APRIORI:
A Depth First Implementation

Walter Kosters, Universiteit Leiden
Wim Pijls, Erasmus Universiteit Rotterdam
The Netherlands

Presentation: Bart Goethals (thanks!)

http://www.liacs.nl/home/kosters/df/

DF-2 idea

Given a dataset of transactions, the Depth First implemen-
tation DF of APRIORI (Pijls & Bioch 1999) builds a trie
that contains all frequent itemsets.

(2—28 3—42 4—67 5-91)

< 3—% 4—x 5—*) @
T

For example, the itemset {3,4} has support 33, i.e., 33
transactions contain this itemset. Apparently, {4,5} is not
frequent. A x denotes ‘“not known yet” .

The right hand part of the trie has just been copied under-
neath bucket 2, providing the candidates for the next step.
Now every transaction is in a depth first way “pushed”
through this subtrie, meanwhile updating the counters.

DF-3 algorithm

Suppose the frequent items 21,1o,...,1y are sorted with re-
spect to increasing support. Then DF proceeds as follows:

T = the trie including only bucket i,
for m :=n—1 downto 1 do

T =T,

T := T with i,, added to the left and

a copy of T' appended to im;

S :=T\T' (= the subtrie rooted in i),

count(S, im);

delete the infrequent itemsets from S,
procedure count(S,im) ::
for every transaction t including item i, dO

for every itemset I in S do

if t supports I then I.support++;

DF—4 remarks

e [he sorting requires some simple preprocessing.

e Counting is done “efficiently’”: once a bucket is not
included in a transaction, the transaction does not go
any deeper in the trie.

e The newest implementation (that combines and im-
proves upon the two versions included in the FIMI'03
comparison) avoids unnecessary copying of buckets and
deletions of subtries.

e Both the database and the trie reside in main memory.

DF-5 complexity

The number of database queries equals

sm(A)—1
m(n—1)+ > > supp({5} U A\ {la(A)}) ,
A J=1
A frequent

where m is the number of transactions, n is the num-
ber of frequent items, and for a non-empty itemset A C
{1,2,...,n} sm(A) is its smallest number and la(A) is its
largest number.

The proof relies on the fact that in order for a bucket to
occur in the trie the path to it (except for the root) should
be frequent, and on the observation that this particular
bucket is “questioned” every time a transaction follows
this same path.

experiments

runtime (seconds)

runtime (seconds)

Database chess

1000 T
execution time DF —+—
number of frequent sets (scale on right axis) ---x---
800
14
600 -
43
400
412
200 i
0 ! ! ! !
65 60 55 50 45 40
relative support (%)
Database T1014D100K
100 T T T T T
execution time DF —+—
number of frequent sets (scale on right axis) ---x---
’T i
80 |-
60 |- x i
|
40 i
20
—
//% X T
e X
0 . ; = B | . . .
0.045 0.04 0.035 0.03 0.025 0.02 0.015 0.01 0.005 0

relative support (%)

number of sets in 1,000,000s

000,000s

number of sets in 1

runtime (seconds)

runtime (seconds)

Database mushroom

200 T
execution time DF —+—
number of frequent sets (scale on right axis) --—>--- 5
150 / 14
@«
X o
o
(=}
/ 1=}
=]
<
—
1% =
100 @
Q
0
k]
42 8
5
S
€
50 |-
41
*

0 ! ! ! ! 0
14 12 10 8 6 4
relative support (%)

Database T40110D100K

500 T T
execution time DF —+—
number of frequent sets (scale on right axis) ---x---
450 15
400
-4
350 - <]
o
<
300 §
‘—<
1% =
250 |- 2
Q
2l
200 S
42 8
£
150 |- 2
100 i
50 |-
0 0
0

relative support (%)

DF-7 conclusions

e [he DJF algorithm is simple and transparent.

e T he DF algorithm performs well on sparse datasets
(e.g., real transaction databases).

e Future research: reduce the number of database passes.
This may be achieved by adding two or three subtries
at a time in each iteration of the main loop.

Also, an own dedicated memory management system
might improve the runtime.

