Anomaly Detection
in Cybersecurity

Name: Simone van Veen
Date: 02/07/2016
1st supervisor: Dr. W.J. Kowalczyk
2nd supervisor: Dr. Amr Ali-Eldin

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands
Anomaly Detection in Cybersecurity

Simone van Veen
Abstract

The increase in use of computers and computer networks has made it very important to develop reliable intrusion detection systems (IDS). These systems are used to detect attempts to gain access or cause damage to a computer network. An IDS is confronted with large amounts of data. The majority of intrusion detection systems use machine learning techniques to find indications of suspicious behaviour in this data.

Supervised learning is a commonly used machine learning approach for network intrusion detection. The objective of supervised learning is to train a classifier on a labelled dataset and use it to predict in which class an observation belongs. In the case of an IDS, for example, a classifier can be used to predict whether an observation represents an attack or not.

Supervised learning techniques can achieve high accuracy when used to detect attacks. However, the need for a labelled dataset is a big disadvantage. Real data is sensitive and therefore rarely made public and creating a dataset takes much time. Labelling data is expensive and only done in exceptional cases. Even if a labelled dataset is created its usefulness will rapidly decrease due to the constant development of new threats.

Unsupervised learning is an approach that does not use labelled datasets. This thesis will focus on unsupervised anomaly detection. The goal of anomaly detection is to identify which observations in a dataset deviate from normal observations. These deviating instances are called outliers or anomalies. The aim of this thesis is to examine to which extent unsupervised anomaly detection can be used to detect attacks. This is done by applying statistical methods and a distance based algorithm to the NSL-KDD dataset. The results show that these approaches are not suited to detect attacks in this dataset because there is no clear distinction between normal and malicious instances.
Contents

Abstract i

1 Introduction 3

2 Related Work 5

3 Description of the Dataset 7
 3.1 Attributes ... 7
 3.2 Attack types ... 9

4 Methods 10
 4.1 Exploring the dataset 10
 4.2 Extreme Values .. 11
 4.3 Distance-based method 12

5 Evaluation 14
 5.1 The predictive strength of each attribute 14
 5.2 Combining two attributes 16
 5.3 Distance-based method 16

6 Conclusions 19

Appendices 20

A createstackedbar.R 20

B countoutliers.R 22

C randomforest.R 26

D nearestneighbour.R 30
List of Tables

3.1 Attributes in NSL-KDD dataset. .. 8
3.2 Attack types in NSL-KDD dataset. ... 9
3.3 Instances in training and test set. .. 9
5.1 Outliers in test set. ... 16
List of Figures

4.1 Normal distribution. ... 11
4.2 Anomalies. ... 12

5.1 Stacked bar chart for duration. .. 14
5.2 Outliers are mostly attacks. .. 15
5.3 Outliers are mostly normal. ... 15
5.4 5% least frequent values. .. 15
5.5 10% least frequent values. ... 15
5.6 All attacks of one type, $k = 10$. ... 17
5.7 Maximum of 1% of attacks of one type, $k = 10$. 17
5.8 All attacks of one type, $k = 100$. .. 17
5.9 Maximum of 1% of attacks of one type, $k = 100$. 17
5.10 All attacks of one type, $k = 1000$. ... 17
5.11 Maximum of 1% of attacks of one type, $k = 1000$. 17
5.12 Sample 1. ... 18
5.13 Sample 2. ... 18
Chapter 1

Introduction

With the tremendous increase in use of computers and computer networks in the last decade it has become more and more important to protect computer systems. Not only large companies and banks are under constant attack from hackers; hospitals, healthcare providers and schools are also targets. Cybersecurity protects our computer systems from a number of threats such as unwanted network access or data theft. Network security is one of the main areas of focus in cybersecurity. To protect a network from unwanted access or attack it is crucial to detect any attempt to gain access or cause damage. An intrusion detection system (IDS) monitors network traffic or system activities and searches for such malicious behaviour. All data is kept in log files. Logging is important because it helps to provide information about suspicious behaviour. An IDS is confronted with large amounts of data. The majority of intrusion detection systems use machine learning techniques to find indications of suspicious behaviour in this data.

Supervised learning is a commonly used machine learning approach for network intrusion detection. The objective of supervised learning is to train a classifier on a labelled dataset and use it to predict in which class an observation belongs. In the case of an IDS, for example, a classifier can be used to predict whether an observation represents an attack or not.

The main disadvantage of this approach is the lack of labelled datasets. Real data is sensitive and therefore rarely made public and creating a dataset takes much time. Labelling data is expensive and only done in exceptional cases. Even if a good dataset is created its usefulness will rapidly decrease due to the constant development of new threats.

Unsupervised learning is an approach that does not use labelled datasets. It aims at modelling common, general properties of data. This thesis will focus on unsupervised anomaly detection. The goal of anomaly detection is to identify which observations in a dataset deviate from normal observations. These deviating instances are called outliers or anomalies.

Anomalies can be divided into three categories. The first category consists of point anomalies which are
individual instances that are outliers with respect to other data. The second category contains instances that are only outliers in a specific context. These are called contextual anomalies. Collective anomalies make up the last category. Anomalies of this type are groups of instances that are anomalous with respect to the rest of the dataset. Individual instances in these groups are not necessarily outliers themselves. [CBK07]

If anomaly detection can be used to detect attacks on a network the problem of labelled datasets would be solved. Anomaly detection would also be able to detect unknown attacks if they differ enough from normal instances. The aim of this thesis is to examine to which extent anomaly detection can be used to detect attacks. This is done by applying statistical methods and a distance based algorithm to the NSL-KDD dataset [0e15]. The rest of this thesis is organized as follows. Chapter 2 discusses related work. Chapter 3 provides a description of the data that is used. Chapter 4 explains the methods used. In chapter 5 the results are evaluated and chapter 6 contains some conclusions.
Chapter 2

Related Work

As it becomes increasingly important to develop reliable intrusion detection systems there has been done a lot of research on this subject [CBK07]. To facilitate this research several datasets have been created. Creating a dataset can be done in various ways. One approach is to simulate normal network traffic and attacks. Another way would be to set up a honeypot. A honeypot is a computer system that is set up to attract hackers that try to attack or gain access to the system. The network traffic from a honeypot often contains a lot of attacks. It is also possible to use a dataset that consists of real-life data, for example, the data from a company or a bank. The labelling of this data has to be done by a human expert that analyses traffic data and manually labels the relevant records. This causes a problem because the size of these datasets is very large. The sets created using honeypots or real-life networks generally contain gigabytes of data.

