
b. We merge states 3 and 5
and 4 and 6 .

3 a We only have to change the accepting states:

$$
\begin{aligned}
Q_{2} & =Q_{1} \\
q_{2} & =q_{1} \\
A_{2} & =\mathcal{L}_{1}-A_{1} \\
\delta_{2} & =\delta_{1}
\end{aligned}
$$

(all accepting states in π_{1}. are not accepting on R_{2} and vice verse.)
b Three reasons:

* The PDf r_{1} could be non-eleterministic.

And therefore there could be as,brong x that has a path fo an accepting state, as well as a path to a non-acceptong state.

For example:

String $x=a \quad$ would be accepted boy both μ_{1} and μ_{2}.

* M, coulel contain 1transobrons which lead non-accepting stares to accepting states.
For example:

$x=a \quad w$ ould be accepteel by both M_{1} and M_{2}.
* l_{1} coulel 'miss' trangabions, such that of always crashes for certain in put, whatever the accepting states may be.

$$
r_{1}: \rightarrow 0^{a_{0}} \bigcirc{ }^{b} \bullet 0
$$

$x=b$ wouldn'f be accepted by both Ω_{1} and Ω_{2}.
c For example:

$$
\begin{aligned}
& L_{1}=X X^{\prime}=\left\{s s / s \in\{a, b\}^{*}\right\}^{\prime} \\
& \text { or } L_{1}=A_{n} B_{n} C_{n}{ }^{\prime}=\left\{a^{i} b^{i} c^{\prime}(i z r o\}\right. \\
& \text { or } L_{1}=\left\{x \in\{a, b, c\}^{x} \mid n_{a}(x)=n_{b}(x)\right. \\
& \left.=n_{c}(x)\right\}^{\prime}
\end{aligned}
$$

Ya A regular expression for L_{1} :

$$
a a^{*} b b^{*} c c^{*}
$$

$4 \mathbf{b}$ A regular expression for L_{1}^{\prime} :

$$
(a+b+c)^{*}(b a+c a+c b)(a+b+c)^{*}+(a+b)^{*}+(a+c)^{*}+(b+c)^{*}
$$

If $x \in\{a, b, c\}^{*}$ is not in L_{1}, there are two possibilities.

1. x contains a's, b's and c's but not in the right order. Then x has to contain a substring ba, ca or cb. Which would put the characters in the wrong order. This is described by the first long term in the regular expression.
2. x contains not all of the three characters. Then x contains either only a's and b's, a's and c's or b's and c's. This is described by the three last terms of the regular expression.

5 a(i) No, $L \nsubseteq L\left(G_{1}\right)$. Because for example $x=a b b b b b c$ is in L, but not in $L\left(G_{4}\right)$. The b's that 'belong to the a's', get put at the very end by G_{1}.
a(ii) No, $L\left(G_{1}\right) \nsubseteq L$. Because for example $x=a b b b b c b$ is in $L\left(G_{1}\right)$, but not in L. $S \Rightarrow a S b \Rightarrow a b b b C b \Rightarrow a b b b b C c b \Rightarrow a b b b b c b$.
$\mathbf{b}(\mathbf{i})$ No, $L \nsubseteq L\left(G_{2}\right)$ because for example $x=b b b$ is in L, but not in $L\left(G_{2}\right)$. In G_{2} at least one a or c is generated through A or C.
b(ii) Yes, $L\left(G_{2}\right) \subseteq L$
$\mathbf{c}(\mathbf{i})$ Yes, $L \subseteq L\left(G_{3}\right)$
c(ii) Yes, $L\left(G_{3}\right) \subseteq L$
$6 a$

$$
\begin{aligned}
& N_{0}=\varnothing^{\prime} \\
& \left.\left.N_{1}^{1}=N_{0} \cup\{1\}\right\}=\{1\}\right\} \\
& N_{2}=N_{1} \cup \phi=N_{1}
\end{aligned}
$$

Therefore only B is nullable
b 13 os nullable, se we a cld procluctions where 13 os leff ouf.
Ahel we remove $13 \rightarrow \Lambda$
G_{2} :

$$
\begin{aligned}
& S \rightarrow S a|b b| A C B \mid A \\
& A \rightarrow a A b|B| J a \mid B a l a \\
& B \rightarrow S|J| a \mid S
\end{aligned}
$$

c. S-dero vable: $\{A\}$

A-clerivable: $\}=\phi$
13-deriverble: $\{S, A\}$
d Now we ard the productions of X-dersvable variables to X and remove unit procluctoons.
This gives G_{3} :

$$
\begin{aligned}
& S \rightarrow S a \mid b b / A B / a A b / 1 B B a / B a l a \\
& A \rightarrow a A b|B| B a / i J a l a \\
& 13 \rightarrow S i 3 / a / S a l b b \mid A B l a f b l i b l i J a l i 3 a
\end{aligned}
$$

$7 M_{1}$ reads in state $1 a^{i}$, and puts an A on the stack for every a it reads. In state 2 the same amount of b 's are read as there were a 's. To count this, for every b read an A get taken off the stack. When the stack is empty we read 3 more b 's through states 3,4 and 5 , this is the minimum amount of $b^{\prime} s$ needed for a string in L.
Then we can accept in 5 but we can also read more b 's. We count these $b^{\prime} s$ by putting B on the stack for every b read. Then we are allowed to read as many c 's as there are B 's on the stack. If we have c 's left when the stack is empty there are too many c 's and we go to state 7 which is non-accepting.
When the letters are in the wrong order the PDA crashes and the string is not accepted.
of u, is not, useful, of os not part of L (there os a b morsong. .
u_{2} can be used
us cant be used. :
the decomposition

$$
v=a^{n}, w=b, x=1, y=1, z=b^{3 n-1} c^{n}
$$

fully obeys the pumping hemmer.
u_{4} can't be used.
the decomposition:

$$
\begin{gathered}
v=\Lambda, \omega=a b b c, x=\Lambda, y=\Lambda \\
z=(a b b c)^{n-1} a b c
\end{gathered}
$$

fully obeys the pumping lemma.

