RETAKE AUTOMATA THEORY

Wednesday 27 March 2024, 13:30-16:30
This exam consists of nine exercises, where $[x \mathrm{pt}]$ indicates how many points can be earned per exercise. A total of 100 points can be earned.
It is important to provide an explanation or motivation when a question asks for it.
A finite automaton in this exam (without further addition), refers to a deterministic finite automaton without Λ-transitions (which is elsewhere called $D F A$).

1. $[6 \mathrm{pt}]$ Let

$$
L=\left\{\sigma^{2} w \sigma^{2} \quad \mid \quad \sigma \in\{a, b\}, w \in\{a, b\}^{*}\right\}
$$

For example, $a a a a \in L$, but $b b \notin L$.
Draw a finite automaton M, such that $L(M)=L$ with at most ten states. If your automaton has more than ten states, use the minimization algorithm - on scratch paper, to reduce the number of states.
2. [13 pt] Let M_{1} and M_{2} be the following two finite automata with the same input alphabet $\Sigma=\{0,1\}$. Let $L_{1}=L\left(M_{1}\right)$ and $L_{2}=L\left(M_{2}\right)$.

(a) Using the product construction, construct a finite automaton M from M_{1} and M_{2}, such that $L(M)=L_{2} \backslash L_{1}$. Indicate M 's initial state, set of accepting states and fill-in the following transition table.

δ	0	1
$R X$		
$S X$		
$R Y$		
$S Y$		
$R Z$		
$S Z$		

(b) Apply the minimization algorithm on the resulting automaton M. Proceed one column at a time (from left to right), and consider the pairs in each column from top to bottom. Fill-in the table below with the iteration number in which you establish that states i and j cannot be merged and identify which states can be merged, if any.

$i=S X$	\cdot				
$R Y$	\cdot	\cdot			
$S Y$	\cdot	\cdot	\cdot		
$R Z$	\cdot	\cdot	\cdot	\cdot	
$S Z$	\cdot	\cdot	\cdot	\cdot	\cdot
			$j=$		
	$R X$	$S X$	$R Y$	$S Y$	$R Z$

3. $[12 \mathrm{pt}]$

Consider the following language, L_{1} over $\{a, b, c\}$:

$$
L_{1}=\left\{a^{i} b^{j} c^{j} \mid i \geq 1, j \geq 0\right\} \cup\left\{b^{j} c^{k} \mid j \geq 0, k \geq 0\right\}
$$

(a) For each of the following strings x_{i}, give or describe the (concrete) elements of L_{1} / x_{i} :
i. $x_{1}=a^{2} b^{4}$
ii. $x_{2}=c^{2} b^{2}$
iii. $x_{3}=b^{4}$
(b) Give or describe the (concrete) elements of (the equivalence class) $\left[a^{2} b^{4}\right]$, i.e., all elements of $\{a, b, c\}^{*}$ that are indistinguishable from $a^{2} b^{4}$ with respect to L_{1}.
4. [11 pt] Let

$$
L=\left\{x \in\{a, b\}^{*} \mid x \text { ends with } a a \text { or with } b\right\}
$$

Some elements of L are, for example, $a b a a$ and $a b a b$. For each of the following regular expressions $r_{1}, r_{2}, r_{3}, r_{4}$ indicate whether it is a correct expression for L or not. If an r_{i} is not a correct expression, explain this, by giving a minimum-length string x
(a) that is in L, but does not satisfy r_{i},
(b) or which is not in L, but satisfies r_{i}.

If strings x can be found for both situations, you only need to provide one string x. Clearly indicate whether situation (a) or (b) applies for your provided string x.

$$
\begin{array}{ll}
r_{1}: & \left(a a+b+a^{*} b\right)^{*}(a a+b) \\
r_{2}: & \left(a^{*} b^{*} b\right)^{*}+\left(a^{*}+b\right)^{*} a a \\
r_{3}: & (a+b)^{*}\left(b+a b+a a^{*}\right) \\
r_{4}: & \left(b+a b+a a a^{*} b\right)\left(b+a b+a a a^{*} b\right)^{*}\left(\lambda+a a a^{*}\right)+a a a^{*}
\end{array}
$$

5. $[10 \mathrm{pt}]$
(a) For each of the following statements, indicate whether or not it is true in general. You do not have to motivate your answer.
i. If L_{1} and L_{2} are regular languages, then also $L_{1} \cap L_{2}$ is a regular language.
ii. If L_{1} and L_{2} are context-free languages, then also $L_{1} \cap L_{2}$ is a context-free language.
iii. If L_{1} is a regular language, then also L_{1}^{*} is a regular language.
iv. If L_{1} is a context-free language, then also L_{1}^{*} is a context-free language.
(b) Give an example of a context-free language L_{1}, such that its complement L_{1}^{\prime} is not a context-free language.
6. [9 pt] Let $L=\left\{a^{i} b^{j} c^{k} \mid j>i+k\right\}$. For example, $b, a b b$ and $a b b b b c$ are elements of L.
Give a context-free grammar G, such that $L(G)=L$.
7. [10 pt] Let G be the context-free grammar with start variable (and only variable) S, and the following productions:

$$
S \rightarrow S a S|b| \Lambda
$$

In homework 3 , you were asked to prove that any string $x \in\{a, b\}^{*}$ that has no occurrence of the substring $b b$ can be generated by G. Now, you are asked to prove the converse, i.e., that a string generated by G has no occurrence of the substring $b b$.

To be concrete, let $x \in L(G)$, i.e., $x \in\{a, b\}^{*}$ and $S \Rightarrow^{*} x$. Use induction on the length (the number of steps) of the derivation of x to prove that x has no occurrence of the substring $b b$.
8. [15 pt] Let $L=\left\{x \in\{a, b\}^{*} \mid n_{b}(x)=2 \cdot n_{a}(x)\right\}$
(a) Give the first five elements in the canonical (shortlex) order of L.
(b) Draw a pushdown automaton M, such that $L(M)=L$.

This pushdown automaton must be based directly on the properties of the language. It should, therefore, not be the result of a standard construction for, for example, converting a context-free grammar into a pushdown automaton. Try to ensure that M is deterministic. If you do not succeed in this, you can still earn most of the points. You do not lose points if M has Λ-transitions. Also explain how M uses its states and stack (symbols) to accept precisely the right language.
9. [14 pt] Let G be the context-free grammar with start variable S and the following productions:

$$
S \rightarrow a S b|A \quad A \rightarrow a A| \Lambda
$$

(a) Draw the non-deterministic bottom-up pushdown automaton $N B(G)$. Do not forget to draw the auxiliary states (necessary for reductions by productions $X \rightarrow \alpha$ with $|\alpha| \geq 2$) with their transitions.
(b) Carry out a successful computation in $N B(G)$ for input $x=a a b$, i.e., a computation resulting in acceptance of x. Present this computation in a table of the following form:

state	stack (reversed)	remaining input	action
q_{0}	Z_{0}	$a a b$	\ldots
\ldots	\ldots	\ldots	\ldots

Here, as usual, q_{0} is the start state and Z_{0} is the initial stack symbol of $N B(G)$.
In the table, you may perform a reduction in one step, even if it actually requires a sequence of transitions of $N B(G)$.
Hint: It may be helpful for choosing the right action, to first draw a derivation tree for x in G (on scratch paper).