The KDDcup99 dataset [IoC99] has been the most widely used set since 1999. The NSL-KDD dataset is an updated version of this dataset. These and other existing datasets are discussed by Bhuyan, Bhattacharyya and Kalita [BBK15].

Several intrusion detection systems have been developed and they all use a certain approach to detect attacks. These approaches are based on supervised or unsupervised learning and can be divided into three categories. The first category is signature detection. Signature detection uses knowledge of known attacks and vulnerabilities to look for patterns that are known to cause security problems. Anomaly detection is the second category. The last category consists of classification-based detection systems. These systems use machine learning techniques to build models on labelled datasets that can be used to classify observations. An overview of these categories and which systems use them is given by Lin [Lin13].

Supervised learning is an often used approach and can achieve high accuracy when used to detect attacks. This is shown by Revathi and Malathi [RM13] and Dhanabal and Shantharajah [DS15] who provided an overview of the performance of supervised learning techniques on the NSL-KDD dataset. Even though the results are good, the need for a labelled dataset is a big disadvantage of this approach.
Unsupervised learning does not require labelled data. Unsupervised anomaly detection is used to find patterns that deviate from expected behaviour. There are many different anomaly detection techniques. A comprehensive overview is given by Chandola, Banerjee and Kumar [CBK07].

If anomaly detection can be used as a reliable way of detecting network intrusions, the problematic need of labelled datasets would be solved. To evaluate whether a method is reliable multiple criteria can be considered. One of these criteria is the effectiveness. The effectiveness is defined by the true positive rate and the false positive rate. The true positive rate measures the percentage of attacks that are correctly identified as such. The false positive rate is the percentage of normal instances that are incorrectly classified as attack. A reliable intrusion detection system should have a high true positive rate; the percentage of attacks that are detected has to be as high as possible. It is equally important to keep the false positive rate very low. The system have to be very sensitive to keep the amount of false alarms as small as possible. This is a challenging problem as usually attacks are very rare and a system that misclassifies only a very small portion of normal records generates many false alarms. This phenomenon is explained in more detail by Axelsson [Axe].

Portnoy, Eskin and Stolfo [PES] propose a cluster-based unsupervised anomaly detection method and evaluate it using the KDDcup99 dataset. They reach an average detection rate between 40% and 55% with a 1.3% – 2.3% false positive rate.

Eskin et al. [EAP+] present a geometric framework for unsupervised anomaly detection. They test three different algorithms: a cluster-based estimation, a k-nearest neighbour algorithm and a one class SVM. These algorithms are applied to the KDDcup99 and DARPA [SoML] datasets. The data is mapped to a feature space. One of the three algorithms within the framework determines which points are outliers based on the position in that feature space. The results were good for both types of data and for all three algorithms. All three algorithms were able to reach a perfect result on data from the DARPA set. For data from KDDcup99 there was a rather high false positive rate.

This thesis will examine unsupervised anomaly detection by applying statistical methods and a distance based algorithm on the NSL-KDD dataset.
Chapter 3

Description of the Dataset

The dataset used for the experiments in this thesis is the NSL-KDD dataset. This is an improved version of the KDDcup99 dataset which had several problems that affect the performance. One could object that the NSL-KDD dataset is outdated and should therefore not be used but this dataset is used for the following reasons. The data consists of point based instances. There are no time stamps or other attributes that are mainly context specific. Even though the attack types might be old and not often seen these days, the focus of this project is to evaluate the usefulness of anomaly detection-based systems for detecting cyber attacks. The aim is not to develop a model that is based on the attack types but to develop a model that is based on the deviation from normal observations.

The dataset consists of a train and a test set. The training set contains 125973 records, the test set 22544. Neither contain duplicate records. The data records are vectors of 41 attributes that represent network connection instances. All instances are labelled as normal or as a specific attack type.

