Homework 3 Automata Theory 2023

Published on: Wednesday 15 November 2023.

Deadline for submission: Wednesday 29 November 2023, 23:59.

The assignment must be completed individually. A total of 100 points can be earned. Answers to be submitted via Brightspace. Submit a single file, e.g., a pdf or possibly a zip. Please include your name and student number in your submission. You may either type your answers or hand-write them. In the latter case, please hand in an easy-to-read scan / photos.

- 1. [25 pt] Let L be the language consisting of all strings $x \in \{a, b\}^*$, such that
 - $n_b(x) \ge 1$, and
 - after the last occurrence of b, x contains at least $n_b(x)$ a's, and
 - $n_a(x) > n_b(x)$, i.e., in addition to the *a*'s from the previous condition, *x* contains at least one more *a* (at some point in the string).

Hence, the first five elements in the canonical (shortlex) order of L are: aba, baa, aaba, abaa, baaa, aaaba. But also, e.g., abbaa and babaa are elements of L.

- (a) Give a context-free grammar G, such that L(G) = L.
- (b) Explain why G indeed generates exactly L (you do not need to prove this formally).
- 2. [30 pt] In a regular grammar (V, Σ, S, P) , every production is of one of the following forms:
 - $A \to \sigma B$, with $A, B \in V$ and $\sigma \in \Sigma$
 - $A \to \Lambda$, with $A \in V$

Now consider the following finite automaton M:

- (a) Use the construction from Theorem 4.14 (in Section 4.3 of the book) to construct a regular grammar G generating L(M). Give as your answer the resulting grammar G.
- (b) Determine step by step (hence via N_0, N_1, N_2, \ldots) the live variables in your grammar G. Next, give the grammar G' resulting from G by removing the variables that are *not* live.
- (c) Determine step by step (hence via N_0, N_1, N_2, \ldots) the reachable variables in G'. Next, give the grammar G'' resulting from G' by removing the variables that are *not* reachable.

3. [25 pt] Let G be the context-free grammar with start variable (and only variable) S, and the following productions:

 $S \rightarrow SaS \mid b \mid \Lambda$

Let x be an arbitrary string in $\{a, b\}^*$, that has no occurrence of the substring bb. Use induction on the length |x| of x to prove that $x \in L(G)$, i.e., that x can be generated by G. *Hint:* For $|x| \ge 2$, use that x cannot consist of all b's.

4. [20 pt] Let G be the context-free grammar with start variable S and the following productions:

 $S \to aAbB \mid b$ $A \to BBa \mid bb$ $B \to bS \mid AB$

This grammar does not contain Λ -productions or unit productions.

- (a) Give the context-free grammar G' resulting from G by introducing for every terminal symbol σ a variable X_{σ} (with a corresponding production), and substituting this variable for occurrences of σ where necessary in the righthand side of productions.
- (b) Give the context-free grammar G'' resulting from G' by splitting the righthand side of productions which are too long.