## Exercise 5.32.

Lem $M$ be the PDA below, accepting

$$
\text { Pal }=\left\{y \in\{a, b\}^{*} \mid y=y^{r}\right\}=\left\{x x^{r}, x a x^{r}, x b x^{r} \mid x \in\{a, b\}^{*}\right\}
$$

(by empty stack). Let $x=a b a b a$.
a. Find a sequence of moves of $M$ by which $x$ is accepted.
b. Give the corresponding leftmost derivation in the CFG obtained from $M$ as in Theorem 5.29.


## Exercise 5.35.

Let $M$ be the PDA below, accepting SimplePal by empty stack.


Consider the simplistic approach to obtaining a CFG described in the discussion preceding Theorem 5.29. The states of $M$ are ignored, the variables of the grammar are the stack symbols of $M$, and for every move that reads $\sigma$ and replaces $A$ on the stack by $B C \ldots D$, we introduce the production $A \rightarrow \sigma B C \ldots D$.
a. Give all productions resulting from this approach.
b. Find a string $x \in\{a, b, c\}^{*}$ that is generated by this CFG, but is not accepted by $M$.

Example 6.4. $X X=\left\{x x \mid x \in\{a, b\}^{*}\right\}$ is not context-free.
Use $u=a^{n} b^{n} a^{n} b^{n}$

Exercise 6.4.

In the proof given in Example 6.4 using the pumping lemma, the contradiction was obtained in each case by considering the string $v w^{0} x y^{0} z$.

Would it have been possible instead to use $v w^{2} x y^{2} z$ in each case? If so, give the proof in at least one case; if not, explain why not.

Example 6.4. $X X=\left\{x x \mid x \in\{a, b\}^{*}\right\}$ is not context-free.
Use $u=a^{n} b^{n} a^{n} b^{n}$

Exercise 6.3.

In the pumping-lemma proof in Example 6.4, give some examples of choices of strings $u \in L$ with $|u| \geq n$ that would not work.

## Exercise 6.2.

In each case below, show using the pumping lemma that the given language is not a CFL.
a. $L=\left\{a^{i} b^{j} c^{k} \mid i<j<k\right\}$
b. $L=\left\{a^{2^{i}} \mid i \geq 0\right\}$
d. $L=\left\{a^{i} b^{2 i} a^{i} \mid i \geq 0\right\}$
e. $L=\left\{s \in\{a, b, c\}^{*} \mid n_{a}(s)=\max \left\{n_{b}(s), n_{c}(s)\right\}\right\}$
g. $L=\left\{a^{i} b^{j} a^{i} b^{i+j} \mid i, j \geq 0\right\}$

## Exercise 6.5.

For each case below, decide whether the given language is a CFL, and prove your answer.
a. $L=\left\{a^{i} b^{j} a^{j} b^{i} \mid i, j \geq 0\right\}$
C. $L=\left\{s c s \mid s \in\{a, b\}^{*}\right\}$
d. $L=\left\{s t s \mid s, t \in\{a, b\}^{*}\right.$ en $\left.|s| \geq 1\right\}$
g. $L=$ the set of non-balanced strings of parentheses