3.1 Attributes

The attributes in the dataset are of mixed types. An overview of the attributes is given in table 3.1. This and other information about the attributes can be found in [DS15].
<table>
<thead>
<tr>
<th>Type</th>
<th>Attributes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary</td>
<td>Land</td>
<td>1 if source and destination IP addresses and port numbers are equal, 0 otherwise</td>
</tr>
<tr>
<td></td>
<td>Logged_in</td>
<td>1 if successfully logged in, 0 otherwise</td>
</tr>
<tr>
<td></td>
<td>Root_shell</td>
<td>1 if root access, 0 otherwise</td>
</tr>
<tr>
<td></td>
<td>Is_host_login</td>
<td>1 if host (root, admin) login, 0 otherwise</td>
</tr>
<tr>
<td></td>
<td>Is_guest_login</td>
<td>1 if guest login, 0 otherwise</td>
</tr>
<tr>
<td></td>
<td>Su_attempted</td>
<td>1 if su root command attempted, 0 otherwise</td>
</tr>
<tr>
<td>Nominal</td>
<td>Protocol_type</td>
<td>Protocol type used in connection</td>
</tr>
<tr>
<td></td>
<td>Service</td>
<td>Service of destination network</td>
</tr>
<tr>
<td></td>
<td>Flag</td>
<td>Connection status</td>
</tr>
<tr>
<td>Numeric</td>
<td>Duration</td>
<td>Duration of the connection</td>
</tr>
<tr>
<td></td>
<td>Src_bytes</td>
<td>Number of bytes transferred from source to destination</td>
</tr>
<tr>
<td></td>
<td>Dst_bytes</td>
<td>Number of bytes transferred from destination to source</td>
</tr>
<tr>
<td></td>
<td>Wrong_fragment</td>
<td>Number of wrong fragments in connection</td>
</tr>
<tr>
<td></td>
<td>Urgent</td>
<td>Number of packets with urgent bit activated</td>
</tr>
<tr>
<td></td>
<td>Hot</td>
<td>Number of 'hot' actions such as creating and executing a program</td>
</tr>
<tr>
<td></td>
<td>Num_failed_logins</td>
<td>Number of failed login attempts</td>
</tr>
<tr>
<td></td>
<td>Num_compromised</td>
<td>Number of compromised conditions</td>
</tr>
<tr>
<td></td>
<td>Num_root</td>
<td>Number of root accesses or operation performed as root</td>
</tr>
<tr>
<td></td>
<td>Num_file_creations</td>
<td>Number of file creation operations</td>
</tr>
<tr>
<td></td>
<td>Num_shells</td>
<td>Number of shell prompts</td>
</tr>
<tr>
<td></td>
<td>Num_access_files</td>
<td>Number of operations on access control files</td>
</tr>
<tr>
<td></td>
<td>Num_outbound_cmds</td>
<td>Number of outbound commands in ftp session</td>
</tr>
<tr>
<td></td>
<td>Count</td>
<td>Number of connections to the same destination host as the current connection in past two seconds</td>
</tr>
<tr>
<td></td>
<td>Srv_count</td>
<td>Number of connections to the same service (port number) as the current connection in past two seconds</td>
</tr>
<tr>
<td></td>
<td>Serror_rate</td>
<td>Percentage of connections that have activated the flag s0,s1,s2 or s3 among the connections in count</td>
</tr>
<tr>
<td></td>
<td>Srv_serror_rate</td>
<td>Percentage of connections that have activated the flag s0,s1,s2 or s3 among the connections in srv_count</td>
</tr>
<tr>
<td></td>
<td>Rerror_rate</td>
<td>Percentage of connections that have activated the flag REJ among the connections in count</td>
</tr>
<tr>
<td></td>
<td>Srv_rerror_rate</td>
<td>Percentage of connections that have activated the flag REJ among the connections in srv_count</td>
</tr>
<tr>
<td></td>
<td>Same_srv_rate</td>
<td>Percentage of connections to the same service among the connections in count</td>
</tr>
<tr>
<td></td>
<td>Diff_srv_rate</td>
<td>Percentage of connections to different services among the connections in count</td>
</tr>
<tr>
<td></td>
<td>Srv_diff_host_rate</td>
<td>Percentage of connections to different destination machines among the connections in count</td>
</tr>
<tr>
<td></td>
<td>Dst_host_count</td>
<td>Number of connections with the same destination host IP address</td>
</tr>
<tr>
<td></td>
<td>Dst_host_srv_count</td>
<td>Number of connections having the same port number</td>
</tr>
<tr>
<td></td>
<td>Dst_host_same_srv_rate</td>
<td>Percentage of connections to the same service among the connections in dst_host_count</td>
</tr>
<tr>
<td></td>
<td>Dst_host_diff_srv_rate</td>
<td>Percentage of connections to different services among the connections in dst_host_count</td>
</tr>
<tr>
<td></td>
<td>Dst_host_same_src_port_rate</td>
<td>Percentage of connections to the same source port among the connections in dst_host_srv_count</td>
</tr>
<tr>
<td></td>
<td>Dst_host_srv_diff_host_rate</td>
<td>Percentage of connections to different destination machines among the connections in dst_host_srv_count</td>
</tr>
<tr>
<td></td>
<td>Dst_host_serror_rate</td>
<td>Percentage of connections that activated the flag s0,s1,s2 or s3 among connections in dst_host_count</td>
</tr>
<tr>
<td></td>
<td>Dst_host_srv_serror_rate</td>
<td>Percentage of connections that activated the flag s0,s1,s2 or s3 among connections in dst_host_srv_count</td>
</tr>
<tr>
<td></td>
<td>Dst_host_rerror_rate</td>
<td>Percentage of connections that activated the flag REJ among the connections in dst_host_count</td>
</tr>
<tr>
<td></td>
<td>Dst_host_srv_rerror_rate</td>
<td>Percentage of connections that activated the flag REJ among the connections in dst_host_srv_count</td>
</tr>
</tbody>
</table>

Table 3.1: Attributes in NSL-KDD dataset.
3.2 Attack types

The attacks in the dataset can be divided in the following four categories:

- **R2L**: Remote to local attacks aim to gain local access to a machine by intruding into a remote machine.

- **U2R**: User to root attacks are used to gain root privileges by logging in to a normal user account and exploiting vulnerabilities.

- **Probing**: The goal of probing attacks is to gain information about the victim.

- **DoS**: Denial of Service attacks exhaust the victim’s resources so that handling legitimate requests becomes impossible.

Table 3.2 contains these four categories and all the corresponding attack types from the dataset.

<table>
<thead>
<tr>
<th>Type</th>
<th>Attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2L</td>
<td>Ftp_write, Guess_password, Httptunnel, Imap, Multihop, Named, Phf, Sendmail, Snmpgetattack, Snmpguess, Spy, Warezclient, Warezmaster, Xlock, Xsnoop</td>
</tr>
<tr>
<td>U2R</td>
<td>Buffer_overflow, Loadmodule, Perl, Ps, Rootkit, Sqattack, Xterm</td>
</tr>
<tr>
<td>Probing</td>
<td>Ipsweep, Mscan, Nmap, Portweep, Saint, Satan</td>
</tr>
<tr>
<td>DoS</td>
<td>Apache2, Back, Land, Mailbomb, Neptune, Pod, Processtable, Smurf, Teardrop, Udpstorm, Worm</td>
</tr>
</tbody>
</table>

The percentage of attacks in the datasets is unrealistically large. This could cause a problem for some algorithms, especially those that are focused on anomaly detection. Attacks will only be detected if they are outliers which they are not if there is a large number of them. To deal with this problem, subsets are created that consist of 1% of attacks and of 99% of instances that represent normal, non-malicious behaviour. The distribution between normals and attacks in the training and test set is as follows:

