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Abstract

Klaverjas is one of the most popular card games in the Netherlands.
It is a trick-taking card game, resembling the French game Belote and the
German Jass. It is played with four players, of which the opposite players
are team mates. In a trick, the highest (trump) card is the winner. The
goal for a team is to obtain more points in a game than the other team. A
full match usually consists of 16 games.

In this thesis a Monte Carlo strategy will be proposed for Klaverjas,
and several methods of improving the strategy will be elaborated. The first
improvement focuses on the playouts for the Monte Carlo player. Pure
Monte Carlo normally does these playouts randomly, here a semi-random
player is created to rule out some moves that would be considered “dumb”.
More improvements focus on the distribution of the cards in the playouts.
The pure Monte Carlo player redistributes these cards randomly, but in
a way no player gets a card he cannot have (otherwise he would have
cheated according to game rules). As an improvement these cards can be
distributed based on a probability distribution.

Two of these probability distributions will be presented: one for the
probability a player has to receive a certain suit and one for the probability
a player has to receive a certain trump card. These probabilities are
supposed to make use of more knowledge gained throughout the progress
of a game.

The different strategies proposed in this thesis were tested against each
other. From this experiment can be concluded that the Monte Carlo player
with probability distribution performed best of the strategies described in
this thesis.
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1 Introduction

Klaverjas is a traditional Dutch card game, played mostly in the Netherlands.
The name dates back to around 1800 and 1895 [1] and is composed of the Dutch
words “Klaver” and “Jas”. “Klaver” translates to “Clubs”, and this is the trump
suit each first game in a full match. “Jas” is another word for the Jack of trumps,
which is the highest card in the game.

The game is played throughout the Netherlands, although the rules may
differ among regions. It is played often in competitions, many clubs facilitate
these competitions. The “Nederlandse Klaverjas Uni”[2] has 321 clubs registered,
and facilitates Dutch Championships in Klaverjas.

For this thesis we research the effectiveness of a Monte Carlo strategy for
Klaverjas, and explore ways to enhance this technique. A computer program
was created in which the game can be played by and against human players and
against different strategies explained in this thesis. These strategies include a
random player, which simply does a random (legal) move. This player was also
enhanced by ruling out some moves that are generally are not considered as
smart moves, this will be called the semi-random player. These two players will
both be used by different types of Monte Carlo players.

The idea of a Monte Carlo strategy in Computer Science is for each possible
move to play a number of simulations, and choose the move that had the highest
average score. For Klaveras we created Monte Carlo players based on the “pure”
random player, and on the semi-random player.

We also try to utilize as much knowledge gained from the progress of the
game as possible, much like a skilled human player does. Throughout the game
it may become clear that a player has many, or few, cards of a certain suit. We
provide a way in which the Monte Carlo player can take this type of information
into account.

The game is explained in Section 2, and in Section 3 the implementation of
the game is described. In Section 4 we propose three strategies for the computer
players to determine whether they should play or pass on a hand of cards. The
pure Monte Carlo player for the game itself is described in Section 5, and in
Section 6 the different methods of enhancing the pure Monte Carlo player are
elaborated. Finally, in Section 7 the different strategies are tested against each
other and against human players, and in Section 8 we arrive at a conclusion.

This thesis is a bachelor thesis written for the Leiden Institute of Advanced
Computer Science (LIACS) at Leiden University. The supervisors for this thesis
are Walter Kosters and Hendrik Jan Hoogeboom.

1.1 Related work

The main strategy applied in this thesis is Monte Carlo search. Monte Carlo (or
the extended Monte Carlo Tree Search) has been applied to many games and
problems in Computer Science. Klaverjas is, unlike games like Chess or Go,
an imperfect information game. Not all knowledge is known, since players do not
know the other players’ cards. More information on Monte Carlo Tree Search for
imperfect information games can be found in [3].

A three-player trick-taking card game resembling Klaverjas to which a
Monte Carlo player also has been adapted is the German game Skat. This
recursive Monte Carlo algorithm is described in [4].
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Although not much research has been done on Klaverjas, for the resembling
trick-taking card game Bridge there has even been a World Computer-Bridge
Championship since 1997 [5]. The winner of the 2016 world championship was
the program Wbridge5, the results can be seen in [6].

Ever since the IBM chess-computer Deep Blue defeated the world champion
Kasparov in 1997 [7], the world champions of many games have been beaten by
computers. For the game Go this has always remained a large challenge, due to
its large search space. Until recently all the computer Go players were considered
very weak, and none had been able to beat a professional player. This changed in
2016, when Google’s AlphaGo beat Lee Sedol, the top Go player in the world
over the past decade [8]. AlphaGo relied heavily on computer power and two
neural networks, but it also utilizes Monte Carlo Tree Search for determining its
moves.

2 The Game

In this chapter we will explain the basic rules of Klaverjas. The game is played
in many different variants, which will be displayed in this chapter. We will mainly
focus on the Rotterdam variant with classical bidding system.

2.1 Explanation

The Dutch game Klaverjas is a trick-taking card game played by P = 4 players.
Each player has a hand consisting of 8 cards, totalling up to 32 cards in the
game. Only the cards 7 and higher from the standard deck are used to play (also
called the Piquet-deck [9]). A game is finished when all players have played all
of their 8 cards. The players sitting opposite from each other are team mates,
and the goal is for each game to gather more points than the opponent.

Each game begins by determining which suit will be trump; this will be
explained in Section 2.2. After the trump suit is determined the elder hand (the
player sitting next to the dealer, clockwise) begins by playing a card. Every
next player has to follow suit. If a player cannot follow suit he1 must play a
trump card, if he also cannot play a trump card any card is possible. If a trump
card was already played this trick each next trump must be higher than the one
previously played, but if a player does not have a higher trump he must play a
lower one. When he also cannot play a lower trump card, any card is possible.
The player who played the highest card wins the trick and takes the four cards
played, and trump cards always beat non-trump cards. The order and points of
the cards are shown in Table 2.1. The winner of this trick begins the next trick
by playing a card, and this continues until all cards are played. The last trick
is worth 10 additional points. Then the points are counted and written down,
and the next hand can begin. Normally 16 games are played in a full match
of Klaverjas. The full rules of the game can be found at [10], and a full for
learning Klaverjas can be found at [11].

1Throughout the thesis the word he is used to indicate he/she
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Non-trump Points Trump Points
Ace 11 Jack (“jas”) 20
10 10 9 (“nel”) 14
King 4 Ace 11
Queen 3 10 10
Jack 2 King 4
9 0 Queen 3
8 0 8 0
7 0 7 0

Table 1: Order and points of the cards

2.2 Determining the trump suit

Besides the 32 playing cards we have the other 20 cards, consisting of the cards
6 and lower of the standard deck. These cards are also shuffled at the beginning
of the game, and will be used to determine the trump suit. Before each game a
card will be shown of this deck, representing a potential trump suit. The elder
hand will start by saying if he will play or pass on this potential trump suit. If
he plays the game begins and the elder hand can play a card. If he passes the
player sitting next to him will have to play or pass. If all players have passed on
a suit a new one will be shown from the deck. If again all players pass, the elder
hand will have to play on the next suit in the deck, regardless of whether or not
it has been shown already.

When a player plays on a suit it is his objective to gather more points than
his opponent. If the playing team has fewer points than the opponent all of the
points will go to the opponent. In this case he fails2 and the playing team gets 0
points.

