Homework 2 Automata Theory 2023

Published on: Monday 16 October 2023.
Deadline for submission: Monday 6 November 2023, 23.59.
The assignment must be completed individually. A total of 100 points can be earned. Answers to be submitted via Brightspace. Submit a single file, e.g., a pdf or possibly a zip. Please include your name and student number in your submission. You may either type your answers or hand-write them. In the latter case, please hand in an easy-to-read scan / photos.

1. [35 pt$]$ This exercise is about the following language:
$L_{1}=\left\{x \in\{a, b\}^{*} \mid \quad \forall\right.$ prefix z of x it holds that $\left.n_{a}(z) \geq n_{b}(z) \geq n_{a}(z)-2\right\}$
In other words: the number of b 's is never greater, but also never much less than the number of a 's.
(a) List the first five elements of L_{1} in canonical (shortlex) order.
(b) Find a regular expression corresponding to the language L_{1}. And explain why your expression describes the language L_{1}.
Hint: Ask yourself what could be the first letter of an element x of L_{1}, and what could be the second letter.
2. [40 pt] Let $L \subseteq\{a, b\}^{*}$ be the language corresponding to the regular expression $(a+b) a^{*}$.
(a) Use Thompson's construction (without possible simplifications), i.e., the construction in Section 3.4 from the book, to systematically construct a non-deterministic finite automaton M_{1} with Λ-transitions, such that $L\left(M_{1}\right)=L$.
Give only the resulting automaton M_{1} as your answer.
(b) Remove the Λ-transitions from M_{1}. Use the construction from lecture 5, i.e., the simpler variant than that of Theorem 3.17 in the book, to construct a non-deterministic finite automaton M_{2} without Λ-transitions, such that $L\left(M_{2}\right)=L\left(M_{1}\right)=L$.
Draw a table where for each state q in M_{1} you give the values of the transition function and Λ-closure $\Lambda(\{q\})$, and draw the resulting automaton M_{2}.
Remark: Do not remove unreachable states.
3. [25 pt] Use the state elimination algorithm of Brzozowski and McCluskey to find a regular expression corresponding to the finite automaton M below:

In addition to the regular expression, give the order in which you eliminate the states and draw the intermediate automata.

