Hidden Markov Models

music recognition

deal with variations in

- actual sound
- timing

application: gene finding

deal with variations in

- actual sound \rightarrow actual base
- timing \rightarrow insertions/deletions

basic questions

start with

- sequence of 'observations'
- probabilistic model of our 'domain'
- does this sequence belong to a certain family? Markov chains
- can we say something about the internal structure? (indirect observation)

HMM: Hidden Markov Models

introduction

discrete time discrete space
no state history: present state only
states, transitions
$P(X)$
$P(X, Y) \quad X$ and Y
$P(X \mid Y) \quad X$, given Y

Markov model

model $\mathrm{M}=(\mathrm{Q}, \mathrm{P}, \mathrm{T})$

- states Q
- initial probabilities p_{x}
- transition probabilities $t_{x y}$ matrix / graph
first order: no history
observation X
sequence of states

$$
X=x_{1} x_{2} \ldots x_{n}
$$

probability
(observation given the model)

$$
P(X \mid M)=p_{x_{1}} t_{x_{1} x_{2}} t_{x_{2} x_{3}} \ldots t_{x_{n-1} x_{n}}=p_{x_{1}} \cdot \prod_{i=2}^{n} t_{x_{i-1} x_{i}}
$$

example

$$
\begin{aligned}
Q & =\{A, B, C\} \\
P & =(1,0,0) \\
& \text { unique starting state } A
\end{aligned}
$$

$$
\mathrm{T}=\left(\begin{array}{rrr}
.7 & .3 & 0 \\
0 & .2 & .8 \\
.4 & 0 & .6
\end{array}\right)
$$

$P(\operatorname{AABBCCC} \mid M)=$
$\xrightarrow{1} A \xrightarrow{\rightarrow} A \xrightarrow{\cdot 3} B \xrightarrow{2} B \cdot \stackrel{8}{\rightarrow} C \xrightarrow{6} C \xrightarrow{6} C$
$1 \cdot 7 \cdot 3 \cdot 2 \cdot 8 \cdot 6 \cdot 6 \cdot 10^{-6}=1.210^{-2}$
vs
$1 \cdot 6 \cdot 4 \cdot 3 \cdot 6 \cdot 5 \cdot 5 \cdot 10^{-6}=2.210^{-2}$

Markov model

- initial state x_{0} fixed \sim initial probabilities
- final state [not in this picture]

$$
\begin{aligned}
& X=x_{1} x_{2} \ldots x_{n} \\
& P(X \mid M)=\prod_{i=1}^{n} t_{x_{i-1} x_{i}}
\end{aligned}
$$

small values: underflow

$$
t_{0 x}=p_{x}
$$

$\log P(X \mid M)=\sum_{i=1}^{n} \log t_{x_{i-1} x_{i}}$

comparing models

$$
\begin{aligned}
& X=x_{1} x_{2} \ldots x_{n} \\
& P(X \mid M)=\prod_{i=1}^{n} t_{x_{i-1} x_{i}}
\end{aligned}
$$

best explained by which model?
$P(X \mid M 1)$ vs. $P(X \mid M 2)$
$P(M 1 \mid X)$ vs. $P(M 2 \mid X)$!!
Bayes: $P(A \mid B)=P(B \mid A) \cdot P(A) / P(B)$

$$
\left.\frac{P(\mathrm{M} 1 \mid \mathrm{X})}{P(\mathrm{M} 2 \mid \mathrm{X})}=\frac{\mathrm{P}(\mathrm{X} \mid \mathrm{M} 1) \cdot \mathrm{P}(\mathrm{M} 1)}{\mathrm{P}(\mathrm{X} \mid \mathrm{M} 2) \cdot P(\mathrm{M} 2)}\right)
$$

motto

bases are not random

application: CpG islands

| observed | island | + | A | C | G | T |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| frequencies | | A | 0.180 | 0.274 | 0.426 | 0.120 |
| | | C | 0.171 | 0.368 | 0.274 | 0.188 |
| | | G | 0.161 | 0.339 | 0.375 | 0.125 |
| | | T | 0.079 | 0.355 | 0.384 | 0.182 |

	non island	-	A	C	G	T
	A	0.300	0.205	0.285	0.210	
	C	0.322	0.298	0.078	0.302	
		G	0.248	0.246	0.298	0.208
			0.177	0.239	0.292	0.292

consecutive CG pair \quad CG \rightarrow TG mostly rare, although 'islands' occur signal (e.g.) promotor regions

basic questions

- observation: DNA sequence
- model: CpG islands / non-islands
- does this sequence belong to a certain family?

Markov chains
is this a CpG island (or not)?

- can we say something about the internal structure?