<table>
<thead>
<tr>
<th>Type</th>
<th>Train</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2L</td>
<td>995</td>
<td>2885</td>
</tr>
<tr>
<td>U2R</td>
<td>52</td>
<td>67</td>
</tr>
<tr>
<td>Probing</td>
<td>11656</td>
<td>2421</td>
</tr>
<tr>
<td>DoS</td>
<td>45927</td>
<td>7460</td>
</tr>
<tr>
<td>Normal</td>
<td>67343</td>
<td>9711</td>
</tr>
<tr>
<td>Total:</td>
<td>125973</td>
<td>22544</td>
</tr>
</tbody>
</table>

The training set and the test set do not contain the same attacks. The training set has two attacks, spy and warezclient, that are not in the test set. Attack types that only appear in the test set are: apache2, httptunnel, mailbomb, mscan, named, processtable, ps, saint, sendmail, snmpgetattack, snmpguess, sqattack, udpstorm, worm, xlock, xsnoop and xterm. The remaining attack types are in both sets.
Chapter 4

Methods

The aim of this thesis is to examine the usefulness of unsupervised anomaly detection for the detection of cyber attacks. The NSL-KDD dataset that is used for the experiments is a labelled dataset. The target variable, attack type, will however not be used to build models. It will only be used to compare the output of the unsupervised models with the actual labels so that the effectiveness of the models can be evaluated. R is used to explore the data and to implement the necessary algorithms.

4.1 Exploring the dataset

In order to get a better understanding of the dataset the predictive strength of each attribute is investigated. For each attribute in the training set a stacked bar chart is created showing the distribution of attacks and normal, non-malicious records. Besides making plots there are also some statistics calculated. As every attribute contains a few typical values that occur in most records, the records with these typical values are filtered out as there is no hope in detecting outliers there. For all attributes the percentage of attacks and normal instances in the top 5% and 10% of least frequent values is calculated to determine if the distribution in this subset is similar to the distribution in the whole set. The subset is created by removing all values with an added frequency higher than or equal to 95% or 90% respectively. Aside from this a prediction is made for each numerical attribute in the test set by building a random forest of 50 trees. Numerical attributes in this case are all non-binary attributes with numerical values. The random forest is based on the other 40 attributes using the values from the training set. This way the relationship between attributes becomes more clear. Random forest is used for this because it is very precise and able to handle large amounts of data. Besides looking at one attribute at the time there are also some calculations done for all pairs of attributes
in the training set. The number of attacks and normal observations are counted for the 10\% and 25\% least frequent values from both attributes combined if there are at least 1\% of all instances left. For example: when combining a binary attribute with value 0 that occurs in 99\% of instances and a numerical attribute that also has a value that occurs in 99\% of instances, the value 1 of the binary attribute may not occur in the instances that are left after removing the most frequent value from the numeric attribute.

4.2 Extreme Values

The differences between the predictions made by the random forest algorithm and the actual values of the instances are calculated. These differences are used to calculate the z-scores and interquartile range (IQR). The z-score method for detecting outliers is based on the assumption that when an instance is more than 3 standard deviations away from the mean it is most likely an outlier. When using this method it is important that the data has a normal distribution. The distribution should be similar to that in figure 4.1 [Ope].

![Normal distribution](image)

Figure 4.1: Normal distribution.

The z-score is the number of standard deviations from the mean. It is calculated by using the formula:

\[
 z = \frac{x - \mu}{\sigma}
\]

where \(x\) is the value of an instance, \(\mu\) is the mean of the population and \(\sigma\) stands for the standard deviation of the population. A negative value indicates a deviation below the mean. When the data is normally distributed 68\% of the data has a z-score between \(-1\) and \(1\). The instances with a z-score below \(-3\) or above \(3\) cover only 0.3\% and are therefore considered anomalies. Using this method, the outliers for each attribute are detected and the true and false positive rates are calculated.

The same approach is taken for the IQR method. This method does not require normally distributed data. To calculate the IQR the data is sorted and then split in four intervals, each containing 25\% of the data. The first quartile is called the lower quartile \(Q_1\) and is the point that splits of the lowest 25\% of the data. It is the middle number between the lowest record and the median of the data. The second quartile \(Q_2\) is the median and the third or upper quartile \(Q_3\) splits of the top 25\%. The IQR is the difference between the third and the
first quartile; \(Q_3 - Q_1\). An instance is considered to be anomalous when it has a value more than 1.5 times the IQR below the lower quartile (\(Q_1\)) or more than 1.5 times the IQR above the upper quartile (\(Q_3\)).

4.3 Distance-based method

The results from the methods discussed in section 4.1 and 4.2 gave the impression that it would be difficult to detect outliers in this dataset. To further investigate this a k-nearest neighbour based algorithm is used. This algorithm can be used to detect outliers using the assumption that normal records are in majority and are close to each other. When mapping all instances to a feature space, the normal records would form relatively big clusters whereas the anomalous instances would lie outside these clusters and could therefore be detected. An example can be seen in figure 4.2 [CBK07]. The clusters \(N_1\) and \(N_2\) are groups of similar instances. The points \(o_1\) and \(o_2\) as well as the group \(O_3\) are outliers.

![Figure 4.2: Anomalies.](image)

For this approach the distance between all instances has to be calculated. The instances can be viewed as points in \(R^n\). There exist several distance measures but the Euclidean distance is most often used for this. However, the NSL-KDD dataset contains not only numerical but also nominal attributes. Simply computing the Euclidean distance between all values is not possible.

