
Chapter 3

Reconstructing DNA

3.1 Introduction

In this chapter we consider several approaches to reconstruct strings based on
information about their substrings.

Fragment assembly, Section 3.2, deals with the reconstruction of a string given
a subset of its substrings (usually varying in length). The presentation is based
on Setubal&Meidanis [12], Chapter 4: Fragment assembly of DNA.

Sequencing by hybridization, Section 3.4, uses a technique that determines strings
that are characterized by a set of (all) substrings of fixed length.

Physical mapping, Section 3.5, computes the relative positions of markers on a
string given certain (unordered) sets of markers that occur together on segments
of the string. We present a solution using PQ-trees, following Shamir [11],
Algorithms in Molecular Biology, Lecture 9, Physical Mapping.

3.2 Fragment Assembly

The problem of fragment assembly originates in the so-called shotgun method,
where a given piece of DNA (or rather many identical copies of it) is broken
into several smaller segments, that are all sequenced. The goal is to reconstruct
the original DNA string based on the segments.

Hence we basically have the following problem: Given a set of strings F (‘frag-
ments’), construct the ‘best’ string that contains (as a consecutive substring)
each of the strings in F . A string with that property is called a (common)
superstring of F . Note that concatenation of the strings in F does the job. It
defines a superstring, but one which usually is not considered to be the best
possibility. Here we want to find a superstring of minimal length, called the
shortest common superstring (SCS) of F . The (mathematical) statement of the

31



32 CHAPTER 3. RECONSTRUCTING DNA

problem is not precisely the (biological) problem we have to solve in practice,
as we shall see in the next section.

For technical reasons it is assumed that F is substring free, i.e., no string in F
occurs as substring in another element of F .

A mathematical tool to model the problem is a graph that represents the overlap
between the strings in the set F . The overlap graph of F contains a node for
each string x in F . For each pair of strings (nodes) x, y we draw an edge from x

to y labelled by the length of the maximal overlap of x and y. Here an overlap
is a string w such that x = x1w and y = wy1. Usually edges with length 0 are
omitted.

Sometimes all possible overlaps are considered, and we introduce edges for each
of them. We then obtain the overlap multi-graph, which has parallel edges.

As we want to obtain a string x that contains each of the original strings from
F we have to include each node of the overlap graph. As F is substring free
its elements have a well defined order in x, i.e., if one substring starts before
another it must also end first. This ordering corresponds to an ordering of
the nodes of the overlap graph. Additionally overlap between the consecutive
substrings as they occur in x define edges in the overlap multi-graph, and hence
string x defines a Hamiltonian path (which visits all nodes). Vice versa, every
Hamiltonian path determines a superstring.

The length of the common superstring defined by the Hamiltonian path equals
the total length of the strings (which is a fixed by the problem, hence constant
for all Hamiltonian paths) minus the overlap between the strings, which is the
weight of the edges. Hence, a solution to the Shortest Common Superstring
Problem translates into finding a Hamiltonian path of maximum weight.

Note this is an instance of the Traveling Salesman Problem, which in its general
form is NP complete. Even the existence of a Hamiltonian path in a graph is
an NP complete problem (for general graphs). Although the SCSP defines only
specific forms of the TSP (defined by overlap) this is a strong indication that
there are no efficient algorithms that solve the problem.

3.1 Example. Given the set of four segmentsF = { TACGA, ACACT, CTAAAG,
GACA } we build the following overlap graph (edges of zero weight omitted).
E.g., the overlap of ACACT and CTAAAG is obviously CT with length 2.

TACGA ACACT

CTAAAG GACA

1

1

3
2 2

1



3.2. FRAGMENT ASSEMBLY 33

The Hamilton path TACG(A)CA(CT)AAA(G)ACA leads to a superstring of
length 16 (total length 20, minus 4 overlap).

