EXAM AUTOMATA THEORY

Thursday 21 December 2023, 09:00-12:00
This exam consists of eight exercises, where [$x \mathrm{pt}$] indicates how many points can be earned per exercise. A total of 100 points can be earned.
It is important to provide an explanation or motivation when a question asks for it.
A finite automaton in this exam (without further addition), refers to a deterministic finite automaton without Λ-transitions (which is elsewhere called $D F A$).

1. $[8 \mathrm{pt}]$ Let

$$
L=\left\{x \in\{a, b\}^{*} \mid \quad n_{a}(x)+3 \cdot n_{b}(x) \equiv 0 \quad(\bmod 4)\right\}
$$

For example, aaaa $\in L$, but $b b \notin L$.
Draw a finite automaton M, such that $L(M)=L$ with at most five states. If your automaton has more than five states, use the minimization algorithm - on scratch paper, to reduce the number of states.
2. [9 pt$]$ Use the subset construction, i.e., Theorem 3.18 in the book, to transform the non-deterministic finite automaton M below into an equivalent finite automaton.

Remove unreachable states (if any) and draw only the resulting automaton. Make sure that the names of the states of M can still be recognized in your answer.
3. [20 pt] The pumping lemma for regular languages reads as follows:

Suppose L is a language over the alphabet Σ.
If L is accepted by a finite automaton M, and if n is the number of states of M, then:
\forall for every $x \in L$
satisfying $|x| \geq n$
$\exists \quad$ there are three strings u, v, and w,
such that $x=u v w$ and the following conditions are true:
(1) $|u v| \leq n$,
(2) $|v| \geq 1$
\forall and (3) for all $m \geq 0, u v^{m} w$ belongs to L.
Now let

$$
L_{1}=\left\{a^{i} b^{j} \mid i \neq j\right\}
$$

For example, $a^{5} b^{4} \in L_{1}$. Let us assume that $n \geq 2$ for this exercise.
(a) For each of the following four strings $x_{1}, x_{2}, x_{3}, x_{4}$, indicate whether it is suitable for establishing a contradiction with the pumping lemma. Furthermore, for each of the strings x_{i} that is not suitable, indicate why not, for example, via a concrete decomposition uvw of x_{i} that does satisfy the pumping lemma.
If x_{i} is suitable for contradicting the pumping lemma, then you don't have to explain that.

$$
\begin{aligned}
& x_{1}=a^{n+1} b^{n} \\
& x_{2}=a^{n!} b^{(n+1)!} \\
& x_{3}=\text { aaaaabbbbb } \\
& x_{4}=b^{2 n}
\end{aligned}
$$

(b) Give or describe the elements of $L_{1} / a^{2} b^{2}$.
(c) Give or describe the elements of (the equivalence class) $\left[a^{2} b^{2}\right]$, i.e., all elements of $\{a, b\}^{*}$ that are indistinguishable from $a^{2} b^{2}$ with respect to L_{1}.
4. $[9 \mathrm{pt}]$

Consider the two regular expressions:

$$
\begin{gathered}
r=\left(b b+(a+b a) a^{*} b\right)^{*}(b+b a) a^{*} \\
s=(b b+b)^{*}\left(b+(a+b a) a^{*}\right)
\end{gathered}
$$

(a) Find a minimum-length string corresponding to r but not to s.
(b) Find a minimum-length string corresponding to s but not to r.
(c) Find a minimum-length string corresponding to both r and s.
(d) Find a minimum-length string in $\{a, b\}^{*}$ corresponding to neither r nor s.
5. [14 pt] Let again

$$
L_{1}=\left\{a^{i} b^{j} \mid i \neq j\right\}
$$

(a) Give a context-free grammar G_{1}, such that $L\left(G_{1}\right)=L_{1}$. Try to ensure that G_{1} is unambiguous. If you do not succeed in this, then you can still earn most of the points.
If your context-free grammar is ambiguous, then give two different derivation trees for a string $x \in L_{1}$.
(b) Give a derivation in your context-free grammar G_{1} for the string $x=$ $a b b b$.
6. [11 pt] A context-free grammar $G=(V, \Sigma, S, P)$ is said to be in Chomsky normal form, if each production in G is of one the following two forms:

$$
\begin{array}{lll}
A \rightarrow B C & \text { with } A, B, C \in V \\
A \rightarrow \sigma & & \text { with } A \in V \text { and } \sigma \in \Sigma
\end{array}
$$

Suppose that G is indeed in Chomsky normal form, that $\Sigma=\{a, b\}$, and that $V=\{S\}$, i.e., G has only one variable.

What could $L(G)$ be in this case, depending on the productions in P ? Consider all possible cases.
7. [18 pt] Let

$$
L=\left\{a^{i} b^{j} c^{k} \quad \mid \quad i, j, k \geq 0 \text { and } i+k<j\right\}
$$

This exercise deals with the complement L^{\prime} of L, i.e., the language of strings over $\{a, b, c\}$ that are not in L.
(a) Give the first four elements in the canonical (shortlex) order of L^{\prime}.
(b) Draw a pushdown automaton M, such that $L(M)=L^{\prime}$.

This pushdown automaton must be based directly on the properties of the language. It should, therefore, not be the result of a standard construction for, for example, converting a context-free grammar into a pushdown automaton.
Try to ensure that M is deterministic and does not contain any Λ transitions. If you do not succeed in this, you can still earn most of the points.
Also explain how M uses its states and stack to accept precisely the right language.
8. [11 pt] Consider the following pushdown automaton M_{1} :

(a) Formally, a pushdown automaton is a 7 -tuple $\left(Q, \Sigma, \Gamma, q_{0}, Z_{0}, A, \delta\right)$. What are, for the concrete pushdown automaton $M_{1}: \quad Q, \Sigma, \Gamma, q_{0}$ and A (as far as you can deduce from the picture)?
(b) Now also consider the following finite automaton M_{2} :

In the lectures, we have discussed a construction to combine a pushdown automaton M_{1} and a finite automaton M_{2}, such that the resulting pushdown automaton M accepts $L\left(M_{1}\right) \cap L\left(M_{2}\right)$. Apply this construction to the two automata M_{1} and M_{2} above.