2.3 Roem

Another important aspect of Klaverjas is the concept of “roem”3. Roem occurs
for example when three cards are played in consecutive order in a trick, which
gives additional points to the winner of that trick. There are five different cases
of roem. The roem is also written down, next to the normal points, and is added
to the points of a team at the end of the game.

Each trick, four cards are played by the four different players. If three of
these are in the same suit in consecutive order, the winner of the trick gets 20
points roem, see Figure 1. The consecutive order of these cards is different from
the rank of cards (or trumps) in the Klaverjas-game, namely 7, 8, 9, 10, J, Q,
K, A.

When all four cards in a trick are same-suited cards and in consecutive order
even more points are awarded to the team that wins the trick: not just 20, but
50 additional roem-points are added.

When the King and Queen of the trump suit are both played in a trick we
speak of Marriage4, and 20 additional points are awarded to the winner of the
trick. This can also be in combination with a 3- or 4-card roem. This way up to

2The original Dutch term for this is nat gaan.
3The Dutch word roem roughly translates to fame.
4The original Dutch term is Stuk.

5



70 roem-points can be awarded when for example Jack, King, Queen and Ace of
the trump suit are played in a trick.

When in a trick all 4 cards are of the same type but different suit, 100 extra
points are awarded to the trick winner. This type of roem almost never occurs,
usually of the time a player can prevent it by playing a different card.

Figure 1: Example of 20 points of roem.

2.4 Variants

Klaverjas is a popular game in the Netherlands, but even there the rules
differ in some regions. In this thesis we mainly focus on the Rotterdam rules,
but in the program the Amsterdam rules are also supported. The Rotterdam
rules are mainly played in the provinces Zuid-Holland, Zeeland, Noord-Brabant,
West-Vlaanderen and Oost-Vlaanderen, the Amsterdam rules dominate in the
rest of the Netherlands and Belgium. In this section we will cover some variants
of the game played throughout the country.

2.4.1 Amsterdam

With the Rotterdam rules, players must always play a higher trump card when
possible. When the game is played with Amsterdam rules, this is not necessary
when the trick is to be be won by a player’s team mate. For example, when a
player cannot follow suit he has to play a trump card. When his team mate also
cannot follow suit, according to the Rotterdam rules he has to play a higher
trump. According to the Amsterdam rules, this is not necessary and this player
can play any card. Due to this rather small change in the game rule tactics might
change for the players.
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2.4.2 Variants in determining the trump suit

The rules for determining the trump suit explained in Section 2.2 are known
as classical bidding system. There are some minor variants on this system, and
some major ones.

The minor variants focus on when suits are turned from the stack of remaining
cards (6 and lower from the deck), and all players passed on both suits. According
to the classical rules, the elder hand must now play on the next suit to be turned
from the stack. There is a variant in which all cards need to be dealt again. This
is mostly used in competitive games. Another variant lets the elder hand pick a
suit after all players have passed.

In the Free choice variant the elder hand can choose a trump suit, or pass.
When a player passes, the next player can pick a suit or pass. When all players
have passed, the elder hand must pick a suit.

There is also a variant called Utrecht. In this variant players cannot play or
pass, but every game the elder hand has to pick a suit. This way all players play
an equal amount of games, but players are sometimes forced to play on hands
they would normally pass on every suit.

The variant that differs the most from the classical rules is the Leiden bidding
system. Here the bidding system of Bridge has been adapted to the Klaverjas
rules. Because this changes the rules much more drastically than the other
variants, we will not go into detail regarding this variant, although it is becoming
increasingly popular among Klaverjas players.

2.5 Common tactics

Because the game of Klaverjas is played in two teams who cannot communicate
about their cards, a large amount of common tactics are known among players.
Players should know and follow these rules so team mates can rely on each other
to make sure they do not unnecessarily waste points. In this section some of
these tactics are presented. One of our goals is to see if the program can teach
itself (some of) these tactics.

2.5.1 Tactics in playing

When a player plays5 a game, he is basically saying he has the best hand. If he
and his team mate do not get more than half of the points, they fail and get
0 points. Therefore it is important for players to play together and know what
they can expect from each other in order to win the game.

When a player plays, most of the time he wants to get all of the trump cards
of his opponents out of the game. Often he will have the highest trump, the Jack
of trumps, and most of the time he will play this card to get as many trumps
out of the game as possible. Because this is the highest card in the game he will
always win this trick, and he can lead the next trick. Then he can choose to
continue playing trump cards to get more of his opponents’ out of the game or
play other suits.

If a player has the elder hand and his team mate has chosen to play in the
phase of determining trump suit, his team mate will most likely have a good
hand and it is wise to have him lead a card as soon as possible. The team mate

5Throughout the thesis the player that plays should be interpreted in the sense of Section 2.2.

7



can then choose to get trump cards out of the game as mentioned earlier. The
player could assume that his team mate probably has the Jack of trumps, so he
can play a trump card to let his team mate win this trick by playing his Jack.
This way it can be smart for the player to play a card that is sensitive for roem,
like the Queen of trumps. If his team mate has the Jack of trumps, the Queen
and Jack will be played and if the opponent must play a 10 or King the playing
team will have extra points for roem, or the opponent may be tempted to play
his 9 to avoid this.

When a player plays the game and he does not have the highest card, he
probably also will want to get the Jack of trumps out of the game as quick as
possible. This could prevent the opponent from winning points by playing a
high trump that the player could otherwise have won, for example by an Ace.
In this case the player can try to get the Jack out of the game by playing a
card high enough that the opponent will have to play his Jack to follow the rule
of always playing a higher trump than previously played in the trick. Players
have to balance playing a high enough card so that the Jack will be played and
not giving too many points to the opponent, given they will most likely win the
trick.

2.5.2 Signalling

Team mates are not allowed to talk about their cards, but it can be very useful to
know for example what suit your team mate has an Ace of. There are mechanisms
players use to signal their mate which suits they want them to play or not to
play using the cards they play. Here some of these mechanisms are explained.
Most of these can only be used by a player if his team mate is about to win the
trick.

When a player’s team mate is about to win the trick and he has to play a
card, but cannot follow suit, he normally will play a card that adds points (for
example playing a 10 of another suit) to the trick. Instead of adding points he
could also throw a low card (7, 8 or 9), with which he signals his mate that he
has the highest card of that suit. His team mate can then play the suit his team
mate indicated, who can then win that trick as well. A player can also indicate
which suit he does not want to be played. This can be done in the same way
as earlier, but instead of a low card a high card (Jack, Queen, King) of a suit
signals a team mate not to play that suit.

Another way of signalling a team mate which suit to play is by using opposite
suit signals. The idea of this type is similar, it is also used when the trick is about
to be won by a player’s team mate. The difference with the type of signalling
mentioned earlier is that instead of playing a suit that the player wants to be
played later, the player plays the opposite suit, of the same colour. For example,
when a player wants Diamonds to be played, he plays a low card of Hearts. This
way players can signal but keep cards of that suit.

The last type of signalling we will cover is the lead signal. This is a way the
player determining trump and playing the first card can use to signal his team
mate he has a weak trump hand. If he has the Jack of trumps but little else,
he comes out with a low card of another suit. If he does not have the Jack of
trumps, he leads with an Ace of another suit. His mate then knows whether or
not it is safe to play trump cards.
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Teams should agree in advance what types of signalling they will use through-
out the match.