TACGA - - - - - - - - - - -
- - - - ACACT - - - - - - -
- - - - - - - CTAAAG - - -
- - - - - - - - - - - - GACA

It turns out that the set of largest edges can be arranged into a Hamiltonian
path, and hence is a Hamiltonian path of maximal weigth. It leads to the length
13 superstring TACGACACTAAAG, which is the shortest ‘reconstruction’ of
the original sequence. It corresponds to the following scheme.

TACGA - - - - - - - -
- - - GACA - - - - - -
- - - - ACACT - - - -
- - - - - - - CTAAAG

Linkage and Coverage. The shortest common superstring is not always
the best choice from a biological point of view. It may happen that the SCS
consists of several concatenated ‘contigs’, pieces that have no overlap. Given
an Hamiltonian path, its minimum weight edge determines the smallest overlap
between consecutive substrings, called the linkage of the solution. In practice
we want a superstring with good linkage, which means we want to avoid edges
of low weight (and in particular those of weight 0).

Another measure for realistic solutions as opposed to mathematical optimal
ones is coverage. For each position in the reconstructed string the number of
associated segments should be of roughly equal size. When a segment is covered
by a relatively large number of segments it may possibly be a repeat. We refer
to the next section for this and additional biological considerations.

3.2 Example. Consider the strings
z1 = AGTATTGGCAATC,
z2 = AATCGATG,
z3 = ATGCAAACCT,
z4 = CCTTTTGG, and
z5 = TTGGCAATCACT, of total length 51.

The relation between these strings is represented by the following overlap graph.
Recall that all edges omitted here have weight 0, representing a pair of strings
without overlap. One edge of weight 0 is given (dashed). It is used as part of a
Hamiltonian path below.

z1 z2 z3 z4 z5
4 3 3

9

0

4



34 CHAPTER 3. RECONSTRUCTING DNA

Assuming edges of length 0 are present in the graph, the Hamiltonian path of
maximal weight (length) 15 equals z1z5z2z3z4. This leads to a superstring of
length 51− 15 = 36, given in the final row of the following diagram. Note how
the SCS consists of two contigs, parts without overlap, corresponding to the
edge of weight 0 used on the path.

AGTATTGGCAATC - - - AATCGATG - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - ATGCAAACCT - - - - -
- - - - TTGGCAATCACT - - - - - - - - - - - - CCTTTTGG
AGTATTGGCAATCACTAATCGATGCAAACCTTTTGG

Another Hamiltonian path equals z1z2z3z4z5 and has weight 14. It defines a
superstring of length 37 where the consecutive fragments have overlap that is
at least 3.

AGTATTGGCAATC - - - - - - - - CCTTTTGG - - - - - - - -
- - - - - - - - - AATCGATG - - - - - - - - TTGGCAATCACT
- - - - - - - - - - - - - - ATGCAAACCT - - - - - - - - - - - - -
AGTATTGGCAATCGATGCAAACCTTTTGGCAATCACT

Greedy Algorithm. A greedy algorithm for the Shortest Common Super-
string problem is easily conceived: repeatedly find the two strings with the
largest overlap, and replace them with their shortest superstring. This cor-
responds to repeatedly choosing an edge with maximal weight in the overlap
graph (and ‘joining’ the two adjacent nodes). This is an approximating algo-
rithm. Its solution can be proved to be of length at most 4 times the optimal
length, using rather technical arguments regarding the combinatorial structure
of strings. The factor can be improved to 2.75 if some heuristics are added to
the greedy approach. A counter example (see below, after the example) shows
that the greedy algorithm may miss the optimal solution by a factor of 2. In
fact it is conjectured that 2 is indeed the true bound, but this fact has not yet
been proven.

3.3 Example. An example of the greedy algorithm: we start with the four
strings TCAGT, CATCAG, GTG and GCA. The two most overlapping ones
are CATCAG and TCAGT; they are replaced with CATCAGT, leaving us with
CATCAGT, GTG and GCA.

