feb'01 - human genome

physical mapping

overview

physical mapping

location of 'markers'

- restriction mapping
cutting sites enzymes
\checkmark double digest problem (NP complete)
\checkmark partial digest problem
- hybridization mapping
'clones' and 'probes'
\checkmark non-unique probes (NP hard)
\checkmark unique probes (P time) E
fragment assembly
full sequence from fragments
\checkmark shortest superstring C
\checkmark overlap graph

using a physical map

markers: short sequences

- restriction sites
- hybridization sites

landmarks on the genome

order or location of sequence landmarks

restriction mapping

hybridization mapping

Michael L. Raymer - Wright State University

RESTRICTION MAPPING

- double digest problem
- partial digest problem
(pictures only)

double digest problem

long segments: unknown sequences

enzyme A \{3,6,8,10\}

cassette exchange / reflection

solution not unique
characterization: interdependence of solutions

reduction from set partition

proving NP completeness (decision version)

- $X=\{1,3,5,6,9\}$
- $S=24$

$$
\begin{aligned}
A & =X \\
B & =\{12,12\} \\
A+B & =X
\end{aligned}
$$

set partition (two parts)
restriction

is there a partition?
is there a restriction ?

partial digest problem

varying duration restriction experiments

(multi)-set $\{3,5,5,8,9,14,14,17,19,22\}$

backtrack algorithm worst case exponential time

HYBRIDIZATION MAPPING

Probes
here: each probe unique position on genome

unique probe mapping

$$
\begin{aligned}
& 1:\{B, E\} \\
& 2:\{B, F\} \\
& 3:\{A, C, F, G\} \\
& 4:\{A, C\} \\
& 5:\{A, C, F\} \\
& 6:\{D, G\}
\end{aligned}
$$

6 clones 1,2,...,6
7 probes A,B,...,G
matrix representation

	A	B	C	D	E	F	G
1		1			1		
2		1				1	
3	1		1			1	1
4	1		1				
5	1		1			1	
6				1			1

reordering of probes

interval graphs

no details in this course!

characterization using cliques
$\{1,2\}\{2,3,4\}\{2,3,5\}\{3,6\}$

	A	B	C	D	E	F	G
1		1					
2				1			
3	1		1			1	
4	1		1			1	1
5	1		1			1	
6				1			1

PQ-trees

our focus!

choosing a data structure
representation for permutations

$\{123,132,213,231,312,321\}$
\{ 123, 321 \}

PQ-trees

data structure to represent all possibilities

P permutation

Q linear order

PQ trees
represent possible reorderings
(permutations of probes)

example

	A	B	C	D	E
1	1		1	1	
2	1	1	1		1

clones $\quad\{\underline{A}, \underline{C}, \mathrm{D}\} \quad\{\underline{A}, \mathrm{~B}, \underline{\mathrm{C}}, \mathrm{E}\}$

D AC BE
D CA BE
D AC EB
D CA EB

EB CA D EB ACD BE CAD BE ACD
equivalent representations

example

PQ-tree algorithm

```
reduce(T,S)
    T PQ tree ~ set of permutations
    S new clone ~ set of (consecutive) probes
add requirement S to tree T
    'keep S together'
```

- colour leaves in S
- apply transformations
reorder to get consecutive leaves
- apply replacement rules (bottom-up)
to add new restriction to tree

replacement rules

Original
1.

2.

3.

4.

5.

6.

8.

9.

Feplaced

replacement rules $(2,3)$

= lowest node having both coloured and non-coloured leaves

replacement rules $(4,5)$

example

$S=\{A, C, E\}$

replacement rule
(2)
$4:\{A, C\}$

original reference

K.S. Booth and G.S. Leuker. Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. JCSS 13:335-379, 1976.

also $7^{\text {th }}$ STOC, 1975.

a) Before the call to REDUCE.

FRAGMENT ASSEMBLY

- shortest superstring
- sequencing by hybridization

example

$$
\begin{aligned}
\mathrm{f} 1 & =\text { ATCCGTTGAAGCCGCGGGC } \\
\mathrm{f} 2 & =\text { TTAACTCGAGG } \\
\mathrm{f} 3 & =\text { TTAAGTACTGCCCG } \\
\mathrm{f} 4 & =\text { ATCTGTGTCGGG } \\
\mathrm{f} 5 & =\text { CGACTCCCGACACA } \\
\mathrm{f} 6 & =\text { CACAGATCCGTTGAAGCCGCGGG } \\
\mathrm{f} 7 & =\text { CTCGAGTTAAGTA } \\
\mathrm{f} 8 & =\text { CGCGGGCAGTACTT }
\end{aligned}
$$