3 Implementation

For the implementation of Klaverjas a C++ program was created in which the
game can be played. Using the program the game can be played by human players
or one of the different algorithms. In this chapter some of the implementation
choices and datastructures are elaborated. A screenshot of the program with the
corresponding cards is shown in Figure 2. The source code of the program can
be found on GitHub [12].

Figure 2: Example of a game state in the computer program, with the corre-
sponding cards played as illustration.

3.1 The cards

The cards in the game are represented by integers in base 8. The suits themselves
are also integers, in a way that a card’s suit can be deducted by simply taking
the first digit. For example, if the card’s number is 23, the suit is 2 (Clubs) and
the card is 3 (King). The order of the numbers of the cards are represented in
Table 2 and the suits is shown in Table 3.

The order of the cards is the same as the order of trump cards. This is done
so that the program can easily check if players played a higher trump than
previously played.

The suits have no specific order, other than that red and black suits alternate
each other for visibility.

The cards and the suits are represented in a simple enum-structure, which is
where they get their numbers. For printing cards and numbers the C++ operator
<< was overloaded to be able to print the enum-structures for cards and suits. This
allows us to use cout to print cards and have them look like the corresponding
symbols. For the Hearts and Diamonds suits, an escape sequence was used to
make them show red if the terminal supports colours.
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Number Card
0 7
1 8
2 Q
3 K
4 10
5 A
6 9
7 J

Table 2: Order and number of cards in the implementation.

Number Suit
0 ♠
1 ♥
2 ♣
3 ♦

Table 3: Order and number of suits in the implementation.

3.2 Cards played

Cards played by the players are kept in a two-dimensional array. With the
standard Klaverjas amounts of players and cards (4 players, 8 cards per
player), the structure of the array is as follows.

The first 8 rows each represent a played trick. The last (9th) row is reserved
for the final scores per team, who played this game, and which suit is trump.
The last (7th) value in this row is a boolean, which is 1 if the playing team were
forced to play (because all the players had passed on two suits) and 0 if they
played the game on this suit by choice. In each of the first 8 rows the first 4
values are cards played by each player that trick. The 5th value is for which
player leads that trick and played a card first, the 6th value is which player won
the trick. The 7th value is the number of points scored in this trick and the last
value is the amount of roem in the trick. These last two values are both to be
awarded to the winner of the trick.

A example of a played game is displayed in Table 4. In this representation
the wind directions represent the cards played by the different players. The first
row of the table is just there for clarification and not present in the actual array.
The dotted lines indicate the difference between the cards played and the other
variables.

3.3 Checking for roem

As explained in Section 2.3, an important aspect of the game is the concept of
roem. The program checks for cards in consecutive order every trick as follows.

To get all the extra points the function begins by checking if all 4 cards have
the same value. As explained in Section 2.3 this is a very rare situation but if it
occurs is worth 100 extra points for the winner. Next the function puts the cards
in a different order. Normally the cards are in order of trump cards, but for roem
they must be in the order described in Section 2.3. The procedure for checking
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South West North East Leads Won Points Roem
♦10 ♣10 ♦K ♦J 0 1 26 0
♠Q ♠J ♠A ♠K 1 2 20 50
♥A ♥9 ♥Q ♥7 2 0 14 0
♣J ♣Q ♣K ♣7 0 0 27 40
♦8 ♠8 ♣8 ♦9 0 2 0 0
♥10 ♠7 ♥J ♥8 2 0 12 0
♦A ♠9 ♣9 ♦Q 0 2 28 0
♦7 ♠10 ♥K ♣A 2 3 35 0
191 61 191 61 0 ♣ 0

Table 4: Example of the two-dimensional array containing the history of a game.

roem is basically putting the cards in that order, using InsertionSort to sort
them, and then checking whether they are in consecutive order. If three of them
are in order 20 points are added, if four are in order 50 points are added. After
this check has completed, the algorithm also checks if Marriage occurs, and if
so 20 additional points are added and the total amount of roem is returned.
Because the cards were already in roem-order and sorted this check is trivial, it
just checks if the Queen of trumps is in the first three cards, and if so it checks
if the next card is the King of trumps.

3.4 Reading files

In order to perform experiments and compare different algorithms in certain
situations, we have to be able to play the game with a predefined configuration
of the cards. In order to define the configuration of cards the functionality to
read files with predefined situations has been built. To this end a file format
was defined, typically with the .kvj extension. These files must contain the
distribution of the cards and the types of the players (e.g., Monte Carlo, Random
or Human players), and can optionally contain the cards played until a certain
point so that the game can continue from that point. The structure of these files
is explained in this section.

The first line of the file contains the types of players. This can for example be
2 0 2 0 for a team of Monte Carlo players against a team of Human players. The
next four lines are used for the distribution of the cards This is done in a way
that the second line of the file represents the 8 cards for player 0 separated by
spaces, the third line represents the cards for player 1, and this continues onto
the fifth line. The sixth line can either contain the trump suit, who plays and
who leads, or just a −1 in order for the trump suit and who plays to be defined
at the beginning of the game. If the game is to be started at the beginning, this
would be the end of the file. In case the game should continue at a certain point,
line 7 contains the current trick the game is in. The next lines are used to define
tricks, by denoting what cards players played in that trick. This is done by first
indicating the cards players played, also separated by spaces. The amount of
lines following line 7 must be equal to the value on line 7. An example of a .kvj

file with one trick played is as follows:
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5 0 1 1

23 12 34 37 0 6 33 36

25 35 14 2 7 16 3 4

11 30 17 20 32 10 27 31

22 1 24 21 15 5 13 26

3 0 0

1

37 35 32 21

In order to create these files a Python script was written, which takes parts
of the output of the program as input to create the file. This way users will
not have to manually input and remember the numbers for cards defined in
Section 3.1.

4 Playing or passing

In the phase of determining which suit will be trump, players can either play or
pass on a certain suit. If they play and not get more than half of all the points
in the game, they get 0 points and the opponent will get all of their roem points.
Because a team might get 0 points if they misjudge their cards, determining if
they play at the beginning of a game is a very important aspect of Klaverjas.
In this section some of the different tactics the program can use in order to
determine to play or pass are explained.

4.1 Using points

In the game of Bridge it is common to use points to give some value to a hand
of cards, and using this value to determine how a player should bid. A common
method for Bridge is called High Card Point (HCP), in which the four highest
cards are given points. In Bridge the four highest cards are Ace, King, Queen
and Jack, and in HCP they are given respectively 4, 3, 2 and 1 points. This
method was first published by Milton Work in 1929 [13]. This method is adapted
to the game of Klaverjas, and used as tactic for playing or passing.