Both GTG and GCA have a 2 base overlap with CATCAGT. Choose GTG
(say), giving CATCAGTG and GCA. The final solution is GCATCAGTG, which
happens to be optimal.

Another example of the greedy algorithm: we start with the three strings GCC,
ATGC and TGCAT. The two most overlapping ones are ATGC and TGCAT;
they are replaced with ATGCAT, leaving us with ATGCAT and GCC. These
two strings have no overlap, so the final solution is their concatenation: ei-
ther ATGCATGCC or GCCATGCAT, both of length 9. The optimal solution,
TGCATGCC, has length 8.



3.3. BIOLOGICAL COMPLICATIONS 35

Note how Example 3.2 shows that the greedy approach may give the optimal
solution, where in fact that is not the most relevant one in biological terms.

An example that displays a factor 2 between the optimal solution and the one
found by a greedy approach is the following. Starting from {C(AT)k, (TA)k,
(AT)kG} for fixed k ≥ 1, the algorithm outputs C(AT)kG(TA)k of length 4k+2,
whereas the optimal string C(AT)k+1G has length 2k+4. These solutions differ
by a factor 4k+2

2k+4
which is close to 2 for large k.

3.3 Biological Complications

As we have seen, the abstraction of Fragment Assembly to Shortest Common
Superstring leads to a problem (travelling salesman) that is NP complete, hence
has no efficient exact solution. Unfortunately the situation is even more com-
plicated by the fact that in the practical the problem of fragment assembly has
to deal with further details that are not captured by the SCS reformulation.

Base errors. We start with the strings ACCGT, CGTGC, TTAC and TACCG
over the usual four-base alphabet {A, C, G, T}. The usual solution is to as-
semble them according the following layout (left). The sequence below the line
perfectly matches the segments.

Usually in experiments there will be errors in reading the segments. The simplest
ones are base call errors: base substitutions, insertions and deletions. As first
example replace fragment TACCG by TGCCG, where the A has erronously
been read as G. If our matching process allows for such errors, we can use
majority voting to produce a consensus string (middle).

Also when CGTGC has been incorrectly reported as CAGTGC (inserting an
extra A) we should be able to obtain the right consensus string (discarding the
gap, right).

TTAC - - - - -
- TACCG - - -
- - ACCGT - -
- - - - CGTGC
TTACCGTGC

TTAC - - - - -
- TGCCG - - -
- - ACCGT - -
- - - - CGTGC
TTACCGTGC

TTAC - - - - - -
- TGCC - G - - -
- - ACC - GT - -
- - - - CAGTGC
TTACC - GTGC

This means that we should not try to find exact overlaps, but rather the kind of
overlaps that are reported by alignment, allowing for a small number of errors.

Orientation. Experiments for reconstructing DNA rarely consider single stranded
DNA. This means that our fragments can come from either strand, and can have
two orientations, forward or backward (in reverse complement, also swapping
A-T and C-G) In that case CGTAGT should alternatively be considered as
synonym for ACTACG.

Thus for the set { CACGT, ACTACG, GTACT, ACTGA} a possible recon-
struction is as follows.



36 CHAPTER 3. RECONSTRUCTING DNA

CACGT −→ CACGT - - - - - - - -
ACTACG ←− - - CGTAGT - - - - -
GTACT ←− - - - - - AGTAC - - -
ACTGA −→ - - - - - - - - ACTGA

CACGTAGTACTGA

Note that we suddenly have around 2n possible combinations to consider for a
set of n fragments.

Repeats. Repeated regions (or repeats for short) are sequences that occur
two or more times in the original molecule. This causes many algorithmic com-
plications, in particular if the repeats are long. We mention several issues.

• When fragments are totally contained in a repeat they can be placed in either
one of them., see Example 3.4 below.

• If a relatively long repeat X occurs, i.e., when X is longer than the given
fragments, the target αXβXγXδ can be assembled as αXγXβXδ, swapping
intermediate β and γ, which has the same substrings up to the length we are
interested in. Similarly, when trying to reconstruct αXβY γXδY ε one might
end up with αXδY γXβY ε.

