Exercise 5.2.

For the PDA below, trace every possible sequence of moves for the two input strings $a b a$ and $a a b$.

Example 5.7. A Pushdown Automaton Accepting Pal

$$
\operatorname{PaI}=\left\{y \in\{a, b\}^{*} \mid y=y^{r}\right\}=\left\{x x^{r}, x a x^{r}, x b x^{r} \mid x \in\{a, b\}^{*}\right\}
$$

Exercise 5.4.

For each of the following languages over $\{a, b\}^{*}$, modify the PDA below to obtain a PDA accepting the language.
a. The language of even-length palindromes.
b. The language of odd-length palindromes.

Example 5.7. A Pushdown Automaton Accepting Pal

$$
\text { PaI }=\left\{y \in\{a, b\}^{*} \mid y=y^{r}\right\}=\left\{x x^{r}, x a x^{r}, x b x^{r} \mid x \in\{a, b\}^{*}\right\}
$$

Exercise 5.5.

Give transition diagrams for PDAs accepting each of the following languages.
a. The language of all odd-length strings over $\{a, b\}$ with middle symbol a.
b. $\left\{a^{n} x \mid n \geq 0, x \in\{a, b\}^{*}\right.$ and $\left.|x| \leq n\right\}$.
c. $\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0\right.$ and $j=i$ or $\left.j=k\right\}$.

Exercise 5.6.

Below, a transition diagram is given for a PDA with intial state q_{0} and accepting state q_{2}. Describe the language that is accepted.

Exercise.

Let $L_{1}=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0\right.$ en $\left.2 i>j\right\}$.
a. Give the first five elements of L_{1} in the canonical order.
b. Give a PDA M_{1} such that $L\left(M_{1}\right)=L_{1}$.

Exercise.

Let $L_{1}=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0\right.$ en $\left.2 i>j\right\}$.
a. Give the first five elements of L_{1} in the canonical order.
b. Give a DPDA M_{1} such that $L\left(M_{1}\right)=L_{1}$.

Exercise 5.10.

Show that every regular language can be accepted by a (deterministic) PDA M with only two states in which there are no \wedge-transitions and no symbols are ever removed from the stack.

Exercise 5.12.

Show that if L is accepted by a PDA
in which no symbols are ever removed from the stack, then L is regular.

From lecture 10:

A DPDA for $A E q B$:

Exercise 5.18.

For each of the following languages, give a transition diagram for a deterministic PDA that accepts that language.
a. $\left\{x \in\{a, b\}^{*} \mid n_{a}(x)<n_{b}(x)\right\}$
b. $\left\{x \in\{a, b\}^{*} \mid n_{a}(x) \neq n_{b}(x)\right\}$
c. $\left\{x \in\{a, b\}^{*} \mid n_{a}(x)=2 n_{b}(x)\right\}$
d. $\left\{a^{n} b^{n+m} a^{m} \mid n, m \geq 0\right\}$

Exercise 5.16.

Show that if L is accepted by a PDA, then L is accepted by a PDA that never crashes (i.e., for which the stack never empties and no configuration is reached from which there is no move defined).

From lecture 10:

Stack in PDA contains symbols from certain alphabet.

Usual stack operations: pop, top, push

Extra possiblity: replace top element X by string α

$$
\begin{array}{ll}
\alpha=\wedge & \text { pop } \\
\alpha=X & \text { top } \\
\alpha=Y X & \text { push } \\
\alpha=\beta X & \text { push* } \\
\alpha=\ldots &
\end{array}
$$

Top element X is required to do a move!

Exercise 5.17.

Show that if L is accepted by a PDA, then L is accepted by a PDA in which every move

* either pops something from the stack (i.e., removes a stack symbol without putting anything else on the stack);
* or pushes a single symbol onto the stack on top of the symbol that was previously on top;
* or leaves the stack unchanged.

Hence, each action on the stack due to a move in the PDA has one of the following forms:

* either X / \wedge (with $X \in \Gamma$),
* or $X / Y X$ (with $X, Y \in \Gamma$),
* or X / X (with $X \in \Gamma$).