This problem is solved by using the Gower’s dissimilarity measure that is implemented in the R package ‘cluster’ [MRS+16]. The distance \(d_{ij}\) between two instances is the weighted mean of the contribution \(d(ij, k)\) of each attribute with weight \(w_k\delta(ij; k)\). The contribution of numerical attributes is the absolute difference between both values divided by the total range. For nominal and binary attributes the contribution is 0 when the two values are equal and 1 otherwise. \(w_k\) is the weight of variable \(k\) and can be set if this is desired. The default weight for each attribute is 1. \(\delta(ij; k)\) is 0 or 1. It is 0 when the attribute has missing values for one or both instances or when the attribute is asymmetric binary with both values zero. For all other conditions
\(\delta(ij;k) \) is 1. This can be summarized by the following formula [SHR]:

\[
d_{ij} = d(i,j) = \frac{\sum_{k=1}^{p} w_k \delta(ij;k)d(ij,k)}{\sum_{k=1}^{p} w_k \delta(ij;k)}
\] (4.2)

Before the algorithm is applied to the dataset the data has to be preprocessed. All numerical attributes are normalized so that they have a range from 0 to 1. This is done to assure that an attribute with a large range has the same effect on the total distance as an attribute with a smaller range. It is also possible to normalize the data in another way.

After normalizing the data the dissimilarity matrix is computed using the Gower’s dissimilarity measure. For each instance the average distance between its \(k \) nearest neighbours is computed. This is done for \(k = 10 \), \(k = 100 \) and \(k = 1000 \). The instances with the highest average distances are believed to be anomalous.

This technique is used for the complete test set but also for subsets of this set containing normal instances and instances corresponding to one attack type. When looking at one attack type, the number of attacks is brought back to 1% of the subset when the initial percentage was higher. Aside from this random samples are taken from all attacks to create sets that consists for 1% of attacks and for 99% of normal observations.
Chapter 5

Evaluation

In this chapter the results from the experiments explained in the previous chapter are discussed.

5.1 The predictive strength of each attribute

A stacked bar chart was created for each attribute in the training set to visualize the distribution of attacks and normal instances. Many attributes had a bar chart that looked similar to figure 5.1. Around 99% of instances have the same value so that all instances with other values are detected as outliers.

![Figure 5.1: Stacked bar chart for duration.](image)

Sometimes these outliers are mostly attacks. An example of this is the attribute same_srv_rate, see figure 5.2. More often the outliers contain more normal instances than attacks, as seen in figure 5.3, or a distribution that is roughly equal.
5.1. The predictive strength of each attribute

Figure 5.2: Outliers are mostly attacks.

Figure 5.3: Outliers are mostly normal.

For the 5% and 10%, or less when the most frequent values cover more than 95% or 90% of instances respectively, of instances with the least frequent values the percentage of attacks is calculated. The results are summarized in figure 5.4 and 5.5. These figures show that there are many attributes that have less attacks than normal instances with uncommon values. However there are also attributes that seem promising when it comes to detecting attacks.

Figure 5.4: 5% least frequent values.

Figure 5.5: 10% least frequent values.

For each numerical attribute the z-score and IQR are calculated based on the difference between the prediction made by a random forest and the actual value of each instance. When using the z-score method to detect outliers it is important that the data is normally distributed. Since the distribution of most attributes looks like figure 5.1, this is not the case for this dataset. This makes it impossible to detect outliers using this method, which can be seen in the results. The true positive rate for each attribute was between 0.00085 and 0.073. The false positive rate ranged from 0.0001 to 0.054. This means that hardly any observations are considered outliers.

Using the IQR method gave slightly better results. The true positive rate ranged from 0.11 to 0.61, the false positive rate form 0.0099 to 0.38. Although the true positive rate went up, the false positive rate is also higher which implies that more observations are believed to be outliers but the detection rate is not necessarily better. In fact the number of false positives is often relatively higher when using the IQR method instead of
5.2 Combining two attributes

If an instance is detected as an outlier by one attribute it could be an attack. If another attribute also detects this instance as an outlier, the likelihood of it being an attack increases. To test whether this holds for the instances in this dataset the number of attacks and normal observations are counted for the 10\% least frequent values in pairs of attributes. Since the amount of attacks in this dataset is high, the same is done for the 25\% least frequent values.

For most pairs of attributes there are hardly any outliers. The remaining pairs mostly have a very high false positive rate. However there are a few pairs with a very high true positive rate. Almost all of these pairs involve the attributes service, flag, rerror_rate, same_srv_rate, srv_rerror_rate, diff_srv_rate and count. The attacks detected using this method are often the same for each pair. These attacks are neptune, smurf, portsweep, teardrop, ipsweep, nmap and satan. This group includes all types of probing attacks in the training set and some DoS attacks. Since neptune makes up a large part of all attacks in the dataset, the experiment is run again after removing neptune from the set. Doing so results in a dramatic decrease in the percentage of the attacks detected.

5.3 Distance-based method

The former results give the impression that it will be very hard to detect anomalies in this dataset. A k-nearest neighbour-based algorithm is used to investigate this further. The results for running this algorithm on the whole test set computing the average distance to 10, 100 and 1000 closest neighbours and looking at the 2500 instances with the highest average are in table 5.1.

<table>
<thead>
<tr>
<th>k</th>
<th>Attacks</th>
<th>Normal</th>
<th>% of attacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1630</td>
<td>870</td>
<td>65.2%</td>
</tr>
<tr>
<td>100</td>
<td>1855</td>
<td>645</td>
<td>74.2%</td>
</tr>
<tr>
<td>1000</td>
<td>1912</td>
<td>588</td>
<td>76.5%</td>
</tr>
</tbody>
</table>

Table 5.1: Outliers in test set.

From this table it becomes clear that the number of neighbours k is very important. The percentage of normal values in the group of outliers is rather high. This might be because the number of attacks in the test set is extremely high. To determine if this is the case the experiment is done again with subsets of the test set. First subsets are created containing all normal instances and instances from one type of attack. When an attack type covers more than 1\% of the subset, the number of instances of this type is brought back to 1\%. The
results are in figure 5.6 to 5.11.

Figure 5.6: All attacks of one type, $k = 10$.

Figure 5.7: Maximum of 1% of attacks of one type, $k = 10$.

Figure 5.8: All attacks of one type, $k = 100$.

Figure 5.9: Maximum of 1% of attacks of one type, $k = 100$.

