RESIT AUTOMATA THEORY

Thursday 3 February 2022, 10.15 - 13.15

This exam consists of eight exercises, where [x pt] indicates how many points can be earned per exercise. A total of 100 points can be earned.

It is important to provide an explanation or motivation when a question asks for it.

A finite automaton in this exam (without further addition), refers to a deterministic finite automaton without Λ -transitions (which is elsewhere called *DFA*).

1. [9 pt] Let

 $L = \{x \in \{a, b\}^* \mid x \text{ contains at least an occurrence of } aa and an occurrence of abb\}$

Note that substring occurrences may overlap. For example, $aabb \in L$. Draw a finite automaton M, such that L(M) = L.

- 2. [12 pt]
 - (a) Let $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$ and $M_2 = (Q_2, \Sigma, q_2, A_2, \delta_2)$ be any two finite automata with the same input alphabet Σ . Let $L_1 = L(M_1)$ and $L_2 = L(M_2)$. Using the product construction you can construct a finite automaton $M = (Q, \Sigma, q_0, A, \delta)$ from M_1 and M_2 , such that $L(M) = L_1 \cup L_2$.

Describe (in words and/or formulas, but in any case clearly and completely) what are the components Q, q_0 , A and δ of this automaton M.

(b) Explain how to modify the product construction from part (a) to accept the language:

 $\{x \in \Sigma^* \mid \text{ if } x \in L_1, \text{ then also } x \in L_2\}$

Also briefly explain why the modified construction is correct.

3. [16 pt]

(a) Let L ⊆ Σ* be a language, and let x ∈ Σ* be a string. How is the set L/x defined (the 'future set' of x with respect to L)? That is, what strings are in L/x? If you do not know the answer to this question, you can 'buy' it from the lecturer. Perhaps you can then solve (b) and (c).

Let

$$L_1 = \{x \in \{a, b\}^* \mid x = a^i (ba)^j a^k \text{ with } i, j, k \ge 0$$

and x contains as many occurrences of the substring ba as of the substring aa}

A string $x \in L_1$ must thus satisfy all stated requirements. Note that occurrences may overlap. For example, x = aaa contains two occurrences of the substring aa.

Indeed, we know language L_1 from the homework assignments. The first eight elements in canonical (shortlex) order of L_1 are: Λ , a, baa, aaba, abaa, babaaa, aababaa, aababaaa.

(b) Let $m \ge 0$ be arbitrary,¹ and let $x = a^m$. Given the above language L_1 , what is the set L_1/x ? Distinguish in your answer the case m = 0 and the case $m \ge 1$.

Describe in your answer concretely what are the elements of L_1/x , in terms of a, ba, m, i, j and k. Only if the 'future set' were the entire language L_1 , you can simply say L_1 .

(c) In a previous exam we have seen that two strings a^m and a^n with $m, n \ge 0$ and $m \ne n$ are always L_1 -distinguishable. In other words: that they have different future sets.

Give two different, concrete strings $x, y \in \{a, b\}^*$, such that $L_1/x = L_1/y \neq \emptyset$. That is, two different strings that have the same, non-empty 'future set'. Give also the common set $L_1/x = L_1/y$. Describe in your answer concretely what are the elements of $L_1/x = L_1/y$, in terms of a, ba, i, j and k.

N.B.: Obviously, at least one of the strings x and y must contain (at least) an occurrence of the letter b.

¹This does not mean that you can *choose* any $m \ge 0$, but that m can be any non-negative number.

4. [10 pt] Let

 $L = \{x \in \{a, b\}^* \mid |x| \ge 2 \text{ and } x \text{ begins and ends with } aa \text{ or } ba\}$

Some elements of L are, for example, *aaa* and *aababa*. For each of the following regular expressions r_1, r_2, r_3, r_4 indicate whether it is a correct expression for L or not. If an r_i is not a correct expression, explain this, by giving a string x

- (a) that is in L, but does not satisfy r_i ,
- (b) or which is not in L, but satisfies r_i .

If strings x can be found for both situations, you only need to provide one string x. Clearly indicate whether situation (a) or (b) applies for your provided string x.

$$r_{1}: (a+b)(a+b)^{*}a$$

$$r_{2}: (a+b)a(a+b)^{*}a+aa$$

$$r_{3}: (aa+ba)(b^{*}a)^{*}$$

$$r_{4}: (aa+ba)((a+b)^{*}(aa+ba))$$

5. [10 pt] Below are given two grammars G_1 and G_2 , that were once proposed for the language L_1 from exercise 3. The grammars are not necessarily correct for language L_1 , but that is not the point. For every G_i , answer the following questions:

Is G_i ambiguous?

If yes, show this by giving two different derivations trees for the same string $x \in L(G_i)$.

If not, show this by reasoning that different productions in G_i yield different strings. You do not need to provide a complete induction proof.

(a) G_1 is the context-free grammar with start variable S and the following productions:

(b) G_2 is the context-free grammar with start variable S and the following productions:

6. [15 pt]

Let

$$L = \{ a^{i} b^{j} c^{k} \mid i, j, k \ge 0 \text{ and } i < j + k \}$$

- (a) Give the first six elements in canonical (shortlex) order of L.
- (b) Give a context-free grammar G, such that L(G) = L. Also, explain what is the role of the various variables and productions in G to generate L.
- 7. [14 pt]

Let

 $L = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ and } i \ne j + k\}$

N.B.: this language is slightly different from the language L in exercise 6. Now i may also be greater than j + k.

Draw a pushdown automaton M, such that L(G) = L. Try to ensure that M is deterministic and does not contain any Λ -transitions. If you do not succeed in this, you can still earn most of the points.

Also explain how M uses its states and stack to accept precisely the right language.

8. [14 pt] Let G be the context-free grammar with start variable S and the following productions:

$$S \to aSb \mid T \qquad T \to aT \mid \Lambda$$

- (a) Draw the non-deterministic top-down pushdown automaton NT(G). If you do not know the answer to this question, you can 'buy' it from the lecturer. Perhaps you can then solve (b) and (c).
- (b) Perform a successful computation in NT(G) for the input x = aab, i.e.: a computation that starts in the initial configuration for x and results in the acceptance of x.

Give this computation as in the lectures with a table containing columns for (1) the state, (2) the already matched input, (3) the remaining input, (4) the stack contents, and (5) the expand- or match-move (if applicable).

(c) Give the leftmost derivation of aab in G that corresponds to the computation in part (b).

end of exam