Bridge is played with a full deck of cards, and Klaverjas with just the
cards 7 and higher. Therefore we decided not to use four cards to give value to a
hand, but just the highest three. This way the Ace gets 3 points, the 10 gets
2 points and the King gets 1 point. Because Bridge is played with all of the
cards, the chances are high that a suit can be played more than once without
someone playing a trump card. In Klaverjas these chances are much lower,
because when a suit is played twice without a player playing a trump card, this
suit must have been divided equally among the players. Therefore the chances
are also lower that a player can use a 10 to win a trick, thus we decided that
10 cards only get points when the player has another card of that suit. This
way the player does not have to play his 10 if he knows the trick will be won by
the opponent’s Ace or trump card. The HCP method in Bridge does not take
trump cards into account. In Klaverjas a hand cannot be valued decently if
trump cards are not taken into account, because they have such a big impact on
the game. If a player has a good hand but not many trump cards, there is a big
risk that his high cards are lost to the opponent by their trump cards. Therefore
we decided to give an extra point to each trump card. Because the Jack and 9
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of trumps are the highest trump cards and essential to winning a game, these
cards are given respectively 5 and 4 additional extra points instead of the single
extra point for trump cards.

The total amount of points for this system in the game is 39. One fourth of
this is (rounded) 10, which is what is used as boundary for playing or passing.
This can be tweaked up a bit, making the player somewhat more restrained. 10
points could be the Jack and 9 of trumps with one additional King or trump
card, which can be considered a minimum hand with which half of the points
can be scored.

This strategy for playing or passing is reasonably good, but far from perfect.

4.2 Monte Carlo

As with the game itself, a Monte Carlo strategy was also implemented for
determining whether to play or pass. This way the algorithm can also determine
whether it plays or passes without too much domain knowledge.

As with the implementation of the game the playing or passing algorithm is
based on reshuffling the cards and playing random playouts. It simply divides
the rest of the card randomly over the other players, sets the suit for which the
player has to decide to play or pass as the trump suit and plays the rest of the
game with all four players playing randomly. If the final score for this hand and
trump suit is more than the score of the opponent, the algorithm decides to play.

4.3 Rule-based strategy

Finally a strategy was defined to mimic the way a human player would decide to
play or pass. It looks at how many trumps the player has, if he has the highest
or the second highest trump and how many aces the player has. In the following
cases the algorithm will decide to play:

• If the player has the two highest trump cards, the Jack and the 9, the
algorithm will always play. There might be some cases in which this may
not be a smart move, but in almost all cases this can be considered a good
hand.

• If the player has only the Jack, not the 9, and more than two other trump
cards the algorithm plays. If he has the Jack, not the 9 and less than or
equal to two other trumps the algorithm only plays if the player has at
leas two Aces from the other suits.

• If the player has the 9 of trumps as only trump card the algorithm will
never play. This is not considered a good hand, because if the opponent
has the Jack the chances are high that the opponent will win from the 9
and the player will not have any trump cards left. If however the player
has the 9 of trumps and more than three other trump cards the algorithm
will play. If the player has two or less trump cards, the algorithm will also
only play if the player has two or more Aces.
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5 Pure Monte Carlo

The Monte Carlo technique is a technique widely used in Computer Science,
specifically in Artificial Intelligence. The key idea is to find a reasonably good
move by using random games as playout. The main advantages of this technique
are that very little domain knowledge is needed and that the program can always
run within a reasonable amount of time.

5.1 Explanation

The idea of the Monte Carlo technique is to use random playouts as a basis for
determining what move to play in a game. In this section we will explain the
basis of this technique, and then move to the implementation of Klaverjas.

The basis of an algorithm for playing a game is making decisions. At any
time there can be n different possibilities, each resulting in a different outcome.
There are algorithms which explore all (or many) of the possibilities and the
results, building up the complete (or parts of) the game tree. Examples are
minimax which builds the complete game tree, or alpha-beta pruning which
skips redundant parts of the tree.

The pure Monte Carlo technique does not build this game tree. Instead, for
all of the n possible moves, it plays m random games which all return an end
result. The move with the best average result is then played. So for each move,
a copy of the game is made and the move is played in this copy. Then the game
continues in this copy with random moves for all players. This is repeated m
times.

Because Monte Carlo is based on random playouts, moves that are generally
very bad are also considered. If m is high enough, the idea is that these bad
moves will not get good scores, and therefore will generally not be played. But,
because it is based on randomness and chance, bad moves could be played. It
therefore will often not find the best move, but generally will find a reasonably
good one.

5.2 Reshuffling the cards

For Monte Carlo to be effective in a card game like Klaverjas, every random
playout needs to be played with a different distribution of the cards. This way
(if enough random playouts are performed) most of the possible situations will
have been tried, and the move that performed best on average will be performed.
To this end a method was devised that reshuffles the cards left in the deck.
The cards left are all of the cards without the cards of the current player and
the cards already played. It also takes into account that some players may not
have a certain suit, because they could not follow that suit earlier in the game.
By reshuffling the cards each random playout, hopefully most of the possible
situations (depending on the size of m) will be explored and played out.

Throughout the game, players eventually may not be able to follow a suit
played. In this case they must play a trump card, and if they do not have any
trump cards left they may play any other card. This gives knowledge about a
players hand to the other players, since they now know that he does not have
any cards of that suit left. While reshuffling the cards, we have to take this
information into account to make the Monte Carlo technique perform well. This
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puts a constraint on the distributions of the cards we create. To this end, before
reshuffling the cards we create a matrix consisting of which player may not
receive a certain suit. An example of such a matrix can be seen in Table 5.

Player 0 Player 1 Player 2 Player 3
♠ false false true false

♥ false true true false

♣ false false false false

♦ true true false true

Table 5: Example of a matrix indicating which player may not receive which
suit.

Besides knowledge gained from when players cannot follow suit, we also gain
knowledge when a player cannot play a higher trump card than previously played
that trick. The rules dictate that when a player plays a trump card, he must
play a higher trump card than all of the trump cards played earlier that trick. If
he does not have a higher trump card than the highest played, he must play a
lower trump card. If he also does not have a lower one, he may play any card. If
he does not play a trump card, this is already stored in the matrix mentioned
earlier. But if he does follow suit, but does not play a higher trump card, this is
not stored in that matrix. However, in every redistribution he may not receive
a higher trump card. Therefor an additional matrix was introduced, indicating
which players may not receive certain trump cards. An example of such a matrix
can be found in Table 6. In this example you can see that Player 0 or 1 played a
10, and Players 2 and 3 played a lower trump card than that 10. Information
about players that do not have any trump cards at all is not stored in this matrix,
since this can already be found in the matrix for suits. It can be possible that in
the example of Table 6 Player 1 did not follow trump at all, when player 0 led a
card.

7 8 Q K 10 A 9 J
Player 0 false false false false false false false false

Player 1 false false false false false false false false

Player 2 false false false false false true true true

Player 3 false false false false false true true true

Table 6: Example of a matrix indicating which player may not receive a certain
trump card.

Our method of redistributing the cards mostly relies on simply redistributing
the cards randomly, and checking if it fits this matrix. If it does, a distribution
is found. If it does not, the cards are once again randomly distributed until a
suitable distribution is found. As an improvement to this method one optimisation
was implemented, which applies when according to the matrix for suits only one
player may receive a certain suit. In this case first all cards of that suit are given
to that player, and then the rest of the cards are randomly divided.
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5.3 Implementation in Klaverjas

The first step in creating a Monte Carlo player for Klaverjas was implementing
the game, and creating a random player for it. The game was implemented
by creating a C++ program in which the game can be played. With this basis
created, multiple types of players could be created.

5.3.1 Random player

The random player simply generates the possible (legal) moves, and picks a
random one from these. While this in itself is not very complicated, the function
generating the possible and legal moves is somewhat more interesting.