HMM: Hidden Markov Models where are the CpG islands?

application: CpG islands

+	A	C	G	T	-	A	C	G	T
A	0.180	0.274	0.426	0.120	A	0.300	0.205	0.285	0.210
C	0.171	0.368	0.274	0.188		C	0.322	0.298	0.078
0.302									
G	0.161	0.339	0.375	0.125	G	0.248	0.246	0.298	0.208
T	0.079	0.355	0.384	0.182	T	0.177	0.239	0.292	0.292
	island					non island			

score

$$
\frac{P(X \mid \text { island })}{P(X \mid \text { non })}=\frac{\prod_{i=1}^{n} t_{x_{i-1} x_{i}}^{+}}{\prod_{i=1}^{n} t_{x_{i-1} x_{i}}^{-}}
$$

X = ACGT

$$
\frac{0.274 \cdot 0.274 \cdot 0.125}{0.205 \cdot 0.078 \cdot 0.208}=2.82
$$

application: CpG islands

$$
\begin{array}{rlllll}
\log \left(t_{x y}^{+} / t_{x y}^{-}\right) & \text {LLR } & \text { A } & \mathrm{C} & \mathrm{G} & \mathrm{~T} \\
& \mathrm{~A} & -0.74 & 0.42 & 0.58 & -0.80 \\
& \mathrm{C} & -0.91 & 0.30 & 1.81 & -0.69 \\
& \mathrm{G} & -0.62 & 0.46 & 0.33 & -0.73 \\
\text { 'bits' }\left(\log _{2}\right) & \mathrm{T} & -1.17 & 0.57 & 0.39 & -0.68
\end{array}
$$

log-score

$$
\log \frac{P(X \mid \text { island })}{P(X \mid \text { non })}=\log \frac{\prod_{i=1}^{n} t_{x_{i-1} x_{i}}^{+}}{\prod_{i=1}^{n} t_{x_{i-1} x_{i}}^{-}}=\sum_{i=1}^{n} \log \left(\frac{t_{x_{i-1} x_{i}}^{+}}{t_{x_{i-1} x_{i}}^{-}}\right)
$$

$$
X=A C G T
$$

$$
\log \frac{0.274 \cdot 0.274 \cdot 0.125}{0.205 \cdot 0.078 \cdot 0.208}=0.42+1.81-0.73=1.50
$$

CpG Log-Likelihood Ratio

$$
\begin{array}{llllll}
& \text { LLR } & \text { A } & \text { C } & \text { G } & \text { T } \\
\log \left(t_{x y}^{+} / t_{x y}^{-}\right) & \text {A } & -0.74 & 0.42 & 0.58 & -0.80 \\
& \text { C } & -0.91 & 0.30 & 1.81 & -0.69 \\
& \mathrm{G} & -0.62 & 0.46 & 0.33 & -0.73 \\
& \mathrm{~T} & -1.17 & 0.57 & 0.39 & -0.68 \\
& & & & & \\
\operatorname{LLR}(\mathrm{ACGT})=0.42+1.81-0.73=1.50 & & (0.37 \text { per base })
\end{array}
$$

- is a (short) sequence a CpG island?
compare with observed data (normalized for length)
- where (in long sequence) are CpG islands ?
first approach: sliding window
length of window?

empirical data

- is a (short) sequence a CpG island ? compare with observed data (normalized for length)

Figure 3.2 The histogram of the length-normalised scores for all the sequences. $C p G$ islands are shown with dark grey and non-CpG with light grey.

- where (in long sequence) are CpG islands ? first approach: sliding window
 CpGplot

CpGplot

observed vs. expected

putative islands

Islands of unusual CG composition EMBOSS_001 from 1 to 286
observed/Expected ratio > 0.60
Percent $C+$ Percent $G>50.00$
Length > 50
Length 114 (51..164)

hidden Markov model

- where (in long sequence) are CpG islands ? second approach: hidden Markov model

Eddy (2004)

Sequence: CTTCATGTGAAAGCAGACGTAAGTCA

What is a hidden Markov model? Sean R Eddy
Nature Biotechnology 22, 1315-1316 (2004)

weather

$$
\begin{aligned}
& \text { emission } \\
& \text { probabilities } \\
& P\left(\operatorname{sof}_{88} 8\right)=0.1 \\
& \begin{array}{l}
\mathrm{P}(5)=0.2 \\
\mathrm{P}(3)=0.7
\end{array}
\end{aligned}
$$

$$
\left(\begin{array}{l}
\left(\begin{array}{l}
\mathrm{p}_{\mathrm{H}}=0.4 \\
\mathrm{p}_{\mathrm{M}}=0.2 \\
\mathrm{p}_{\mathrm{L}}=0.4
\end{array}\right)_{\text {initial }} \\
\text { probabilities }
\end{array}\right.
$$

observed weather vs. pressure

weather

(0.1, 0.2, 0.7)