Figure 5.10: All attacks of one type, $k = 1000$.

Figure 5.11: Maximum of 1% of attacks of one type, $k = 1000$.

5.3. Distance-based method
Decreasing the number of attacks increases the detection rate. This is expected because when there is a large group of attacks of the same type these instances have more close neighbours which lowers the average distance. Since decreasing the number of attacks increases the detection rate the last type of subset created are subsets containing all normal values and a random sample of attacks that covers 1\% of the subset. Figure 5.12 and figure 5.13 show some results.

![Figure 5.12: Sample 1.](image1)

![Figure 5.13: Sample 2.](image2)

The outliers cover 5\% of the dataset whereas all attacks only cover 1\%. Regardless of the number of neighbours k that is used, the percentage of attacks that are detected is very low for most attacks. It also highly depends on the sample which and how many attacks are detected.
Chapter 6

Conclusions

The aim of this thesis was to investigate the possibility of detecting cyber attacks using unsupervised anomaly detection. This is done by applying statistical methods and a distance based algorithm to the NSL-KDD dataset. The results show that this cannot be done reliably using the methods discussed in this paper. The true positive rate is far too low and the false positive rate way too high. There does not seem to be a pattern in the detected attacks. This is most likely caused by the fact that there is no clear distinction between the values of normal instances and attacks.

The difference between the accuracy of supervised methods and the unsupervised methods used in this thesis is dramatic. Even if it would be possible to reach a true positive rate around 90% there would be too many false alarms. In future research other methods can be tried for this and other datasets. It might however be more useful to look at contextual anomalies.
Appendix A

createstackedbar.R

Create stacked bar chart for each attribute showing the
distribution of attacks and normals
Parameters have to be changed depending on the attribute
If necessary uncomment the code for the right type of attribute
Comment out the part of the code for the wrong type of attribute.

library('pracma')

train <- read.csv("KDDTrain+.txt")
train <- train[-43] # remove number attribute
attack <- train[42] != 'normal' # boolean vector with true for attack, false for normal

For numeric attributes:
attribute <- train[1] # Select the attribute
Change the range and number of bars if necessary:
s <- round(seq(0, max(attribute), length.out = 100), digits = 0)
n <- length(s)

normal <- mat.or.vec(n,1)
attacks <- mat.or.vec(n,1)

for(i in 1:n){ # Choose which bars should be plotted
 normal[i] <- sum(attribute >= s[i] & attribute < s[i+1] & attack == FALSE)
attacks[i] <- sum(attribute >= s[i] & attribute < s[i+1] & attack == TRUE)
}

For categorical and binary attributes:
attribute <- train[2] #Select the attribute
s <- as.matrix(unique(attribute)[1])
n <- nrow(unique(attribute))
#
normal <- mat.or.vec(n,1)
attacks <- mat.or.vec(n,1)
#
for(i in 1:n){ #Choose which bars should be plotted
normal[i] <- sum(attribute == s[i] & attack == FALSE)
attacks[i] <- sum(attribute == s[i] & attack == TRUE)
}

#Create plot
counts <- rbind(attacks, normal)
barplot(counts, col=c('darkblue', 'red'), main = colnames(attribute),
 legend = rownames(counts), names.arg=s, las=2, cex.names=0.6)
For all attributes calculate the percentage of attacks
and normals in the top 5% and 10% of least frequent values
For all pairs of attributes count the percentage of attacks
and normals in the top 10% and 25% of least frequent values

prepare data
train <- read.csv("KDDTrain+.txt")
train <- train[-43] # remove number attribute
attack <- train[42] != 'normal' # boolean vector: true for attack, false for normal
colnames(attack) <- 'attack'
train <- cbind(train, attack)
train <- train[-20] # attribute has only one value
forplot <- matrix(data = NA, nrow = 40, ncol = 2)

sink(file = 'outlier-count-top.txt', append=TRUE)
percentage <- 90 # percentage covered by most frequent values
cat("\nPercentage of data with least frequent values is min\n", percentage, sep="")
number of outliers per attributes least frequent values
for(i in 1:40){
 # most frequent values:
 highestfreq <- as.data.frame(sort(table(train[i]), decreasing = TRUE))
 sum <- highestfreq$Freq[1] # number of observations with most frequent value
 k <- 1 #...
if the most frequent value does not cover x% of observations

```r
while(sum < (length(attack)/100*percentage)){
  k <- k + 1
  sum <- sum + highestfreq$Freq[k]
}
```

```r
val <- as.vector(highestfreq$Var1[1:k])
sub <- subset(train, !(as.matrix(train[i]) %in% val),
               select = c(colnames(train[i]), colnames(train[42])))
```

```r
numnor <- table(sub$attack)[1]  # number of normals
numatt <- table(sub$attack)[2]  # number of attacks
numtot <- dim(sub)[1]  # total observations
pertot <- numtot/length((attack))*100  # percentage of observations
peratt <- numatt/numtot*100  # percentage of attacks
pernor <- numnor/numtot*100  # percentage of normals
```

```r
# Outliers per pair of attributes

```
percentage <- 75 # percentage covered by most frequent values
countMostlyAtt <- o # number of pairs with mostly attacks as outliers
countMostlyNor <- o # number of pairs with mostly normals as outliers

sink(file = '2-atrr-outlier-count-25p.txt', append=TRUE)
cat("\n\nPercentage of data with most frequent values is \min \), percentage, sep="")
for(i in 1:40){
 # outliers for attribute 1
 highestfreq1 <- as.data.frame(sort(table(train[i]), decreasing = TRUE))
 sump1 <- highestfreq1$Freq[1] # number of observations with the most frequent value
 k <- 1
 # if the most frequent value does not cover x% of observations:
 while(sump1 < (length(attack)/100+percentage)){
 k <- k + 1
 sump1 <- sump1 + highestfreq1$Freq[k]
 }