CCTCGAGTTAA-----GCCCGCGGCTTCAACGGAT------------------
-------->TAAGTACTGCCCG - ---------------
----------AAGTACTGCCCGCG--------------TGTGTCGGGAGTCC
-CTCGAGTTAAGTA---ECCGCGGCTTCAACGGATCTGKG------------
CCTCGAGTTAAGTACTGCCCGCGGCTTCAACGGATCTGTGTCGGGAGTCC

model: shortest common superstring

shortest common superstring given a set of fragments F, find the shortest string s that contains every $f \in F$ as a substring

- is NP-hard
- is perhaps not what we want
" An elegant theoretical abstraction, but fundamentally flawed " - R. Karp

repeats :

shortest common superstring

but: covering is not 'uniform'

repeats :

aXbYcXdYe \Rightarrow aXdYcXbYe
also: aXbXcXd \Rightarrow aXcXbXd

base errors :

experimental
 substitutions / insertions / deletions chimeras

ACCGT
CGTGC
TTAC
TGCCGT
TTACCGTGC
consensus

direction of strings ...

tool: overlap graph

TACGA GACA

CTAAAG

TACGA
CA
\{ ACCC,
CTAAAG, GACA, TACGA \}
no substrings (inclusion)
omit zero weight edges
compute overlaps : suffix tree [exact \& fast] or alignment! [error proof]

overlap graph: Hamilton path

Hamilton ~ visit every node (exactly) once

TACGA
GACA
ACCC
CTAAAG
length 'superstring' = total length strings - length path
look for longest Hamilton path
(2) NP complete \Rightarrow heuristics

overlap graph: greedy algorithm

greedy

ATGC +additional heuristics
TGCAT
GCC
TGCATGCC
optimal
simple heuristic:
join strings with maximal overlap
approximation within factor ?? conjecture: factor 2 of optimal (proofs for 4, $2.75 \ldots$...)
general 'bad' example:

$$
\begin{array}{cccc}
\mathrm{C}(\mathrm{AT})^{\mathrm{k}} & (\mathrm{TA})^{\mathrm{k}} & (\mathrm{AT})^{\mathrm{k} G} & \\
\text { greedy } & \mathrm{C}(\mathrm{AT})^{\mathrm{k}} \mathrm{G}(\mathrm{TA})^{\mathrm{k}} & 4 \mathrm{k}+2 \\
\text { best } & \mathrm{C}(\mathrm{AT})^{\mathrm{k}+1} \mathrm{G} & 2 \mathrm{k}+4
\end{array}
$$

overlap graph: problems

consensus

probabilistic models

- how much of the genome is covered?

$$
\begin{aligned}
\mathrm{E}(\text { not covered })= & \mathrm{e}^{-\mathrm{R}} \\
\mathrm{R}= & \mathrm{N} \cdot \mathrm{~L} / \mathrm{G} \quad \text { redundancy } \\
& \mathrm{L} \text { clone length } \\
& \mathrm{N} \text { number of clones } \\
& \mathrm{G} \text { genome length }
\end{aligned}
$$

- probability of islands (contig's)
expected number of islands $\mathrm{Ne}^{-\mathrm{R}(1-\theta)}$ θ overlap factor

sequencing by hybridization

all possible probes of length ℓ hybridization: determine substrings reconstruct from (multi-)set of substrings

AA	AC	AG	AT
CA	CC	CG	CT
GA	GC	GG	GT
TA	TC	TG	TT

SBH example

as before: overlap graph (not a good choice)
'characteristic triplets'

$$
\ell=3
$$

\{ ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT \}

ATGGCGTGCA
triplet=node
Hamilton approach: all nodes
(overlap l-1)

SBH example

as before: overlap graph (not a good choice)

'characteristic triplets'

$$
\ell=3
$$

\{ ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT \}

ATGCGTGGCA ATGGCGTGCA
another solution
triplet=node
Hamilton approach: all nodes (overlap l-1)

SBH example

we can do better with same problem:

$$
\ell=3
$$

\{ ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT \}

ATGGCGTGCA

Euler approach: edges
(overlap l -1 = node)
linear (:)
triplet=edge

SBH example

$$
\ell=3
$$

\{ ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT \}

ATGGCGTGCA ATGCGTGGCA

Euler approach: edges
even degree nodes
(except start+finish)

scheme

real world

is this what we want? (can we handle errors?)
model : ‘abstraction’

algorithm
NP complete : heuristics
characterization
how solutions relate
this slide intentionally left blank

