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Abstract

We consider several language generating formalisms from the literature, such as
string-valued attribute grammars with only s-attributes, parallel multiple context-free
grammars, relational grammars and top-down tree-to-string transducers, of which we
have chosen the OnlyS string-valued attribute grammars to be our vantage point. We
prove that OnlyS string-valued attribute grammars, parallel multiple context-free gram-
mars and relational grammars generate the same class of languages, and we prove that
every language accepted by an OnlyS string-valued attribute grammar is the image of
a top-down tree-to-string transducer.

The main result of this thesis is the proof of equivalence of the special string-valued
attribute grammars, the multiple context-free grammar, the special relational grammar
and the finite copying top-down tree-to-string transducer.

In order to prove these equivalences, definitions of some of these formalisms have
been slightly modified, and normal forms have been (re)defined and proven.
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Chapter 1

Introduction

Among computational linguists there has been considerable interest in grammatical for-
malisms, with generative power in between the context-free languages and the context-
sensitive languages, to describe the syntax of natural languages. Some of those for-
malisms are the combinatory categorial grammars ([A],[S85],[S86]), head grammars
([P]), linear indexed grammars ([Gal]), tree adjoining grammars ([JLT], [J], [V]) and
generalized context-free grammars (gcfg’s, introduced in [P]).

In this thesis we have compared a subclass of gcfg’s, called the parallel multiple
context-free grammars (pmcfg’s), with a number of formalisms that have been devel-
oped in the area of theoretical computer science, in particular the OnlyS string-valued
attribute grammar (OnlyS-sag, see for instance [E86], [K]), an adapted version of the
relational grammar (rg) of [GR], and the top-down tree-to-string transducer with recog-
nizable input languages (yT(REC) transducer) from [ERS]. We have shown that

PMCFL = OnlyS-SAL = RL C yTL(REC)
where XXXL denotes the class of languages generated by xxx grammars. In order to do
this, we have described and proven some normal forms for these types of grammars.

Our main result is the equivalence of the ’special’ versions of pmcfg, OnlyS-sag, rg
and yT(REC) transducers, in which duplication of information is restricted.

This thesis is structured as follows : in Chapter 2 we describe the context-free
grammar and the attribute grammar, that we have chosen to be our vantage point.
In Chapter 3 we consider the (parallel) multiple context-free grammars from [SMFK].
Chapter 4 describes the variant of the relational grammar from [GR] that we have con-
sidered. In Chapter 5 we discuss the (finite copying) top-down tree-to-string transducers
from [ERS]. Finally, Chapter 6 summarizes our results and indicates possible directions
for further research.



Chapter 2

Context-free grammars and
attribute grammars

2.1 Preliminaries

We write N for the set of nonnegative integers, and Q for the set of rational numbers.
We write S” for S x S x ... x S, the n-fold cartesian product of set S. We denote the
empty set by 0.

An alphabet is a finite set. An alphabet S is ranked if it has an associated total
function d : S — N, such that, for each s € S, d(s) is the rank or dimension of s. Note
that, in our definition, an element of a ranked alphabet has exactly one rank.

We denote the empty string by A. The length of a string w is denoted as |w|, while
|w|, is the number of symbols a that occurs in the string w, and w” is the reverse of w.

For a total function f : D — R and a nonempty subset D’ of D, we denote the
restriction of f to D' by f|p (so f|lp : D' = R and, for alld € D', f|p/(d) = f(d)). By
RP we denote the set of all functions with domain D and range R.

The set of derived functions of the free monoid ¥* (generated by the elements of an
alphabet X) is the set containing all functions f,, where v € (X U {y1,...,ym})* (with
Yy Ym & X and m > 0), such that f,(wi,...,wy) is the result of substituting w; for
y; throughout v, with 1 <7 < m and w; € ¥* (definition from [E86]).

