SOLUTION EXAM AUTOMATA THEORY

Thursday 23 December 2021, 10:15 - 13:15

- 2. [9 pts] Let m, n be arbitrary numbers ≥ 0 with $m \neq n$. Without loss of generality, assume m < n.
 - If m = 0, then of course $n \ge 1$. Then choose z = a. The string $a^m z = a^0 a = a \in L$, because 0 occurrences of aa and 0 occurrences of ba. The string $a^n z = a^n a = a^{n+1} \notin L$, because $n + 1 \ge 2$, so the string contains at least 1 occurrence of aa, while 0 occurrences of ba.
 - If $m \ge 1$, we choose $z = a(ba)^m$. The string $a^m z = a^m a(ba)^m = a^{m+1}(ba)^m \in L$, because it contains m occurrences of aa and m occurrences of ba. The string $a^n z = a^n a(ba)^m = a^{n+1}(ba)^m \notin L$, because it contains n occurrences of aa and m occurrences of ba, while m < n.

In hindsight we could have taken $z = a(ba)^m$ in all cases, because for m = 0 this is equal to a.

3. [8 pts]

3) $L = aa + ba + aaa + baa + (aa + ba)(a + b)^*(aa + ba)$

4. [15 pts]

- 5. [16 pts]
 - a. i. No, $L(G_1) \not\subseteq L$, because for example $aba \in L(G_1)$ via $S \Rightarrow AB \Rightarrow aAbaB \Rightarrow abaB \Rightarrow aba$, but $aba \notin L$.
 - ii. Yes, $L \subseteq L(G_1)$. If you don't want any *a*'s on the left, you can start as follows: $S \Rightarrow AB \Rightarrow B$. If you do want *a*'s on the left, you can start as follows: $S \Rightarrow aAB$.
 - b. i. Yes, $L(G_2) \subseteq L$.
 - ii. No, $L \nsubseteq L(G_2)$, because with aaAbabaBa you ensure that $i \ge 2$. The case of i = 1 and $k \ge 1$ is not possible, e.g. $abaa \in L$, but $abaa \notin L(G_2)$.
- 6. [17 pts]
 - a. The first six elements in the canonical order of L are

$$\Lambda, b, ab, ba, bb, aab$$

b. .

With the *a*'s on the stack we keep track of how many *a*'s of the a^i we have read, divided by 2, rounded up. We start with \hat{a} , so that we can recognize the bottom *a* on the stack.

In state 2 *i* is odd, and in state 3 *i* is even. When we start to read *b*'s, for every *b* we remove an *a* from the stack (corresponding with two *a*'s, because the *b* counts for two in 2j). In state 4 for *i* odd, in state 5 for *i* even. When we remove \hat{a} from the stack, we know that all *a*'s of a^i have been compensated by enough *b*'s. Then we go to accepting state 6, and for every *b* that we read we place 2 *b*'s on the stack (*b* counts for two in 2j), so that later in state 7 we can cross them off against the *a*'s of a^k .

- 7. [12 pts]
 - a. We say that x can be accepted by M by empty stack if $(q_0, x, Z_0) \vdash_M^* (q, \Lambda, \Lambda)$ for some $q \in Q$.

In other words, there exists a computation of M by which x is read completely and the stack is totally empty at the end of the computation. Even Z_0 is no longer on the stack. It doesn't matter in which state you end up.

b. i. We give M_1 a new initial stack symbol Z_1 and a new initial state q_1 , with transition

where q_0 is the initial state of M, and Z_0 the initial stack symbol of M. Furthermore we provide every state $q \in Q$ with a transition

where q_f is a new state, the only accepting state of M_1 . For the rest, M_1 simulates M, from q_0 on.

ii. .

- 8. [13 pts]
 - u_1 : Not suitable, because it does not necessarily have length $\geq n$.
 - u_2 : Suitable.
 - u_3 : Not suitable, because the decomposition $v = a^n b^{2n+n-1}, w = b, x = \Lambda, y = a, z = a^{2n-1}$ satisfies the pumping lemma.
 - u_4 : Suitable.

End of exam.