RESIT AUTOMATA THEORY

Thursday 3 February 2022, 10.15-13.15
This exam consists of eight exercises, where $[x \mathrm{pt}]$ indicates how many points can be earned per exercise. A total of 100 points can be earned.
It is important to provide an explanation or motivation when a question asks for it.
A finite automaton in this exam (without further addition), refers to a deterministic finite automaton without Λ-transitions (which is elsewhere called $D F A$).

1. $[9 \mathrm{pt}]$ Let

$$
\begin{array}{r}
L=\left\{x \in\{a, b\}^{*} \mid \quad x \text { contains at least an occurrence of } a a\right. \\
\text { and an occurrence of } a b b\}
\end{array}
$$

Note that substring occurrences may overlap. For example, $a a b b \in L$.
Draw a finite automaton M, such that $L(M)=L$.
2. $[12 \mathrm{pt}]$
(a) Let $M_{1}=\left(Q_{1}, \Sigma, q_{1}, A_{1}, \delta_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, q_{2}, A_{2}, \delta_{2}\right)$ be any two finite automata with the same input alphabet Σ. Let $L_{1}=L\left(M_{1}\right)$ and $L_{2}=L\left(M_{2}\right)$. Using the product construction you can construct a finite automaton $M=\left(Q, \Sigma, q_{0}, A, \delta\right)$ from M_{1} and M_{2}, such that $L(M)=L_{1} \cup L_{2}$.
Describe (in words and/or formulas, but in any case clearly and completely) what are the components Q, q_{0}, A and δ of this automaton M.
(b) Explain how to modify the product construction from part (a) to accept the language:

$$
\left\{x \in \Sigma^{*} \mid \quad \text { if } x \in L_{1}, \text { then also } x \in L_{2}\right\}
$$

Also briefly explain why the modified construction is correct.
3. [16 pt]
(a) Let $L \subseteq \Sigma^{*}$ be a language, and let $x \in \Sigma^{*}$ be a string.

How is the set L / x defined (the 'future set' of x with respect to L)? That is, what strings are in L / x ?
If you do not know the answer to this question, you can 'buy' it from the lecturer. Perhaps you can then solve (b) and (c).

Let
$L_{1}=\left\{x \in\{a, b\}^{*} \mid \quad x=a^{i}(b a)^{j} a^{k}\right.$ with $i, j, k \geq 0$
and x contains as many occurrences of the substring $b a$ as of the substring $a a\}$
A string $x \in L_{1}$ must thus satisfy all stated requirements. Note that occurrences may overlap. For example, $x=a a a$ contains two occurrences of the substring aa.
Indeed, we know language L_{1} from the homework assignments. The first eight elements in canonical (shortlex) order of L_{1} are: $\Lambda, a, b a a, a a b a, a b a a, b a b a a a$, aaababa, aababaa.
(b) Let $m \geq 0$ be arbitrary, ${ }^{1}$ and let $x=a^{m}$. Given the above language L_{1}, what is the set L_{1} / x ? Distinguish in your answer the case $m=0$ and the case $m \geq 1$.
Describe in your answer concretely what are the elements of L_{1} / x, in terms of $a, b a, m, i, j$ and k. Only if the 'future set' were the entire language L_{1}, you can simply say L_{1}.
(c) In a previous exam we have seen that two strings a^{m} and a^{n} with $m, n \geq 0$ and $m \neq n$ are always L_{1}-distinguishable. In other words: that they have different future sets.
Give two different, concrete strings $x, y \in\{a, b\}^{*}$, such that $L_{1} / x=$ $L_{1} / y \neq \emptyset$. That is, two different strings that have the same, non-empty 'future set'. Give also the common set $L_{1} / x=L_{1} / y$. Describe in your answer concretely what are the elements of $L_{1} / x=L_{1} / y$, in terms of $a, b a, i, j$ and k.
N.B.: Obviously, at least one of the strings x and y must contain (at least) an occurrence of the letter b.