A finite directed graph is a pair (Q, E'), where @Q is a finite set of nodes and E C @ x Q
is a set of edges. An edge es = (po,qo) is called a successor of an edge ey = (p1,q1)
if g1 = p2. A path in a directed graph is a sequence ejes...e, (n > 0 and e; € E for
1 < j < n) such that, if n > 2, then e; 41 is a successor of ¢; for 1 <7 <n — 1; n is the
length of ey ...e,. A path (p1,q1)(p2,q2) - .. (Pn,qn) with n > 1 in a directed graph is a
(directed) cycle if p1 = q,. A directed graph is cyclic if it contains a cycle; otherwise it
is acyclic.

A directed graph t is a directed tree if there is a node r, called the root of ¢, such
that, for each node x of ¢, there is exactly one path from r to z. In the sequel we will
simply write tree instead of directed tree. For a tree ¢, node(t) is the set of nodes of ¢
and root(t) € node(t) is the root of . Each node z of a tree ¢ is the root of a subtree
t' of t. The nodes of ¢’ are z and all its descendants, while the edges of ¢’ are the edges
that exist in ¢ between the nodes of ¢'.



We will discuss grammars, languages and classes of languages using the following
conventions : if xxx is a class of grammars, then xxxg abbreviates ‘xxx grammar’, xxxl
denotes the language generated by an xxxg and XXXL is the class of xxxl’s. E.g.,
we use cfg and cfl for ‘context-free grammar’ and ‘context-free language’, respectively;
CFL denotes the class of context-free languages. Two grammars G and G’ are called
equivalent if the language generated by G is equal to the language generated by G'.

2.2 Context-free grammars

The classical context-free grammar forms the basis of many generative devices considered
in this thesis.

Definition 2.1
A context-free grammar (cfg) is a 4-tuple G = (N, T, P, Sy) where

i. N is a finite set of nonterminals;

ii. T is a finite set of terminals, and N N T = ();
iii. PC N x (N UT)* is a finite set of productions;
iv. Sg € N is the initial symbol.

|

A production (X,0) is written as X — 0. Tt is called a terminating production if
0 € T*. If O contains at least one nonterminal it is called a nonterminating production.
By convention, we will use capitals for nonterminals and lower case letters for terminals.

We now formalize how words are generated by a cfg. Let G = (N, T, P, Sy) be a cfg
and let X = NUT.

Let z,y € ¥* and let p: X — 0 € P. We say that x directly derives y in G (using
p) if x = £1 Xz9 and y = x10z for certain x1, 29 € X*. This derivation step is denoted
as z =y (or z =, y).

Let =, be the reflexive and transitive closure of the binary relation =g C ¥* x X*.
We say that z derives y in G if x =, y. We will omit the subscript ’G” if the cfg under
consideration is obvious from the context.

The language L(G) generated by G is defined as L(G) = {z € T* | Sy = z}. The
elements of £(G) are called words of G.

A derivation tree of G is a node labelled ordered tree in which every internal node
has either label Xy and exactly one child, that has label A\, where Xy — X is in P, or
label Xy and k& > 1 children, with labels 01,...,0; in N UT, where Xg — 61 ...0; is in
P.

For z € node(t), labely(x) is the label of x in t. A node labelled with a (non)terminal
is a (non)terminal node. A derivation tree of G is called complete if the root has label
Sy and the leaves are labelled with terminals or with A.

Example 2.1
We give a cfg G that generates the language L = {w € {a,b}* | |wls = 2 X |w|p}.



G =({X,A},{a,b},{X — bAA, X — AbA, X — AAL, X — \,A — aX,A — Xa}, X).
Some sample derivations in G are

X = AbA = aXbA = aXbXa = aXbbAAa = aAAbbbAAa =*

aaX XabbbXaXaa =* aaabbbaaa, and

X = AbA = XabA = abA = abaX = abaAbA = abaXabA = abaabA = abaabaX =
abaaba AAb =* abaabaaab. O

In the sequel we will not always explicitly specify all the components of a cfg. It
suffices to give the productions and the initial symbol; all the elements of N and T can
be found implicitly in the productions.

2.3 Attribute grammars

Most of the definitions in subsections 2.3.1 and 2.3.2 are suggested by J. Engelfriet
([E94], see also [DJL], [Gi]).