• An inverted repeat is a segment that occurs at least once on each strand of
DNA. Thus the single stranded representation is of the form αXβX ′γ where
X ′ is the inversion of X . When X is large enough this can be reconstructed as
αXβ′X ′γ, where α′ is the inversion of α.

An example of an inverted repeat is AACTG / CAGTT in the following se-
quence:

- - - TGCCTA - - - - - - - -
- - - - - - - TAGCTCA - - -
AACTGCCTAGCTCAGTT

- - - - - - - - TAGGCA - - -
- - - TGAGCTA - - - - - - -
AACTGAGCTAGGCAGTT

Indeed, as we have seen already, repeats can give unwanted results especially
when we stick to the formulation as shortest common superstring. Suppose the
target looks like αXβXγ with some large repeat X . The SCS model could give
a shortest solution αXβX ′γ with X ′ shorter than X , where all fragments totally
contained in the rightmost X are moved to the leftmost X , while X ′ consists of
unlinked parts.

3.4 Example. Consider a string as below (left), that is the source of substrings
TGAGT, GTACCG, ACGAT, GATAG, AGTACC, CCTT. Note how AGTACC
occurs twice. Moving segment AGTACC to the left we obtain a (slightly) shorter
superstring (and zero linkage right). We miss the symbol A (at the position
indicated by the dot).

TGAGT - - - GATAGT - - - - -
- - - GTACCG - - AGTACC - -
- - - - - - CCGAT - - - - CCTT
AGAGTACCGATAGTACCTT

TGAGT - - - GATAGT - - - -
- - - GTACCG - - - - - - - - -
- - - - - - CCGAT - - - CCTT
- - AGTACC - - - - - - - - -
AGAGTACCGATAGT·CCTT



3.4. SEQUENCING BY HYBRIDIZATION. 37

3.4 Sequencing by Hybridization.

Another technique to reconstruct DNA from knowledge about fragments is se-

quencing by hybridization (SBH). This approach uses a DNA-array, containing
many small pieces of DNA of fixed length (say, all 46 = 212 = 4096 possible
strings of length 6, or some clever selection of these strings). Using the array
one determines whether or not each of these strings occurs as a substring of
our original piece of DNA, by observing the hybridizations that occur. This
information is used for reconstruction. We try to find a (shortest) string that
(exactly) has these substrings.

Instead of looking for Hamiltonian paths in the overlap graph, we now focus
on Eulerian paths (that traverse all edges) in another graph which is in a sense
dual to the overlap graph as here substrings are represented by edges rather
than by vertices. Finding Eulerian paths is a relatively simple task compared to
the complexity of finding Hamiltonian paths . Suppose we consider substrings
of length ℓ, and get a set F of fragments, consisting of strings of length ℓ. We
build a graph for F as follows. Vertices correspond to all (ℓ − 1)-tuples, edges
correspond to the fragments in F . Fragment aαb (with a, b letters) forms an
edge from prefix node aα to suffix node αb.

3.5 Example. Let ℓ = 3. With fragments ATG, TGG, TGC, GTG, GGC,
GCA, GCG and CGT, we build the following graph that contains each fragment
as an edge. Thus, ATG forms an edge between nodes AT and TG (here labelled
by overlap T).

AT TG

GG

GC

GT

CA

CG

T

G

G

T

G

C

C

G

AT TG

GG

GC

GT

CA

CG

T

G

G

T

G

C

C

G

We find two solutions, each corresponding to an Euler path in the graph. One
for path AT·TG·GC·CG·GT·TG·GG·GC·CA with string ATGCGTGGCA, and
the other for path AT·TG·GG·GC·CG·GT·TG·GC·CA with string ATGGCGT-
GCA.

