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DF-2 idea

Given a dataset of transactions, the Depth First implemen-
tation DF of APRIORI (Pijls & Bioch 1999) builds a trie
that contains all frequent itemsets.
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For example, the itemset {3,4} has support 33, i.e., 33
transactions contain this itemset. Apparently, {4,5} is not
frequent. A x denotes ‘“not known yet” .

The right hand part of the trie has just been copied under-
neath bucket 2, providing the candidates for the next step.
Now every transaction is in a depth first way “pushed”
through this subtrie, meanwhile updating the counters.




DF-3 algorithm

Suppose the frequent items 21,1o,...,1y are sorted with re-
spect to increasing support. Then DF proceeds as follows:

T = the trie including only bucket i,
for m :=n—1 downto 1 do

T =T,

T := T with i,, added to the left and

a copy of T' appended to im;

S :=T\T' (= the subtrie rooted in i),

count(S, im);

delete the infrequent itemsets from S,
procedure count(S,im) ::
for every transaction t including item i, dO

for every itemset I in S do

if t supports I then I.support++;




DF—4 remarks

e [ he sorting requires some simple preprocessing.

e Counting is done “efficiently’”: once a bucket is not
included in a transaction, the transaction does not go
any deeper in the trie.

e The newest implementation (that combines and im-
proves upon the two versions included in the FIMI'03
comparison) avoids unnecessary copying of buckets and
deletions of subtries.

e Both the database and the trie reside in main memory.



DF-5 complexity

The number of database queries equals

sm(A)—1
m(n—1)+ > > supp({5} U A\ {la(A)}) ,
A J=1
A frequent

where m is the number of transactions, n is the num-
ber of frequent items, and for a non-empty itemset A C
{1,2,...,n} sm(A) is its smallest number and la(A) is its
largest number.

The proof relies on the fact that in order for a bucket to
occur in the trie the path to it (except for the root) should
be frequent, and on the observation that this particular
bucket is “questioned” every time a transaction follows
this same path.



experiments
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DF-7 conclusions

e [ he DJF algorithm is simple and transparent.

e T he DF algorithm performs well on sparse datasets
(e.g., real transaction databases).

e Future research: reduce the number of database passes.
This may be achieved by adding two or three subtries
at a time in each iteration of the main loop.

Also, an own dedicated memory management system
might improve the runtime.