This function takes as input, among others, the cards played already this
trick, the current player’s cards and who leads, and generates an array containing
the possible moves and an integer determining the amount of possibilities. As
briefly explained in Section 2.1, there are some rules determining which cards
are possible and which are not. The order of possible cards (if the current player
does plays the first card this trick) is as follows:

• Follow suit. If a player has the suit the elder hand led with, other players
always have to follow this suit if they can.

• Higher trump card. If a player cannot follow suit, he must play a trump
card. When a trump card is already played this trick, he must play a higher
trump than the one played before. In the Amsterdam rules there is an
exception to this rule when the highest trump played is from a player’s
team mate, but in the Rotterdam rules a player always has to play a higher
trump. When a player leads with a trump card, all other players must also
not only follow the trump suit but play a higher trump card if possible.

• Lower trump card. If the player cannot follow suit and does not have a
higher trump than played earlier this trick, he must play a lower trump.
In the Amsterdam rules there is also an exception to this rule if a player’s
team mate is about to win the trick.

• Any card. If a player cannot follow suit and does not have any trump cards,
he may play any card.

The algorithm simply uses the cards previously played this trick to determine
in which situation mentioned above the player is, and adds all possible cards to
the array.

5.3.2 Monte Carlo player

Just like the random player, the Monte Carlo player also begins by listing all
possible legal moves. But here, instead of just picking a random move the next
steps are executed for each of the n possible moves:

A copy of the board6 is made. A copy is also made of the current player’s
cards, and the rest of the cards are reshuffled (as mentioned in Section 5.2)
among the other players. After the cards are dealt the move can be played in

6The board consists of the previously played cards each trick, who won which trick and
how many points and roem were in a trick.
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the copy, and a random game can be played by calling the function also used
to start this game, but with all players being random players. The result of the
game for the current player is added to a variable, and after m random games
with this move the algorithm continues with the next possible move. The move
which has the highest total points after m random games is returned and played.
In case of a tie the first move the algorithm encountered is played.

5.4 Number of playouts

The number of playouts performed per possible move can be an important factor
in a Monte Carlo strategy. If too few playouts are performed, the algorithm will
most likely not do the best move possible. The outcome of the playouts could
depend too much on moves by the opponent which would never happen in a real
game. If too many playouts are performed, the algorithm will become very slow
and unusable in most situations.

Figure 3: Results of different numbers of playouts for the Monte Carlo player.

Throughout the thesis, when not specified, the Monte Carlo player uses
1000 random playouts per possibility. In the program this can be adjusted and
specified per player, to allow users to try different combinations of playouts per
player and strategy. In Figure 3 the amount of playouts is displayed against the
number of points gathered by the Monte Carlo player. For this experiment to be
as pure as possible, the results are for a team of pure Monte Carlo players against
a team of semi-random players (this player is explained in Section 6.1. The
Monte Carlo players used in this experiment also use this semi-random player for
the playouts). In this graph one can see that the results are reasonably stable.7

It is also as expected that higher amounts of playouts (with most noteworthy
5000 and 8500) also have higher results. But as displayed in Figure 4, these

7This figure may seem unstable, which corresponds to the fact that the vertical axis begin
at 147. In reality, these values are very close to each other.
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differences in the results are not significant enough to justify the large increase
in calculation time.

In this graph one can clearly see the increase in calculation time for higher
amounts of playouts. The calculation time is taken for four games at a time, as
these were performed in parallel. There appears to be a linear relation between
the increase in playouts and the increase in calculation time, which is as expected.

Figure 4: Amount of time taken per simulation of four games by the Monte Carlo
player.

When comparing the results of Figure 3 and Figure 4 we arrived at the
conclusion that using 1000 playouts appears to be a suitable choice. The results
for this amount of playouts are somewhat less than the results of higher amounts
of playouts, but the calculation time is significantly lower. This allows for a
quicker play, but not at the expense of much lower results.

6 Enhancements on Monte Carlo

As mentioned in Section 6.1, the Monte Carlo player performed reasonably well,
but there was much room for improvements. Most importantly, we think that
the algorithm did not use all the knowledge of the progress of the game so far it
could use. For example: when a player plays a game, he states that his cards are
good enough for him and his team mate to win more than half of the points in
the game. This means that a player could assume that if his opponent plays, he
will probably have good cards. Another example is that when a trick is about to
be won by a player’s opponent, and he plays a card that adds roem points to
this trick while the opponent still wins it, he will not likely have other cards of
that suit.
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6.1 Semi-random player

When the Monte Carlo player was first implemented, it played reasonably well
but there was room for improvement. What was most peculiar about its playing
style was that it would play cards very sensitive for roem. This can be a very
good tactic if you or your team mate wins the trick, because you get extra points
next to the points for the cards. But if your opponent wins the trick, it can be
a very bad choice, because then you are giving them extra points which could
help them win, or worse: make you fail the game. Therefore human Klaverjas
players generally do not play this sensitive for roem unless they are almost
certain the trick will not go to the opponent.

The reason the Monte Carlo player played this way lies in the fact that it is
based on random playouts, and is based on the average score of many of these
games. A game without roem has 162 points, and these points are divided among
the two teams at the end of a game. The Monte Carlo player takes only the
points his team has after the game into account, and takes the average best
move from this. When a move is sensitive to roem, sometimes these extra points
will go to his team and the rest of the time to his opponent. There are many
situations where in a game a player has two possible cards to play. With one he
may win the trick, but with the other the opponent does, and might also get
extra points for roem. In these situations a smart player will always play the
move in which he wins, but random players do this only a certain amount of
the time. The Monte Carlo player determines his move based on these random
playouts, which may have been based on the opponent not playing a “smart”
move every normal player would play.

This problem was eventually solved by modifying the random player, so that
the Monte Carlo player would base its decisions on a less “dumb” player. The
result was a semi-random player, which has the following improvements over the
random player:

• If the current player or his team mate is not about to win the trick, it tries
to avoid roem. If the current player is the third or last player to play a
card, he can know for sure when he or his team mate will not win the trick.
If he is the last player he can also be sure there will be roem, and if he is
the third player in many cases he can also be sure. In these situations we
first check the amount of roem without the player’s card, and then after.
If it is more roem afterwards, we try to avoid that card.

• The next improvement applies when the current player or his team mate
is not about to win the trick, the current player cannot follow suit and
does not have any trump cards. The current player may play any card he
has in his hand, but it would be very unwise to throw away an Ace or 10.8

These cards can be used to either win another trick or to generate more
points for another trick won by his team mate. This improvement prevents
Aces and 10’s to be thrown away if the trick is won by the other team.

It can happen that the trick will be won by the player’s team mate if he
can play the last card. This can only happen if the current player is the
second to play a card, and even then it would be unwise to throw away an
Ace or a 10.

8This improvement always prevents Aces to be thrown away, but if 10’s are also protected
from being thrown away, can be disabled using a parameter.
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• If the trick is about to be won by the player’s team mate, and a card can
be played that gives the team extra roem points, this card should always
be played. This applies only when the current player is the last player
to play a card, so we know for sure that the trick cannot be won by the
opponent.

These improvements are achieved by splitting them into two groups; cards
that are “smart” and should be played, and cards that are “dumb” and should
not be played.

The “smart” cards are listed in the third bullet point of the list above. They
are added to an array and if this array is not empty a random card from it will
be returned.

