RESIT AUTOMATA THEORY

Wednesday 1 February 2023, 09.00-12.00
This exam consists of eight exercises, where [$x \mathrm{pt}$] indicates how many points can be earned per exercise. A total of 100 points can be earned.
It is important to provide an explanation or motivation when a question asks for it.
A finite automaton in this exam (without further addition), refers to a deterministic finite automaton without Λ-transitions (which is elsewhere called $D F A$).

1. $[6 \mathrm{pt}]$ Let

$$
L=\left\{x \in\{a, b\}^{*} \mid \quad x \text { contains (at least) a substring } a b a a b b\right\}
$$

Draw a finite automaton M, such that $L(M)=L$.
2. [11 pt] Formally, a finite automaton is a 5 -tuple $\left(Q, \Sigma, q_{0}, A, \delta\right)$, where δ is the transition function.
The extended transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ is defined by

$$
\begin{aligned}
\delta^{*}(q, \Lambda) & =q \quad \text { for every } q \in Q \\
\delta^{*}(q, y \sigma) & =\delta\left(\delta^{*}(q, y), \sigma\right) \quad \text { for every } q \in Q, y \in \Sigma^{*}, \sigma \in \Sigma
\end{aligned}
$$

Show, using induction on the length of z, that

$$
\delta^{*}(q, y z)=\delta^{*}\left(\delta^{*}(q, y), z\right) \quad \text { for every } q \in Q, y, z \in \Sigma^{*}
$$

(i.e., if we want to process the string $y z$ starting in state q, we can first process the string y, and then the string z).
3. [16 pt]
(a) Let $L \subseteq \Sigma^{*}$ be a language, and let $x \in \Sigma^{*}$ be a string.

How is the set L / x defined (the 'future set' of x with respect to L)? That is, what strings are in L / x ?
If you do not know the answer to this question, you can 'buy' it from the lecturer. Perhaps you can then solve (b) and (c).

Let $L_{1}=\left\{(a b)^{i}(b c)^{j} \quad \mid i \geq j\right\}$.
(b) For each of the following strings x, give or describe the elements of L_{1} / x :
i. $x=(a b)^{4}(b c)^{4}$
ii. $x=(a b)^{4}(b c)^{2}$
iii. $x=(a b)^{4}$
(c) Give or describe the elements of (the equivalence class) $\left[(a b)^{4}(b c)^{2}\right]$, i.e., all elements of $\{a, b, c\}^{*}$ that are indistinguishable from $(a b)^{4}(b c)^{2}$ with respect to L_{1}.
4. [11 pt] In a previous exam, there was an exercise on regular languages over the alphabet $\{a, b, c\}$. Let $L=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 1\right\}$. A regular expression for L is, for example, $a a^{*} b b^{*} c c^{*}$. The previous exam also asked for a regular expression for L^{\prime} (the complement of L).
Consider the following three regular expressions r_{1}, r_{2}, r_{3} :
(a) $r_{1}=(a+b)^{*}+(b+c)^{*}+(a+b+c)^{*}(a c+c a+b a+c b)(a+b+c)^{*}$
(b) $r_{2}=(a+b)^{*}+(a+c)^{*}+\left(b+a^{*} c\right)(a+b+c)^{*}$
(c) $r_{3}=a^{*} c^{*} b^{*}+b^{*} a^{*} c^{*}+b^{*} c^{*} a^{*}+c^{*} a^{*} b^{*}+c^{*} b^{*} a^{*}$

Let $L\left(r_{i}\right)$ be the language described by the expression r_{i}. For each of these three expressions r_{i} it holds that $L\left(r_{i}\right) \subseteq L^{\prime}$. Now answer the following question for each of these three expressions r_{i} :

Is $L^{\prime} \subseteq L\left(r_{i}\right)$?
If not, give a string x that is in L^{\prime}, but not in $L\left(r_{i}\right)$.
If yes, then you don't have to explain that.
Indeed, if the answer is 'yes', then r_{i} is a correct regular expression for language L^{\prime}.
5. [10 pt]
(a) Give a context-free grammar G_{1}, such that

$$
L\left(G_{1}\right)=A E q B=\left\{x \in\{a, b\}^{*} \mid n_{a}(x)=n_{b}(x)\right\}
$$

(b) Give a context-free grammar G_{2}, such that

$$
L\left(G_{2}\right)=\left\{x \in\{a, b\}^{*} \mid n_{a}(x)=n_{b}(x)+1\right\}
$$

6. [14 pt]
(a) When do we say that a context-free grammar $G=(V, \Sigma, S, P)$ is in Chomsky normal form?
If you do not know the answer to this question, you can 'buy' it from the lecturer so that you may be able to solve the next part.
(b) Consider the context-free grammar G_{1} with terminals $\{a, b\}$, start variable S and productions

$$
S \rightarrow S a|b b| A B \quad A \rightarrow a A b S|B B a| B a|a \quad B \rightarrow S B| a
$$

G_{1} contains no Λ-productions and no unit productions.
Construct a context-free grammar G_{2} in Chomsky normal form, such that $L\left(G_{2}\right)=L\left(G_{1}\right)-\{\Lambda\}$. Clearly explain how you arrived at your answer, and provide intermediate results.
7. [18 pt] Let

$$
\begin{aligned}
& L_{1}=\left\{x \in\{a, b, c\}^{*} \mid n_{a}(x) \neq n_{c}(x)\right\} \\
& L_{2}=\left\{x \in\{a, b, c\}^{*} \mid n_{a}(x)+n_{c}(x)>n_{b}(x)+1\right\}
\end{aligned}
$$

Draw a pushdown automaton M, such that $L(M)=L_{1} \cup L_{2}$. ${ }^{1}$ You do not lose points if M is non-deterministic and/or contains Λ-transitions.
Hint: draw first separate pushdown automata for L_{1} and L_{2} and combine those.
Explain how M uses its states and stack to accept precisely the right language.
8. [14 pt] Let G be the context-free grammar with start variable S and the following productions:

$$
S \rightarrow a S b|b b T \quad T \rightarrow T c| \Lambda
$$

(a) Draw the non-deterministic bottom-up pushdown automaton $N B(G)$. Do not forget to also draw the auxiliary states (necessary for reductions to productions $A \rightarrow \alpha$ with $|\alpha| \geq 2$) with their transitions.
(b) Perform a successful computation in $N B(G)$ for the input $x=a b b c b$, i.e., a computation that results in the acceptance of x.

Show this computation with a table of the following form:

state q	reverse stack content	remaining input	move
q_{0}	Z_{0}	$a b b c b$	\ldots
\ldots	\ldots	\ldots	\ldots

Here (as usual) q_{0} indicates the initial state and Z_{0} the initial stack symbol of $N B(G)$.
You may perform a reduction in one step in the table, even if multiple transitions of $N B(G)$ are actually followed.

```
end of exam
```

[^0]
[^0]: ${ }^{1}$ Indeed, the language $L_{1} \cup L_{2}$ is the complement of the language $\left\{x \in\{a, b, c\}^{*} \mid\right.$ $n_{a}(x)=n_{c}(x)$ and $\left.n_{a}(x)+n_{c}(x) \leq n_{b}(x)+1\right\}$ that we know from an earlier exam.

