Homework 1 Automata Theory 2023

Published on: Monday 25 September 2023.
Deadline for submission: Monday 9 October 2023, 23.59.
The assignment must be completed individually. A total of 100 points can be earned. Answers to be submitted via Brightspace. Submit a single file, e.g., a pdf or possibly a zip. Please include your name and student number in your submission. You may either type your answers or hand-write them. In the latter case, please hand in an easy-to-read scan / photos.

1. [60 pt] Consider the language $L_{1}=\left\{(a b)^{i} a^{j} \quad \mid i, j \geq 0\right\}$.
(a) List the first six elements of L_{1} in canonical (shortlex) order.
(b) Draw a (deterministic) finite automaton M_{1}, such that $L\left(M_{1}\right)=L_{1}$ with at most five states. If your automaton has more than five states, use the minimization algorithm - on scratch paper, to reduce the number of states.
(c) The language $L_{2}=\left\{x \in\{a, b\}^{*} \mid n_{a}(x)\right.$ is even $\}$ is accepted by the following finite automaton M_{2} :

Use the product construction, Theorem 2.15 in the book, to obtain a finite automaton M_{3} that accepts $L_{1} \cap L_{2}$. Draw only the resulting finite automaton.
(d) Minimize the finite automaton M_{3} you obtain in (c), using Algorithm 2.40 from the book. Show the application of the algorithm with a table of unordered pairs as in Figure 2.42(b), indicating the order in which you mark the pairs. Also, indicate how you proceed in marking pairs, e.g., one vertical column at a time, and considering the pairs in each column from top to bottom. Finally, draw the resulting finite automaton.
2. [30 pt] Use the pumping lemma for regular languages, Theorem 2.29 in the book, to show that the language $L_{3}=\left\{(a b)^{i} a^{j} b^{k} \mid i, j, k \geq 0\right.$ and $\left.k<i+j\right\}$ cannot be accepted by a finite automaton.
In other words: suppose that L_{3} can be accepted by a finite automaton, choose a suitable string $x \in L_{3}$ and show that x cannot be pumped up or down, whatever decomposition uvw of x one would consider. Also, don't forget to draw the conclusion.
3. [10 pt] Let L_{4} be the language $\left\{x \in\{a, b\}^{*} \mid x\right.$ does not contain the substring $\left.a b b a\right\}$
(a) Find two distinct strings x and y in $\{a, b\}^{*}$ that are indistinguishable with respect to L_{4}.
(b) Find three distinct strings x, y and z in $\{a, b\}^{*}$ that are pairwise L_{4}-distinguishable.