[^0]4. [10 pt] Let
$$
L=\left\{x \in\{a, b\}^{*} \quad|\quad| x \mid \geq 2 \text { and } x \text { begins and ends with } a a \text { or } b a\right\}
$$

Some elements of L are, for example, aaa and aababa. For each of the following regular expressions $r_{1}, r_{2}, r_{3}, r_{4}$ indicate whether it is a correct expression for L or not. If an r_{i} is not a correct expression, explain this, by giving a string x
(a) that is in L, but does not satisfy r_{i},
(b) or which is not in L, but satisfies r_{i}.

If strings x can be found for both situations, you only need to provide one string x. Clearly indicate whether situation (a) or (b) applies for your provided string x.

$$
\begin{array}{ll}
r_{1}: & (a+b)(a+b)^{*} a \\
r_{2}: & (a+b) a(a+b)^{*} a+a a \\
r_{3}: & (a a+b a)\left(b^{*} a\right)^{*} \\
r_{4}: & (a a+b a)\left((a+b)^{*}(a a+b a)\right)^{*}
\end{array}
$$

5. [10 pt] Below are given two grammars G_{1} and G_{2}, that were once proposed for the language L_{1} from exercise 3 . The grammars are not necessarily correct for language L_{1}, but that is not the point. For every G_{i}, answer the following questions:

Is G_{i} ambiguous?
If yes, show this by giving two different derivations trees for the same string $x \in L\left(G_{i}\right)$.

If not, show this by reasoning that different productions in G_{i} yield different strings. You do not need to provide a complete induction proof.
(a) G_{1} is the context-free grammar with start variable S and the following productions:

$$
\begin{aligned}
& S \rightarrow A B|a A B| \Lambda \\
& A \rightarrow a A b a \mid \Lambda \\
& B \rightarrow b a B a \mid \Lambda
\end{aligned}
$$

(b) G_{2} is the context-free grammar with start variable S and the following productions:

$$
\begin{aligned}
& S \rightarrow a A|B| a a A b a b a B a \\
& A \rightarrow a A b a \mid \Lambda \\
& B \rightarrow b a B a \mid \Lambda
\end{aligned}
$$

6. $[15 \mathrm{pt}]$

Let

$$
L=\left\{a^{i} b^{j} c^{k} \quad i, j, k \geq 0 \text { and } i<j+k\right\}
$$

(a) Give the first six elements in canonical (shortlex) order of L.
(b) Give a context-free grammar G, such that $L(G)=L$.

Also, explain what is the role of the various variables and productions in G to generate L.
7. [14 pt]

Let

$$
L=\left\{a^{i} b^{j} c^{k} \quad \mid \quad i, j, k \geq 0 \text { and } i \neq j+k\right\}
$$

N.B.: this language is slightly different from the language L in exercise 6 . Now i may also be greater than $j+k$.
Draw a pushdown automaton M, such that $L(G)=L$. Try to ensure that M is deterministic and does not contain any Λ-transitions. If you do not succeed in this, you can still earn most of the points.
Also explain how M uses its states and stack to accept precisely the right language.
8. [14 pt] Let G be the context-free grammar with start variable S and the following productions:

$$
S \rightarrow a S b|T \quad T \rightarrow a T| \Lambda
$$

(a) Draw the non-deterministic top-down pushdown automaton $N T(G)$.

If you do not know the answer to this question, you can 'buy' it from the lecturer. Perhaps you can then solve (b) and (c).
(b) Perform a successful computation in $N T(G)$ for the input $x=a a b$, i.e.: a computation that starts in the initial configuration for x and results in the acceptance of x.
Give this computation as in the lectures with a table containing columns for (1) the state, (2) the already matched input, (3) the remaining input, (4) the stack contents, and (5) the expand- or match-move (if applicable).
(c) Give the leftmost derivation of $a a b$ in G that corresponds to the computation in part (b).

```
end of exam
```


[^0]: ${ }^{1}$ This does not mean that you can choose any $m \geq 0$, but that m can be any non-negative number.

