

Exercise 4.54.

In each case below, given the context-free grammar G, find a CFG G_1 in Chomsky normal form generating $L(G) - \{\Lambda\}$.

- **a.** G has productions $S \to SS \mid (S) \mid \Lambda$
- **b.** G has productions $S \to S(S) \mid \Lambda$
- **c.** G has productions

$$\begin{split} S &\to AaA \mid CA \mid BaB & A \to aaBa \mid CDA \mid aa \mid DC \\ B &\to bB \mid bAB \mid bb \mid aS & C \to Ca \mid bC \mid D & D \to bD \mid \Lambda \end{split}$$

Exercise 4.48.

Show that the nullable variables defined by Definition 4.26 are precisely those variables A for which $A \Rightarrow^* \Lambda$.