If the array of “smart” cards is empty, the algorithm looks at the “dumb”
cards. These cards are listed in the first two points of the list above. They are
also added to an array and if this array is not empty and if the array is not the
same as the array of all possible moves, these cards are removed from the array
of possible moves. Then a random move is returned from the array of possible
moves.

6.2 Roem points for the opponent

A lot can be said about a player’s cards based on the cards he plays. The
algorithm described in Section 5 takes into account that certain players cannot
receive certain cards in a redistribution. This is based on certainty, since those
players cannot possibly have those cards while following the game rules. This
occurs for example when a player cannot follow suit and plays a trump card; in
a redistribution he cannot receive the suit he could not follow earlier. In this
section we try to use knowledge that is not entirely certain. The knowledge we
use here comes from the following situation: a player is the last player in a trick
to play a card, and his opponents are about to win the trick. If the player plays
a card that awards additional roem points to his opponent, he will most likely
did not have any choice. If he had the choice to play another card which either
lets hem win the trick or does not give extra points to the opponent, he would
most likely have played that card.

An expansion to the pure Monte Carlo player was created to utilize this
knowledge while still relying on the method of Section 5. Simply saying that a
player does not have a certain suit in the matrix defined in Section 5.2 would not
work, because a player can play a card awarding extra points to the opponent. If
that were to happen and the player does have that suit, the algorithm might not
be able to find a redistribution at all. Therefore this player creates two of these
matrices. The first is the same as earlier, containing the suits a player cannot
receive. The second one also contains this, but additionally contains the suits
a player probably does not have, because he played a card awarding additional
points to the opponent. When the algorithm runs the random games, some
percentage of the time he will use the “probable” matrix, and the rest of the
“certain” matrix. It can happen that the algorithm cannot find a redistribution
using the “probable” matrix. To this end a maximum is defined for the number
of attempts, if this is exceeded the algorithm will simply try again using the
“certain” matrix.
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Apart from not being able to find a suitable redistribution of cards, it can
also happen that a player had two cards of that suit, both of which awarded
additional points to the opponent. If the algorithm only relied on the estimate
that a player does not have a suit while actually the player had a choice between
two “bad” cards, it would often make the wrong assumption.

Figure 5: Average results against the pure Monte Carlo player per percentage
used.

The percentage of the time the algorithm uses the “probable” matrix is
defined to be 0.9. This number is chosen by experiments, the results of which
can be seen in Figure 5. These are the results of 1600 games9 against a team of
pure Monte Carlo players (with semi-random playouts) on the vertical axis, and
the percentage of times the “probable” matrix is used on the horizontal axis.10

What first strikes about the results is that for probabilities higher than 0.5 the
results get higher as well (apart from 0.8), and it is certainly noteworthy that
0.9 gets the highest results. This is most likely because at these percentages the
algorithm uses the “probable” matrix far more often than the “certain” matrix.
If it uses the “probable” matrix, it assumes that a player who played a card
that resulted in roem for the opponent does not have any cards of that suit left.
In these cases the algorithm might have that assumption right, in which case
the results will most likely be higher. If it does not get the assumption right, it
might often not be able to find a suitable redistribution. If that is the case the
algorithm tries to find a redistribution until the maximum of 1000 shufflings has
been reached, and then switches to the “certain” matrix.

9The number 1600 is based on 100 × 16 full matches, see also Section 2.1.
10This figure may seem unstable, which corresponds to the fact that the vertical axis begin

at 114. In reality these results are very close to each other.
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6.3 Punishment for roem

In Section 6.2 it is explained that when a player plays a card that gives additional
roem points to the opponent, he most likely will not have had the choice to play
a card that did not give away roem points. During the testing of our algorithm,
we notices that our implementation in some cases did play the card giving away
roem, while having another option that prevented this.

An example of this is displayed in Figure 6, where the last player (on the
east side) has the choice to play the 8 or the King of Hearts. The trick is about
to be won by the player on the north, and neither 8 or the King can change
this. However, if he plays the 8, his opponent will receive an additional 50 roem
points, which they will not receive when he plays the King. For that reason no
human player would play the 8 in this case, but our implementation initially did.

Figure 6: Example where the last player has a choice to give roem points to the
opponent.

The reason for this is that each playout the Monte Carlo player only looks at
his own points at the end of the game. In the example above, the Monte Carlo
player will not notice the roem points, since they do not change the amount
of points his team will receive at the end of the game. Normal points for the
opponent will be noticed by the Monte Carlo player, because each point the
opponent receive, his team cannot, andhe total amount of points each game is
always 162 (excluding roem). A King is worth four points and an 8 is not worth
any points, so when the Monte Carlo player plays the King he only notices that
his opponent would receive more points that trick. However, when he plays the
8 his opponents will receive four points less but 50 roem points more.

To prevent this from happening a system of punishment was implemented in
each of the Monte Carlo players. The idea is that for each move that gives roem
points to the opponent, that amount of points will be subtracted from the score
of the playout. So if in the example above the Monte Carlo player would have
72 points after a playout, 50 points will be subtracted and the result will be 22
points for the playout.

Another solution for this problem we tried was by not looking at the points
the player’s team had at the end of the playout, but by looking at the percentage
of the total amount of points of both teams. While this also prevented the
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situation explained above, it turned out this solution performed less well than
the method of penalty points.

6.4 Probability distribution for suits

The next improvement on the pure Monte Carlo player involves a bigger change
to the player defined in Section 5. The pure Monte Carlo player redistributes
the cards by simply distributing the cards randomly and checking whether
the redistribution fits with the matrix. The method described in this section
distributes the cards differently: by creating a probability distribution.

This probability distribution is an approximation of the distribution of the
remaining cards by looking at probabilities for individual suits. An example for
such a distribution is shown in Table 7. Each cell represents the probability a
player has to receive a certain suit. In the example of Table 7 one can see that
there are no Clubs and Diamonds left in the game (or the current player has
all of them himself). Player 2 played this game, and the trump suit is Hearts.
Player 1 cannot receive any Hearts, because he has not followed this suit earlier
in the game.

This probability distribution currently relies on knowledge gained from two
assumptions: the player that plays has good cards and if a player plays a card
that gives the opponent additional roem points, there is a bigger chance this
card was his last card of that suit.

♠ ♥ ♣ ♦
Player 0 0.17 0.4 0 0
Player 1 0.42 0 0 0
Player 2 0.42 0.6 0 0
Cards left 2 4 0 0

Table 7: Example of the probability distribution for suits.

The implementation of the first assumptions is done in two parts, both relying
on a certain multiplier for the probabilities of that player. The assumptions is
that if a player plays the game, he has good cards. Good cards in Klaverjas
mostly mean many trump cards, with one or two of the highest trump cards,
and several aces. We will only focus on the trump cards in this section. We can
use this knowledge only if a player, other than the current player, plays the game
and if he played by choice. If the current player plays we have no knowledge of
the other players. If a player plays but not by choice (if all players have passed
on two suits), we also have no knowledge about his cards. It can be said that if
he passed earlier on that suit we know that his hand most likely will not be a
good hand. We do not use this knowledge however, since every player passed on
this suit it would eventually have the same effect as if no knowledge was used.