 # outliers for attribute 2
 for(j in 1:40){
 val1 <- as.vector(highestfreq1$Var1)[1:k]
 sub1 <- subset(train, !(as.matrix(train[i]) %in% val1),
 select = c(colnames(train[i]), colnames(train[j]),
 colnames(train[42]), colnames(train[41])))
 highestfreq2 <- as.data.frame(sort(table(train[j]), decreasing = TRUE))
 sump2 <- highestfreq2$Freq[1] # number of observations with the most frequent value
 k <- 1
 # if the most frequent value does not cover x% of observations
 while(sump2 < (length(attack)/100+percentage)){
 k <- k + 1
 sump2 <- sump2 + highestfreq2$Freq[k]
 }
 val2 <- as.vector(highestfreq2$Var1)[1:k]
 sub2 <- subset(sub1, !(as.matrix(sub1[2]) %in% val2),
 select = c(colnames(train[i]), colnames(train[j]),
 colnames(train[42]), colnames(train[41])))
 }
numnor <- table(sub2$attack)[1]
umatt <- table(sub2$attack)[2]
umtot <- dim(sub2)[1]
pertot <- numtot/length((attack))*100
peratt <- numatt/numtot*100
pernor <- numnor/numtot*100
attacktypes <- table(sub2[4])

if more attacks than normal outliers:
if(numtot > 0 & & !is.na(peratt) & & (peratt > pernor || is.na(pernor))){
 countMostlyAtt <- countMostlyAtt + 1
}

if more normal than attack outliers
if (numtot > 0 & & !is.na(pernor) & & (pernor > peratt || is.na(peratt))){
 countMostlyNor <- countMostlyNor + 1
}

if(pertot > 1){ # found minimal of 1% outliers
 cat("\n\n\nattribute 1 is ", colnames(train[i]), sep=""
 cat("\n\n\nattribute 2 is ", colnames(train[j]), sep=""
 cat("\n\n\npercentage is ", pertot, sep=""
 cat("\n\n\nnumber of total is ", numtot, sep=""
 cat("\n\n\nnumber of attacks is ", numatt, sep=""
 cat("\n\n\nnumber of normal is ", numnor, sep=""
 cat("\n\n\npercentage of attacks is ", peratt, sep=""
 cat("\n\n\npercentage of normal is ", pernor, sep=""
 print(attacktypes)
}
}

cat("\n\n\nnumber of attributes with most attack outliers", countMostlyAtt, sep=""

sink()
Appendix C

randomforest.R

Make predictions for each attribute in the test set
by building a random forest on other 40 attributes
using the training set
For each prediction calculate z-score and IQR
for all instances and detect outliers

The categorical attribute service had too many unique
values for random forest. The least frequent values
are grouped together to bring back the number of
values to 53

library('randomForest')
library('EMCluster')

Read data
train <- read.csv("Train-anomaly-ser.txt")
test <- read.csv("Test-anomaly-ser.txt")
testtype <- read.csv("Test-atttype.txt")
testtype <- testtype[42] # attack types of test set
teAtt <- test[42] # anomaly or normal
train <- train[-42]
test <- test[-42]
```

pz <- c()

# calculate zscore
calc_zscore <- function(predictions){
  pmean <- mean(predictions)
  psd <- sd(predictions)*sqrt((length(predictions)-1)/(length(predictions)))
  scores <- (predictions-pmean)/psd
  pz <- cbind(pz, scores)
  outh <- (scores < -3) | (scores > 3)
  return(outh)
}

# calculate iqr
calc_iqr <- function(predictions){
  iqra <- IQR(predictions)
  quar <- quantile(predictions)
  lffence <- quar[2] - 1.5*iqra
  ufence <- quar[4] + 1.5*iqra
  outiqr <- (predictions < lffence) | (predictions > ufence)
  return(outiqr)
}

# calculate true and false positive rates for z-score and iqr and print to file
calc_rates <- function(outliers, filename, train, i){
  tprz <- tpz/(tpz + fnz)
  fprz <- fpz/(fpz + tnz)
```
tpriqr <- tpiqr/(tpiqr + fniqr)
fpriqr <- fpiqr/(fpiqr + tniqr)

sink(filename, append=TRUE)
cat("\n\nattribute is ", colnames(train[i]), sep="")
cat("\nZ-score true positive rate:", tprz, sep="")
cat("\nZ-score false positive rate:", fprz, sep="")
cat("\nIQR true positive rate:", tprriqr, sep="")
cat("\nIQR false positive rate:", fpriqr, sep="")
sink()

Random forest
for(i in 1:41){
 trPred <- train[-i]
 trResp <- as.matrix(train[i])
 tePred <- test[-i]
 teResp <- as.matrix(test[i])

 if(is.numeric(trResp[1])){
 set.seed(71)
 rf <- randomForest(x=trPred, y=trResp,
 xtest=tePred, ytest=teResp, ntree=50, importance=TRUE)
 predictions <- rf$test$predicted - teResp

 if(is.numeric(predictions[1])){
 outz <- calc_zscore(predictions)
 outiqr <- calc_iqr(predictions)
 outliers <- cbind(outz, outiqr, teAtt, testtype)
 colnames(outliers) <- c('zscore', 'IQR', 'anomaly', 'attack type')

 if(is.numeric(trResp[1])){
 filename <- paste(colnames(train[i]), "-outliers.txt", sep="")
 write.csv(outliers, file=filename)
 }
 }
 }
}
calc_rates(outliers, "z-iqr-data.txt", train, i)
Appendix D

nearestneighbour.R

Find the top n data points whose average distance
to the k nearest neighbours is greatest
This is done for:
The whole test set
Subsets containing one type of attack and normal instances
Subsets consisting of 1% of attacks and 99% of normals

library("kknn")
library("cluster")
library("class")

Load data

test <- read.csv("KDDTest+.txt")

