SOLUTION EXAM AUTOMATA THEORY

Thursday 23 December 2021, 10:15-13:15

1. $[10 \mathrm{pts}]$

$$
\begin{aligned}
& 21.44 \\
& 1(a)
\end{aligned}
$$

$21.48 / 21.51$
(b) $Q=\{1,2,3,4,5,6\}$
$\Sigma=\{a, b\}$
$q_{0}=1$
$A=\{5\}$
$\delta^{*}\left(q_{0}, a a b a\right)=4$
2. [9 pts] Let m, n be arbitrary numbers ≥ 0 with $m \neq n$. Without loss of generality, assume $m<n$.

- If $m=0$, then of course $n \geq 1$.

Then choose $z=a$.
The string $a^{m} z=a^{0} a=a \in L$, because 0 occurrences of aa and 0 occurrences of ba. The string $a^{n} z=a^{n} a=a^{n+1} \notin L$, because $n+1 \geq 2$, so the string contains at least 1 occurrence of $a a$, while 0 occurrences of $b a$.

- If $m \geq 1$, we choose $z=a(b a)^{m}$.

The string $a^{m} z=a^{m} a(b a)^{m}=a^{m+1}(b a)^{m} \in L$, because it contains m occurrences of $a a$ and m occurrences of $b a$.
The string $a^{n} z=a^{n} a(b a)^{m}=a^{n+1}(b a)^{m} \notin L$, because it contains n occurrences of $a a$ and m occurrences of $b a$, while $m<n$.

In hindsight we could have taken $z=a(b a)^{m}$ in all cases, because for $m=0$ this is equal to a.
3. $[8 \mathrm{pts}]$
3) $L=a a+b a+a a a+b a a+(a a+b a)(a+b)^{*}(a a+b a)$
4. [15 pts]
4)

Simplified

Further simplified

$r^{\prime}(i, j)$	$j=1$	$j=2$	$j=3$
$i=1$	a^{*}	$a * b$	ϕ
2	$a a^{*}$	$\Lambda+a a^{*} b$	b
3	$a a^{*}$	$b+a a^{*} b$	Λ

$$
r^{2}(3,1)=a a^{*}+\left(b+a a^{*} b\right)\left(1+a a^{*} b\right)^{\alpha} a a^{*}
$$

5. $[16 \mathrm{pts}]$
a. i. No, $L\left(G_{1}\right) \nsubseteq L$, because for example $a b a \in L\left(G_{1}\right)$ via $S \Rightarrow A B \Rightarrow a A b a B \Rightarrow$ $a b a B \Rightarrow a b a$, but $a b a \notin L$.
ii. Yes, $L \subseteq L\left(G_{1}\right)$.

If you don't want any a 's on the left, you can start as follows: $S \Rightarrow A B \Rightarrow B$. If you do want a 's on the left, you can start as follows: $S \Rightarrow a A B$.
b. i. Yes, $L\left(G_{2}\right) \subseteq L$.
ii. No, $L \nsubseteq L\left(G_{2}\right)$, because with $a a A b a b a B a$ you ensure that $i \geq 2$. The case of $i=1$ and $k \geq 1$ is not possible, e.g. abaa $\in L$, but $a b a a \notin L\left(G_{2}\right)$.
6. $[17 \mathrm{pts}]$
a. The first six elements in the canonical order of L are

$$
\Lambda, b, a b, b a, b b, a a b
$$

b. .
(b) In the states we keep track of in which phase of the string

With the a 's on the stack we keep track of how many a 's of the a^{i} we have read, divided by 2 , rounded up. We start with \hat{a}, so that we can recognize the bottom a on the stack.
In state $2 i$ is odd, and in state $3 i$ is even. When we start to read b 's, for every b we remove an a from the stack (corresponding with two a 's, because the b counts for two in $2 j$). In state 4 for i odd, in state 5 for i even. When we remove \hat{a} from the stack, we know that all a 's of a^{i} have been compensated by enough b 's. Then we go to accepting state 6 , and for every b that we read we place $2 b$'s on the stack (b counts for two in $2 j$), so that later in state 7 we can cross them off against the a 's of a^{k}.
7. [12 pts]
a. We say that x can be accepted by M by empty stack if $\left(q_{0}, x, Z_{0}\right) \vdash^{*}(q, \Lambda, \Lambda)$ for some $q \in Q$.
In other words, there exists a computation of M by which x is read completely and the stack is totally empty at the end of the computation. Even Z_{0} is no longer on the stack. It doesn't matter in which state you end up.
b. i. We give M_{1} a new initial stack symbol Z_{1} and a new initial state q_{1}, with transition

where q_{0} is the initial state of M, and Z_{0} the initial stack symbol of M. Furthermore we provide every state $q \in Q$ with a transition

where q_{f} is a new state, the only accepting state of M_{1}. For the rest, M_{1} simulates M, from q_{0} on.
ii. .

8. $[13 \mathrm{pts}]$
u_{1} : Not suitable, because it does not necessarily have length $\geq n$.
u_{2} : Suitable.
u_{3} : Not suitable, because the decomposition $v=a^{n} b^{2 n+n-1}, w=b, x=\Lambda, y=a, z=$ $a^{2 n-1}$ satisfies the pumping lemma.
u_{4} : Suitable.

End of exam.