If the current player plays or another player plays but not by choice, all
probabilities are evenly divided. The probability per player become simply 1/`,
where l is the amount of players that may receive this suit. When each player
may still receive a certain suit, their probability for this suit will become 1

3 .
With the probability evenly divided, the results are the same as with the method
described in Section 5.2. The algorithm determines per card to which player this
card will be distributed, based on the probability in the probability distribution.
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It can happen that when all the cards have been distributed, one player has too
and another has too few cards. If this is the case, the algorithm is repeated until
a suitable distribution is found.

If another player than the current player plays by choice, we assume he has
good cards. This is done by multiplying his probability of trump cards with
a certain multiplier M1, initiated by experiment on 1.2. These experiments
are performed in combination with the multiplier defined in Section 6.5. The
results can be found in Section 6.6. The probabilities for the trump suit are now
calculated by first determining what the “evenly distributed” probability would
have been, and multiplying this by M1 as the probability for the playing player.
Then the “rest” of the probability is evenly divided among the other players.
This way the probability for the player that plays become p1 = M1 · 1` , where M1

is the multiplier and ` is the amount of players who may receive this suit. The
probabilities for the other players become p2 = 1−p1

`−1 , where p1 is the previously
defined probability for the player that plays. In the example of Table 7 this
can bee seen by looking at the trump suit, in this case Hearts. There are two
players that may still receive Hearts, so the “evenly distributed” probability is
1
2 . Player 2 plays the game, his probabilities will be multiplied by M1. Therefore
his value in the probability distribution becomes 1

2 · 1.2 = 0.6, and the value for
Player 0 will become 1−0.6

1 = 0.4.
It can happen that (because of the multiplier) the expected amount of trump

cards for the player that plays becomes larger than one. To this end a maximum
probability of 0.98 was defined, and when the probability for a player becomes
larger than one, the probability for this player becomes 0.98 · k. This also means
that for the other players the probability will be 0.01 or 0.02, depending on how
many players may still receive that suit.

♠ ♥ ♣ ♦
Player 0 0 0 0 0.33
Player 1 0 0.5 0 0.33
Player 2 0 0.5 0 0.33
Cards left 0 1 0 5

Table 8: Example of the probability distribution for suits. The two possible
distributions are displayed in Table 9.

In order to maximize the results of this technique the method of Section 6.2
was also applied to this probability distribution. This applies when a player
plays a card that results in additional roem points for his opponents. In this
case we assume that this was most likely not by choice, and that the probability
for him to have more of this suit are lower. Therefore, when calculating the
probability distribution we check whether this situation has occurred, and if so
the probability for that player will be multiplied by the percentage defined in
Section 6.2. The “rest” of his probability, the amount by which it was reduced,
is evenly divided among the players that may still receive this suit. This ensures
that the total of all probabilities remains the total amount of cards of this suit
left. In the example of Table 7 this has applied to Player 0, apparently he played
a Spade that resulted in roem for the opponent. Therefore his probability is
reduced to 0.17, and the probability for the other players become 1−0.17

2 = 0.42.
This probability distribution is an approximation of the actual possible
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distributions of the cards in the current game. For example, from the probability
distribution in Table 8 two “actual” distributions of the cards can be deduced,
presented in Table 9. There are six cards left in the game (two cards for each
player), one of the Hearts suit and five of the Diamonds suit. It is clear that
Player 0 can only receive Diamonds, since his possibilities for the other suits is 0.
That leaves three Diamond cards left to distribute over two players who are both
to receive two cards. This means one of them has two Diamond cards, the other
has one. The player that has one receives the last Hearts card. The distribution
in Table 8 is an approximation since it states that the probability for Diamonds
for Player 0 is 0.33, while in reality this is 1. The algorithm will however never
generate distributions wherein Player 0 does not have two Diamond cards.

♠ ♥ ♣ ♦
Player 0 0 0 0 2
Player 1 0 0 0 2
Player 2 0 1 0 1

♠ ♥ ♣ ♦
Player 0 0 0 0 2
Player 1 0 1 0 1
Player 2 0 0 0 2

Table 9: The two actual possible distributions from the probability distribution
in Table 8.

Note that this algorithm might generate distributions for the remaining cards
that do not correspond with the individual probabilities from the table. It is
unsure if each “actual” possible distribution is visited as often as the possibilities
point out. To examine this, a simulation could be developed.

6.5 Probability distrubution for trump cards

In Klaverjas it may be more important which trump cards a player has, rather
than just how many. The two highest cards in the game, the Jack and 9 of
trumps, are more important for a good hand than just having many trump
cards. Not only do they beat all other cards, they are also worth more points
(respectively 20 and 14 points) than all other cards. Therefore, if a player plays
the game, he will also be more likely to have these cards than other players.

To implement this increased probability, a second probability distribution
was introduced in addition to the existing distribution. This distribution contains
for each player the probability to receive a certain trump card. An example of
this matrix can be found in Table 10.

7 8 Q K 10 A 9 J
Player 0 0 0 0.30 0.30 0 0 0.26 0.26
Player 1 0 0 0.30 0.30 0 0 0.26 0.26
Player 2 0 0 0.40 0.40 0 0 0.48 0.48

Table 10: Example of the probability distribution for trump cards.

This probability distribution has a structure that resembles the matrix indi-
cating which player may not receive a certain trump card defined in Section 5.2.

In this example there are only four trump cards left in the game, and Player
2 plays the game. The probability for his “regular” trump cards are multiplied
by M1, defined in Section 6.4. The Jack and 9 of trumps have, besides being
multiplied by M1, also been multiplied by an additional multiplier M2. This

25



second multiplier applies only to the Jack and 9 of trumps, giving the player
that plays a further increased probability for these cards. M2 has been set by
experiment on the 1.2, these experiments can be found in the next section.

6.6 Determining the value of the multipliers

In order to find the best suitable values for the multipliers M1 and M2 experiments
were performed on several combinations. The results for each combination are
based on 1600 games by a team of players with this configuration against a
team of pure Monte Carlo players, with semi-random playouts but without
probabilities.

Figure 7: Comparison of results for different values of multipliers M1 and M2.

The results for these experiments are displayed in Figure 7. The first thing
one notices about the graph is that according to the experiments, M1 = 1.2 and
M2 = 1.2 (the red line) is the best configuration of all explored combination.
Therefore, this is the configuration used in the main Monte Carlo player.

There is a dotted line plotted at the value of 172 578, this is the value for
M1 = 1.0 and M2 = 1.0. With both M1 and M2 configured at 1.0, these are the
results without the use of multipliers. Every configuration below the dotted line
performs less than without the use of multipliers.

These results are against a team of Monte Carlo players with semi-random
playouts, which performs well against a team of Monte Carlo players with
probability distribution. The results can differ when tested a team of other
players.

7 Comparing the players

In order to test the performance of the different types of computer players, two
separate cases have to be tested. The first is how each player performs against
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each other player. The different strategies proposed in this thesis have been
tested and “trained”11 against one another, here these results will be shown.

The other case is against human players. It is more difficult to test and “train”
the program against human players, because this would take much more time.
While enhancing the Monte Carlo player, typical “human” techniques were taken
into account. This is especially the case for the amount of trump cards for the
player that plays the game.

7.1 Computer players against each other

To compare the performance of the different players created in this thesis, a
competition was created as an experiment. In this section the results of that
experiment are presented.