Preprocess data

test <- test[-43] # remove number attribute
testAttack <- test[42] != 'normal' # boolean vector: attack is true
colnames(testAttack) <- 'attack'
test <- cbind(test, testAttack)

norTest <- test[1:41]

normalize attribute x
normalize <- function(x) {
 n <- x - min(x)
 d <- max(x) - min(x)
 return(n/d)
}

normalize dataset
for(i in 1:41) {
 if(is.numeric(as.matrix(test[i])) & & (max(test[i]) > 1 || min(test[i]) < 0)) {
 norTest[i] <- normalize(test[i])
 }
}

dissimilarity <- daisy(norTest, metric = 'gower',
 type = list(sy))

n <- attr(dissimilarity, 'Size') # number of observations
k <- 10 # k nearest neighbours

neighbours <- matrix(data = NA, nrow = n, ncol = 4)

debugger()

calculate the average distance between i and k nearest neighbours
for(i in 1:n) {
 dist <- {}
 numbers <- {}
 for(j in 1:n) {
 if(j != i) {
 # distance between i and j:
 dist <- append(dist, dissimilarity[n*(i-1) - i*(i-1)/2 + j-1])
 numbers <- append(numbers, j) # row index
 }
 }
 distances <- as.data.frame(cbind(numbers, dist)) # distances between i and others
 ord <- as.matrix(distances[order(distances$dist),])
 neighbours[i, 1] <- i
 # average distance between i and k nearest neighbours:
neighbours[i, 2] <- mean(ord[1:k, 2])
neighbours[i, 3] <- mean(ord[1:100, 2]) # k = 100
neighbours[i, 4] <- mean(ord[1:1000, 2]) # k = 1000
}

neighbours <- as.data.frame(neighbours)
sortedk <- as.matrix(neighbours[order(neighbours$V2, decreasing = TRUE),])
sorted100 <- as.matrix(neighbours[order(neighbours$V3, decreasing = TRUE),])
sorted1000 <- as.matrix(neighbours[order(neighbours$V4, decreasing = TRUE),])

sink("outliers−nn.txt", append = TRUE)
print(sortedk[1:top])
outliersk <- norTest[sortedk[1:top], 42:43]
print(summary(outliersk))

print(sorted100[1:top])
outliers100 <- norTest[sorted100[1:top], 42:43]
print(summary(outliers100))

print(sorted1000[1:top])
outliers1000 <- norTest[sorted1000[1:top], 42:43]
print(summary(outliers1000))
sink()

Subsets containing one type of attack and normal instances
av <- cbind(norTest[1:22543, 42:43], neighbours[, 2:5])
attacktypes <- unique(norTest$attack_type) # attack types
attacktypes <- attacktypes[-2] # delete 'normal'
normal <- subset(av, attack_type == 'normal')
p <- 5 # percentage of data considered outliers
top <- floor(dim(av)[1]/100+p) # number of outliers
bar <- matrix(data = NA, nrow = 37, ncol = 4)
colnames(bar) <- c("attack_type", "perc.detected", "perc.in.data", "perc.detected/perc.in.data")
sink("nnperattack1000.ip.txt", append=TRUE)
cat("\n\nK=1000")
for(i in 1:37){
 att <- sapply(attacktypes[i], as.character)
natt <- sum(av$attack_type == att) # number of attacks of this type
 perc <- natt/dim(av)[1]*100

 if(perc > 1){ # attack covers more than 1% of data
 sub <- rbind(normal, subset(av, attack_type == att)[1:(floor(top/p))],)
natt <- floor(top/p)
 } else{
 sub <- rbind(normal, subset(av, attack_type == att))
 }
 sortsub <- as.matrix(sub[order(sub$V4, decreasing = TRUE),])
 outliers <- sortsub[1:top, 1]

 bar[i, 1] <- att
 bar[i, 2] <- sum(outliers == att)/natt*100
 bar[i, 3] <- perc
 bar[i, 4] <- (sum(outliers == att)/natt*100)/(perc)

 cat("\n\nAttack type is ", att, sep="")
 cat("\nNumber of attacks of this type in the dataset is ", natt, sep = "")
 cat("\nPercentage of this type in the dataset is ", natt/dim(sub)[1]*100, sep = "")
 cat("\nNumber of attacks detected ", sum(outliers == att), sep = "")
 cat("\nPercentage of attacks detected ", sum(outliers == att)/natt*100, sep = "")
 cat("\nSummary of detected records:")
 print(table(outliers))
}
sink()

barplot(sapply(bar[, 2], as.numeric), col = 'darkblue', names.arg = bar[, 1],
 main = "Perc.detected.per.attack.type", ylab = "Perc.detected", las = 2)
Subsets consisting of 1% of attacks and 99% of normals

allatt <- subset(av, attack_type != 'normal')

pdf(file = "nnrsamp-outliers.pdf", onefile = TRUE)

for(i in 1:20){ # number of samples
 # create subset
 na <- floor(dim(normal)[1]/99)
 sam <- allatt[sample(nrow(allatt), size = na),]
 sam <- rbind(normal, sam)
 na <- floor(dim(sam)[1]/100*p)

 # Find outliers
 sortsam <- as.matrix(sam[order(sam$V4, decreasing = TRUE),]) # k = 1000
 outliers <- sortsam[1:na, 1]
 x <- as.data.frame(table(droplevels(sam$attack_type)))
 colnames(x) <- c('attack', 'in_sample')
 y <- as.data.frame(table(outliers))
 colnames(y) <- c('attack', 'detected')
 xy <- merge(x, y, by = intersect(names(x), names(y)), all.x = TRUE)
 xy[is.na(xy)] <- 0
 xy <- cbind(xy, xy$detected/na*100)
 xy <- cbind(xy, xy$detected/xy$in_sample*100)

 sink("nnrandomsamples-top5p.txt", append = TRUE)
 cat("n
Sample_number:", i, sep = "")
 cat("n")
 print(xy)
 sink()

 barplot(xy[, 4], names.arg = xy[, 1], col = "darkblue",
 main = "Distribution of outliers", las = 2, cex.names = 0.6)
 barplot(xy[, 5], names.arg = xy[, 1], col = "darkblue",
 main = "Percentage of attack detected", las = 2, cex.names = 0.6)
}

dev.off()

graphics.off()
Bibliography