3.5 Physical Mapping

A physical map contains the positions of a set of markers along a strand of DNA.
Usually these markers are specific short and well-defined pieces of DNA. These



38 CHAPTER 3. RECONSTRUCTING DNA

E B F C A G D
1 1 1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1 1

12

3

4

56

Figure 3.1: Adjacent 1’s for Example 3.6, and corresponding interval graph.

small segments are for example the binding sites of restriction enzymes, or small
segments known to occur only once in the DNA (sequence tagged sites).

Here we consider an algorithm for hybridization mapping, where the presence of
markers has been obtained by hybridization of short pieces of DNA (‘probes’)
on overlapping segments of DNA (‘clones’).

3.6 Example. Cosider seven probes A,B, . . .G on a DNA molecule, and six
clones 1,2,. . . 6 distributed as in the picture below.

The matrix represents the distribution of the probes over the clones. The or-
dering of the probes is not directly obvious from the matrix. For the clones we
can only observe where they overlap, as indicated by a common probe.

1
23

45
6

E B F C A G D

A B C D E F G
1 1 1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1 1

The information that is obtained by hybridization covers only the set of probes
for each clone, i.e., the rows in the matrix. In this example C1 = {A,C,F,G},
C2 = {A,C}, C3 = {B,F}, C4 = {D,G}, C5 = {B,E}, C6 = {A,C,F}.

The algorithmic task we try to solve is to propose a possible ordering of the
probes on the original sequence of DNA based on the information of which
probes occur together on a clone. Note that the relative ordering of probes on
each clone is not known.

Consecutive ones property. Clones contain consecutive probes. This means
that if we order the columns (probes) according to their order on the DNA the
probes for each clone must be adjacent. Thus the 1’s in each row fill consecutive
columns.

Technically a matrix like this can be used to define an interval graph: nodes
correspond to intervals (here the clones) and edges between them correspond to
the intersection of two intervals (here the presence of a common clone). Interval



3.6. PQ-TREES 39

graphs have been extensively studied, and several algorithms have been proposed
to recognize them.

Some approaches based on interval graphs deal with the columns in the matrix.
These correspond to a probe in the application, while in the graph they define
a clique, a set of nodes that are fully connected in the graph.

3.6 PQ-trees

Classically in computer science a tree defines a linear order on its leaves: the
linear order on the children of each node is inherited downwards in the tree.
The tree data structure used to solve the consecutive ones problem defines not
just a single order but rather a set of permutations on the leaves. When the
leaves are labelled by probes, the permutations represented correspond to those
permutations that are consistent with a set of clones, i.e., those orderings where
each of the clones induces consecutive probes.

The trees used are called PQ-trees [2], having two types of nodes. P-nodes

(depicted as circles) define permutations on their children, whereas Q-nodes

(depicted as rectangles) define a linear order on their children (either from left
to right or reversely).

3.7 Example. The P-node (left) defines the set of permutations { ABC, ACB,
BAC, BCA, CAB, CBA }, the Q-node (middle) defines the two linear orders
{ABC, CBA }.

A B C A B C

D A C B E

Given the two clones {A,C,D} and {A,B,C,E} we observe that the intersection
{A,C} must be consecutive, while flanked on one side by D and on the other
side by B,E. All permutations of A,B,C,D,E that satisfy these restrictions are
represented by the PQ tree given above (right): DACBE, DACEB, DCABE,
DCAEB, BEACD, EBACD, BECAD, EBCAD.

Rearranging the children of a P-node will lead to a tree that defines the same
set of permutations on the leaves. Similarly reversing the children of a Q-node
will not change the permutations. Hence trees obtained by such operations are
considered equivalent (or even equal, depending on your point of view).

We assume that every P-node has at least two cildren, whereas every Q-node
usually has at least three children (on two elements the permutations are just
the two linear orders).



40 CHAPTER 3. RECONSTRUCTING DNA

Marking the tree. Starting with a tree that consists of a single P-node
with all probes as leaves, thus representing all permutations, the clones are
considered one by one. For each clone the structure of the tree is restricted so
that its permutations also reflect the new clone. If this is possible the clone is
called consistent with the tree. If the clones completely fix the relative order of
the probes we obtain a tree consisting of a single Q-node.

