RETAKE AUTOMATA THEORY

Wednesday 27 March 2024, 13:30 - 16:30

This exam consists of nine exercises, where [x pt] indicates how many points can be earned per exercise. A total of 100 points can be earned.

It is important to provide an explanation or motivation when a question asks for it. A finite automaton in this exam (without further addition), refers to a deterministic finite automaton without Λ -transitions (which is elsewhere called *DFA*).

1. [6 pt] Let

$$L = \{ \sigma^2 w \sigma^2 \mid \sigma \in \{a, b\}, w \in \{a, b\}^* \}$$

For example, $aaaa \in L$, but $bb \notin L$.

Draw a finite automaton M, such that L(M) = L with at most ten states. If your automaton has more than ten states, use the minimization algorithm – on scratch paper, to reduce the number of states.

2. [13 pt] Let M_1 and M_2 be the following two finite automata with the same input alphabet $\Sigma = \{0, 1\}$. Let $L_1 = L(M_1)$ and $L_2 = L(M_2)$.

(a) Using the product construction, construct a finite automaton M from M_1 and M_2 , such that $L(M) = L_2 \setminus L_1$. Indicate M's initial state, set of accepting states and fill-in the following transition table.

(b) Apply the minimization algorithm on the resulting automaton M. Proceed one column at a time (from left to right), and consider the pairs in each column from top to bottom. Fill-in the table below with the iteration number in which you establish that states i and j cannot be merged and identify which states can be merged, if any.

3. [12 pt]

Consider the following language, L_1 over $\{a, b, c\}$:

 $L_1 = \{ a^i b^j c^j \mid i \ge 1, j \ge 0 \} \cup \{ b^j c^k \mid j \ge 0, k \ge 0 \}$

- (a) For each of the following strings x_i , give or describe the (concrete) elements of L_1/x_i :
 - i. $x_1 = a^2 b^4$
 - ii. $x_2 = c^2 b^2$
 - iii. $x_3 = b^4$
- (b) Give or describe the (concrete) elements of (the equivalence class) $[a^2b^4]$, i.e., all elements of $\{a, b, c\}^*$ that are *indistinguishable* from a^2b^4 with respect to L_1 .
- 4. [11 pt] Let

 $L = \{x \in \{a, b\}^* \mid x \text{ ends with } aa \text{ or with } b\}$

Some elements of L are, for example, *abaa* and *abab*. For each of the following regular expressions r_1, r_2, r_3, r_4 indicate whether it is a correct expression for L or not. If an r_i is not a correct expression, explain this, by giving a minimum-length string x

- (a) that is in L, but does not satisfy r_i ,
- (b) or which is not in L, but satisfies r_i .

If strings x can be found for both situations, you only need to provide one string x. Clearly indicate whether situation (a) or (b) applies for your provided string x.

 $r_{1}: (aa + b + a^{*}b)^{*}(aa + b)$ $r_{2}: (a^{*}b^{*}b)^{*} + (a^{*} + b)^{*}aa$ $r_{3}: (a + b)^{*}(b + ab + aa^{*})$ $r_{4}: (b + ab + aaa^{*}b)(b + ab + aaa^{*}b)^{*}(\lambda + aaa^{*}) + aaa^{*}b$

- 5. [10 pt]
 - (a) For each of the following statements, indicate whether or not it is true in general. You do not have to motivate your answer.
 - i. If L_1 and L_2 are regular languages, then also $L_1 \cap L_2$ is a regular language.
 - ii. If L_1 and L_2 are context-free languages, then also $L_1 \cap L_2$ is a context-free language.
 - iii. If L_1 is a regular language, then also L_1^* is a regular language.
 - iv. If L_1 is a context-free language, then also L_1^* is a context-free language.
 - (b) Give an example of a context-free language L_1 , such that its complement L'_1 is not a context-free language.
- 6. [9 pt] Let $L = \{a^i b^j c^k \mid j > i + k\}$. For example, b, abb and abbbbc are elements of L.

Give a context-free grammar G, such that L(G) = L.

7. [10 pt] Let G be the context-free grammar with start variable (and only variable) S, and the following productions:

$$S \to SaS \mid b \mid \Lambda$$

In homework 3, you were asked to prove that any string $x \in \{a, b\}^*$ that has no occurrence of the substring bb can be generated by G. Now, you are asked to prove the converse, i.e., that a string generated by G has no occurrence of the substring bb.

To be concrete, let $x \in L(G)$, i.e., $x \in \{a, b\}^*$ and $S \Rightarrow^* x$. Use induction on the length (the number of steps) of the derivation of x to prove that x has no occurrence of the substring bb.

- 8. [15 pt] Let $L = \{x \in \{a, b\}^* \mid n_b(x) = 2 \cdot n_a(x)\}$
 - (a) Give the first five elements in the canonical (shortlex) order of L.
 - (b) Draw a pushdown automaton M, such that L(M) = L.

This pushdown automaton must be based directly on the properties of the language. It should, therefore, not be the result of a standard construction for, for example, converting a context-free grammar into a pushdown automaton. Try to ensure that M is deterministic. If you do not succeed in this, you can still earn most of the points. You do not lose points if M has Λ -transitions. Also explain how M uses its states and stack (symbols) to accept precisely the right language.

9. [14 pt] Let G be the context-free grammar with start variable S and the following productions:

$$S \to aSb \mid A \qquad A \to aA \mid \Lambda$$

- (a) Draw the non-deterministic bottom-up pushdown automaton NB(G). Do not forget to draw the auxiliary states (necessary for reductions by productions $X \to \alpha$ with $|\alpha| \ge 2$) with their transitions.
- (b) Carry out a successful computation in NB(G) for input x = aab, i.e., a computation resulting in acceptance of x. Present this computation in a table of the following form:

state	stack	remaining	action
	(reversed)	input	
q_0	Z_0	aab	

Here, as usual, q_0 is the start state and Z_0 is the initial stack symbol of NB(G).

In the table, you may perform a reduction in one step, even if it actually requires a sequence of transitions of NB(G).

Hint: It may be helpful for choosing the right action, to first draw a derivation tree for x in G (on scratch paper).