$P($ RCCSS $\mid \mathrm{HHHHH})=1 \cdot 2 \cdot 2 \cdot 7 \cdot 7=196\left(\times 10^{-5}\right)$
$P($ RCCSS $\mid M M M M M)=3 \cdot 4 \cdot 4 \cdot 3 \cdot 3=432\left(x 10^{-5}\right)$
$P($ RCCSS, HHHHH$)=4 \cdot 1 \cdot 6 \cdot 2 \cdot 6 \cdot 2 \cdot 6 \cdot 7 \cdot 6 \cdot 7=1016\left(x 10^{-7}\right)$
$P($ RCCSS,$~ M M M M M ~) ~=~ 2 \cdot 3 \cdot 2 \cdot 4 \cdot 2 \cdot 4 \cdot 2 \cdot 3 \cdot 2 \cdot 3=14\left(x 10^{-7}\right)$

hidden Markov model

what we see

underlying process
model $\mathrm{M}=(\Sigma, \mathrm{Q}, \mathrm{T})$

- states Q
- transition probabilities $t_{p q}, p, q \in Q$ observation $X=x_{1} x_{2} \ldots x_{n} \in \Sigma^{*}$ observe states indirectly 'hidden'
- emission probabilities

$$
e_{p x}, p \in Q, x \in \Sigma \quad e_{p}(x)
$$

probability

observation given the model
? there may be many state seq's

HMM main questions

observation $X \in \Sigma^{*}$

- most probable state sequence?
- how to find the model? training

probability ...

most probable state vs. optimal path

* most probable state (over all state sequences) posterior decoding
forward \& backward probabilities
* most probable path (= single state sequence) Viterbi

probability of observation

dynamic programming: probability ending in state

probability of observation

probability ending in state

$$
f_{q}(i)=P\left(x_{1} \ldots x_{i}, \pi_{i}=q\right)
$$

$$
f_{q}(i)=\sum_{p \in Q} f_{p}(i-1) t_{p q} e_{q}\left(x_{i}\right)
$$

'forward' probability

$$
P(X)=\sum_{p \in Q} f_{p}(n) t_{p *}
$$

weather

\[

\]

posterior decoding

$P\left(\pi_{i}=\underset{\mathrm{i}}{ } \mid X\right) \mathrm{i}$-th state equals q

$f_{q}(i)=P\left(x_{1} \ldots x_{i}, \pi_{i}=q\right) \quad b_{q}(i)=P\left(x_{i+1} \ldots x_{n} \mid \pi_{i}=q\right)$

$$
P\left(X, \pi_{i}=q\right)=f_{q}(i) b_{q}(i)
$$

$$
P\left(\pi_{i}=q \mid X\right)=\frac{f_{q}(i) b_{q}(i)}{P(x)}
$$

HMM main questions

observation $X \in \Sigma^{\star} \Rightarrow$ most probable state sequence

Viterbi algorithm

most probable state sequence for observation
(1) dynamic programming: probability ending in state

Viterbi algorithm

(2) traceback: most probable state sequence start with final maximum

CpG islands ctd.

dishonest casino dealer

Rolls	315116246446644245321131631164152133625144543631656626566666
Die	FFLLLLLLLLLLLLLLL
Viterbi	FFLLLLLLLLLLLL
Rolls	65116645313265124563666463163666316232645523526666625151631
Die	LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
Viterbi	LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF
Rolls	222555441666566563564324364131513465146353411126414626253356
Die	FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL
Viterbi	FFL
Rolls	36616366646623253441366166116325256246225526525266435353336
Die	LLLLLLLLFFF
Viterbi	LLLLLLLLLLLLFFF
Rolls	23312162536441443233516324363366556246666263266612355245242
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFF

dishonest casino dealer

Observation
366163666466232534413661661163252562462255265252266435353336 Viterbi
LLLLLLLLLLLLFF Forward
FFLLLLLLLLLLLLFFFFFFFFLFLLLFLLFFFFFFFFFFFFFFFFFFFFFLFFFFFFFFFF Posterior (total)
LLLLLLLLLLLLFFFFFFFFFLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Parameter estimation

training sequences $X^{(i)}$ optimize score $\prod_{i=1}^{n} P\left(X^{(i)} \mid \Theta\right)$
state sequences known

- count transitions pq
$A_{p q}$
- count emissions b in $p \quad E_{p}(b)$
divide by
- total transitions in p
- emissions in q

Laplace correction

Baum-Welch

state sequences unknown

Baum-Welch training

 based on model expected number of transitions, emissions build new (better) model \& iterate$$
\begin{aligned}
& P\left(\pi_{i}=p, \pi_{i+1}=q \mid X, \Theta\right)= \\
& \frac{f_{p}(i) \cdot t_{p q} \cdot e_{q}\left(x_{i+1}\right) \cdot b_{q}(i+1)}{P(X)}
\end{aligned}
$$

$A_{p q} \quad$ sum over all training sequences X sum over all positions i
$E_{p}(b)$ sum over all training sequences X sum over all positions i with $x_{i}=b$

Baum-Welch training

concerns:

- guaranteed to converge target score, not Θ
- unstable solutions !
- local maximum
tips:
- repeat for several initial Θ
- start with meaningful Θ

Viterbi training (an alternative) determine optimal paths recompute as if paths known

- score may decrease!