Consider a clone C. Start by marking all leaves that belong to C. We then work
upwards in the tree. First, when a node is handled its children are rearranged
in such a way that the marked leaves are all consecutive. If this is not possible
then the clone is not consistent with the tree. Then we may change the node to
locally fix this new requirement.

In order to describe the rules to do this we need some terminology. A node is
called full (empty) if all (no) leaves under it are marked. If a node is neither full
nor empty it is mixed, in the algorithm below it is assumed that mixed nodes
are Q-nodes (and even may have only two children). Note that it is impossible
that a node has three mixed children (assuming the clone is consistent with the
tree).

The rules to transform nodes are presented below. There are separate rules for
P-nodes and Q-nodes, while they also depend on the children of the node: their
type (P or Q), and whether they are empty, full or mixed. A special position in
the tree is the lowest node that has marked nodes in its subtree, which is called
the top. In fact the top is the only node that can have two mixed children.
Only nodes below the top need to be investigated, bottom-up. Some rules have
a special form for the top, to stress this the node is marked by symbol ∆.

Transformation rules. Most rules actually have several special cases, not
depicted here. For instance rules may assume that there is more than one
subtree of the same colour which are then joined under a P-node. When the
rule is applied for only a single node of the proper colour then the P-node above
the single child can be omitted.

In the diagrams full nodes are shaded gray.

P1. If the children of a P-node are either all empty or all full, then the node
itself is empty (full, respectively) and is not changed.

P2&3. If a P-node has both empty and full children, the full children must be
forced next to one another. This rule has a special form for the top node ‘∆’.

∆

⇒ ⇒



3.6. PQ-TREES 41

P4&5. If a P-node has a mixed child, the full children of the node must be
forced adjacent to the full children of that mixed child. Again we have a special
form for the top node.

∆ ⇒

⇒

P6. P-node with two mixed children, only for the top node. Generally holds
for empty-full-empty patterns.

∆

⇒

Q1. If the children of a Q-node are either all empty or all full, then the node
itself is empty (full, respectively) and is not changed.

Q2. Rule for Q-nodes with a single mixed child, empty-full pattern. Applicable
when empty and full children at different sides of the mixed child.



42 CHAPTER 3. RECONSTRUCTING DNA

⇒

Q2a If a Q-node has both full and empty children the node itself is mixed,
and is not changed. The transformation is aborted if one or more of the empty
children is between full ones, in that case the clone is not consistent. (this can
be seen as a special case of Q2, i.e., without mixed child.)

Q3. P-node with two mixed children, empty-full-empty pattern. Is only appli-
cable for the top node. The rule is rather general, in particular one or both of
the mixed nodes may be missing.

∆

⇒

We end with an extensive example that illustrates the concrete application of
the above rules.

3.8 Example. We reconstruct the order of seven probes given clones {A,C,F,G},
{A,C}, {B,F}, and {D,G}, as in the previous Example 3.6.

We start with an arbitrary permutation of A,B,C,D,E,F,G.

Given clone {A,C,F,G} we colour the leaves with corresponding probes, and
reorder such that coloured leaves form a contiguous segment. We apply rule P2
to the root, which also is the top node ∆.

A B C D E F G

∆

B D E A C F G

B D E

A C F G

Given clone {A,C} we colour the leaves with corresponding probes, and reorder
such that coloured leaves are next to one another. Again, we apply rule P2 to
top node ∆.



3.6. PQ-TREES 43

B D E ∆

A C F G

B D E

A C

F G

Then we consider clone {B,F}. Colour the leaves with corresponding probes,
and reorder such that coloured leaves are next to one another. At node ∗ we
apply rule P3, and obtain a mixed Q-node. Then at ∆ we apply rule P4 to join
the coloured nodes under the Q-node.