The results of this competition can be found in the schematic in Table 11.
Horizontally the average amount of points a player scored in 1600 games against
other players are shown. For example, the second cell of the first row (with the
value of 87.91) represents that player 1 (the random player) scored an average of
87.91 points against player 2 (the semi-random player). The opposing cell, the
first cell in the second row, represents the amount of points the semi-random
player scored against the random player. These are the averages of the different
sets of 1600 games, the results of the opponent are not shown in this table but
are mostly the same as the opposing cells.

1 2 3 4 5

1 87.91 54.21 53.09 54.34

2 113.87 61.27 60.31 58.59

3 160.84 147.72 104.80 99.21

4 162.07 148.60 113.30 106.89

5 159.04 151.70 110.74 107.00

1 Random player
2 Semi-random player
3 MC player with random playouts
4 MC player with semi-random playouts
5 MC player with probability distribution

Table 11: Results of a competition of the different computer players.

It is interesting to note that the Monte Carlo player with probability distri-
bution scored less points against the random player than the other Monte Carlo
players. This is because the player with probability distribution makes assump-
tions about players’ cards, for instance when a player plays a card that gives the

11Training in this instance is not automated training, but testing with most possible values.
See Section 6.6.
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opponent roem points. The random player does not takes this into account and
often plays cards that give roem to the opponent. Therefore the Monte Carlo
player with probability distribution sometimes makes wrong assumptions about
their cards, and performs slightly worse than the “normal” Monte Carlo players.

Player Points Average
1 Random player 1 117 645 69.85
2 Semi-random player 1 251 142 78.20
3 MC player with random playouts 1 978 588 123.66
4 MC player with semi random playouts 2 028 082 126.76
5 MC player with probability distribution 2 033 343 127.08

Table 12: Total sum of all points per computer player.

The total and average amount of points the players scored (including the
games they were the “opponent” and games against themselves) can be found in
Table 12. Here it can clearly be seen that the player with probability distribution
performs best, shortly followed by the other Monte Carlo players.

7.2 Computer players against human players

In order to fully test the capabilities of the algorithm, a match was set up
between two skilled human players and a team of Monte Carlo players with
probability distribution.12 Although not much can be said about one full match
against a single team of human players, the match did give insight in how the
algorithm functions.

For this experiment the implementation was extended with a competition-
mode. Normally the program only plays a single game, but with this mode this
is extended to a full match of 16 games. The program then also outputs the
players’ cards and information about what cards have been played and who has
to play a card to a file for each player. Both of the human players had a tablet
on which this file was shown, allowing them to view only the information they
are allowed to see.

The results of the match can be seen in Table 13. As this table points out, the
computer players beat the human players with more than double the points the
humans had. Because this is such an insignificant amount of games, statistically
nothing can be said about these results. In many cases, the computer players
had more “luck” when being dealt the cards. To rule out luck many more games
need to be played, which would take a very large amount of time.

When asked how the computer players performed, the human players pointed
out that in most cases they appeared to play logical and natural. But as we have
found as well, sometimes the algorithm makes moves that are sensitive for roem
points, especially when being the first player to play a card. Often the first card
the computer team played was a Jack or a Queen, this can result in many roem
points for the opponent and human players often avoid this. Also the human
players pointed out that the algorithm often tries to get trump cards out of the
game, when it knows that only his team mate has trump cards left. This would
win them the trick, but maybe lose a trick later in the game (or the last trick,
which is worth extra points).

12Thanks go out to J. Spierenburg and B.V. Jongeneel for participating in this experiment.
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Trick AI players Human players
1 51 131
2 14 198
3 150 12
4 121 41
5 181 51
6 144 38
7 147 35
8 154 48
9 162 0
10 202 0
11 64 178
12 142 90
13 165 17
14 182 0
15 110 72
16 162 0
Total 2151 911

Table 13: Score form for match of Monte Carlo players against Human Players.

8 Conclusion

In this thesis we examined the effectiveness of a Monte Carlo strategy on the
game of Klaverjas, and different strategies of enhancing this strategy using
domain knowledge and probabilities.

Given the results in Section 7.1, it can be concluded that of the different
Monte Carlo players, the player with probability distribution performs best.
This is most likely because this player combines all of the different strategies in
enhancing the Monte Carlo search presented in this thesis.

The results in Section 7.2 point out that when given good cards, the algorithm
with probability distribution is capable of winning against human players, and
that in many cases the algorithm plays logically.

The Monte Carlo player with probability distributions for card suits and
trump cards performs better against skilled players, since it is a combination of
all strategies for improving the Monte Carlo player described in this thesis. It
uses knowledge gained from players playing the game on a certain suit, assuming
that they have many trump cards and a higher probability for the two highest
trump cards. It also uses the knowledge explained in Section 6.2, assuming that
when players give away roem points to the opponent, they did not have a choice.
These strategies give the player a better estimate about the rest of the players’
cards, and therefore produce a better player overall. This makes the Monte Carlo
player with probability distribution a better player against skilled players, and
performs worse against a non-logical player. An example of this is when a player
plays the game, but does not have good cards. He most likely will not win, but
the Monte Carlo player will also make the wrong assumptions about his cards.

The Monte Carlo technique in general is a reasonably good method for
creating a computer player without much domain knowledge on the game. In this
thesis the Monte Carlo player was enhanced by using domain knowledge, and
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from the results in Section 7.1 it can be concluded that the usage of probabilities
for the distribution of cards can provide a better player.

Although a team of computer players described in this thesis can play
Klaverjas reasonably well, a combined team of human and computer players
might not work as good. This is mostly because human players often play
according to the tactics described in Section 2.5, while the computer players
often do not. They do not know the conventions in signalling, and therefore
will not understand what a human player means by signalling with a certain
card. Some tactics the computer player will indeed detect, since they are not
just conventions. An example is when a player has to lead the first card in a
game and his team mate plays the game. In those cases the Monte Carlo players
mostly lead with a trump card sensitive for roem, as also described in Section 2.5.
But with more comprehensive common tactics the Monte Carlo players will not
understand what the human meant to signal. It currently seems not possible for
the Monte Carlo player to learn itself to signal using cards. This might become
possible by extending the semi-random player used for the playouts, since this is
the basis the Monte Carlo player uses to determine its moves.

8.1 Further research

Initially, the idea behind the probability distribution was that the algorithm
would eventually be able to learn the probabilities itself. Our final implementation
based the probabilities on multipliers for knowledge gained. This basis of the
knowledge is however still dependent on what we, human players, defined as
technique. A future goal would be to develop a way to let the program teach
itself how these probabilities develop throughout the game. A neural network
could be trained to this end, using various input nodes (such as cards played,
but also if a player played or passed on a suit) and a probability matrix such as
in Section 6.4 or Section 6.5 as output. Another improvement to the probability
matrix could be to not use probabilities per suit or per trump card, but for all
cards. If this could also be combined with a neural network, the program might
be able to develop a completely different technique than previously known by
human players.

The pure Monte Carlo technique could be improved further by implementing
Monte Carlo Tree Search, as described by Browne et al.[14]. By not visiting each
possible move as often as the other, the results and speed of calculation could
be improved.

The Monte Carlo players proposed in this thesis did not learn themselves to
signal cards to give their team mates more information. The implementation
could be extended to learn different tactics in signalling, either by learning itself
or by implementing them manually. To this end the semi-random player could
also be extended to allow the Monte Carlo player to learn these tactics.
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