∆

D E B ∗

F G

A C

∆

D E B

F

G

A C

D E

B F

G

A C

Now we consider clone {D,G}. Colour the leaves with corresponding probes,
and reorder such that coloured leaves are next to one another. As above, at
node ∗ we apply rule P3, and obtain a mixed Q-node. This node is joined to its
parent Q-node using rule Q2. Then at ∆ we apply rule P4 to join the coloured
nodes under the Q-node.

∆

D E

B F

G

A C

∆

DE

B∗ F

G

A C

∆

DE

BF

G

A C

∆

DE

BFG 2

A C

E

D BFG

A C

D BFG

A C

E

Last picture above: Adding clone {B,E} follows the same scheme. After colour-



44 CHAPTER 3. RECONSTRUCTING DNA

ing and rearranging apply rule P4 at the root (which is ∆). Adding clone
{A,C,F} will not change the tree. This involves an application of rule Q3 (in a
variant where the empty-full-empty pattern does not include mixed nodes).



Bibliography

[1] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman (1990).
Basic local alignment search tool. Journal of Molecular Biology 215 (3):
403–410. doi:10.1006/jmbi.1990.9999
⊲ alignment heuristics, BLAST, Section 1.5

[2] K.S. Booth, G.S. Lueker: Testing for the consecutive ones property, in-
terval graphs, and planarity using PQ-tree algorithms, Journal of Com-
putational Systems Science, Vol. 13 (1976), pp. 335-379.
⊲ physical mapping, Section 3.5

[3] Fitch and Margoliash, Construction of Phylogenetic Trees, Science Vol.
155, 20 Jan. 1967.

[4] A.P. Gultyaev, Computational Molecular Biology, Application-oriented
view, Leiden University, 2009.

[5] D.S. Hirschberg. Algorithms for the Longest Common Subsequence
Problem, Journal of the ACM, 24 (1977) 664–675.
⊲ linear space alignment, Section 1.4

[6] V.I. Levenshtein, Binary codes capable of correcting deletions, inser-
tions, and reversals. Soviet Physics Doklady 10 (1966):707–710.
⊲ global alignment, edit distance, Section 1.2

[7] D.J. Lipman, W.R. Pearson, Rapid and sensitive protein similarity
searches. Science. 1985 Mar 22;227(4693):1435-41.
⊲ alignment heuristics, FASTA, Section 1.5

[8] S.B. Needleman, C.D. Wunsch. (1970). A general method applicable to
the search for similarities in the amino acid sequence of two proteins. J
Mol Biol 48 (3): 443–53. doi:10.1016/0022-2836(70)90057-4
⊲ global alignment, Section 1.2

[9] N. Saitou and M. Nei, (1987). The neighbor-joining method: a new
method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4):406-
425
⊲ phylogeny, unrooted trees, Section 2.5

45

http://dx.doi.org/10.1006/jmbi.1990.9999
http://dx.doi.org/10.1016/0022-2836(70)90057-4


46 BIBLIOGRAPHY

[10] D. Sankoff (1975). Minimal mutation trees of sequences. SIAM Journal
of Applied Mathematics 28: 35-42.
⊲ character based, small parsimony, Sankoff algorithm, Section 2.3

[11] R. Shamir, Algorithms in Molecular Biology, lecture notes,
2001-2002, Tel Aviv University School of Computer Science.
www.cs.tau.ac.il/ rshamir/algmb/01/algmb01.html

[12] J. Setubal, J. Meidanis. Introduction to Computational Molecular Biol-

ogy, PWS Publishing Company, 1997.

[13] T.F. Smith, M.S. Waterman (1981). Identification of Common Molec-
ular Subsequences. Journal of Molecular Biology 147: 195–197.
doi:10.1016/0022-2836(81)90087-5
⊲ local alignment, Section 1.3

http://www.cs.tau.ac.il/~rshamir/algmb/01/algmb01.html
http://dx.doi.org/10.1016/0022-2836(81)90087-5