2.3.1 Syntax

In this subsection we define the notion of attribute grammar, which can be viewed as a
cfg in which every nonterminal can have finitely many attributes. To be able to assign
values to those attributes, we need the concept of semantic domain.

Definition 2.2

A 2-tuple (2, ®) is a semantic domain if © is a finite collection of sets and @ is a set of
total functions f: Wy x ... x Wy, — Wp,11 where m > 0 and W; € €. In particular,
when m = 0, ® can contain elements of Wy € (Q, i.e., constants. |

Hence, in a semantic domain (92, ®) the functions in ® define the typed operations
that may be applied to the values of a specific direct product of sets in §2, and the result
of applying such an operation is a member of a specific set in (2.

Example 2.2
(1) A sample semantic domain is Dy = (Qq,®1) with @y = {N} and ®&; = {C),, | n €
N} U {succ}, where Cp() = n for all n € N, and succ(z) =z + 1 for all z € N.

(2) Another example of a semantic domain is Dy = ({3*}, ®2), where ¥ is an alphabet,
and ®, consists of all derived functions of the free monoid X*. The values that we can
use are strings over ¥, and the basic operation is concatenation (from [E86]). Note that
every string z € ¥* is a constant in @, it is represented by the unction f,().

(3) The semantic domain D3 = (3, ®3) is a combination of Dy and Dy : Q3 = {N, ¥*},
$3 =P, UDPyU{ len }, where len : X* — N assigns the length to a string. a

We are now ready to give a definition of attribute grammars. As stated before, an
attribute grammar is in fact a cfg in which a finite number of attributes is added to
each nonterminal. In a (complete) derivation tree, the values of these attributes can be
passed from one nonterminal to another, and functions can be applied to those values.



The possible attribute values and the functions that can be applied to them are given
by a semantic domain.

There are two kinds of attributes, that are called synthesized and inherited attributes.
The value of a synthesized attribute of a nonterminal X is usually composed of (or
synthesized from) the values of attributes of the nonterminal children of X in a derivation
tree, while the value of an inherited attribute of X is usually passed through by (or
inherited from) the nonterminal parent of X in a derivation tree (but it is also possible
that the value of an i-attribute of X is constructed with the value of an s-attribute of a
sibling of X).

An ag translates complete derivation trees into attribute values. The language gen-
erated by an ag consists of the values that a designated attribute of the initial symbol
can have in complete derivation trees of the grammar.

Definition 2.3
An attribute grammar (ag) is a 4-tuple G = (Gy, D, B, R), where

i. Go = (N, T, P,Sp) is a cfg such that Sy does not occur in the right-hand side of
any production. N is a ranked alphabet with rank functiond : N — N;

ii. D =(Q,®) is a semantic domain;
iii. B =(S,1I,a0, W) is an attribute description, i.e.,

e For each X € NUT, S(X) and I(X) are finite disjoint sets of synthesized (s-)
and inherited (i-) attributes of X, respectively. There are three restrictions :
(1) I(Sp) = 0, (2) for each X € N, |S(X) U I(X)| = d(X), and (3) for all
XeT: S(X)=1I(X)=0;

e ap € S(Sy) is the designated attribute;

e Foreacha € Y{S(X)UI(X) | X € N}, W(a) € Q denotes the set of attribute
values of a.

iv. For a production p : Xog = w1 Xjws ... wpXpwgyq € P (with & > 0, w; € T* for
1 <i<k+1,and X; € N for 0 < j < k), a pair (a, j) such that a € S(X;)UI(X})
is called an attribute of p (with 0 < j < k). The set of all attributes of p is denoted
A(p). For each p € P, R(p) is a finite set of semantic rules of p, defined as
follows. Each semantic rule of p is specified by a function f € ®, say of type
Wi x...x Wy — Wy (m >0), and a sequence of m + 1 (not necessarily distinct)
attributes of p : ({ag, jo), (a1,71),- -+ (am, Jm)) with W(a,) = Wy for 0 < £ < m.
Such a semantic rule is denoted as the string (ao,j0) = f({a1,71),- -, (GmsTm))
and we say that it defines (ag,jo) using (a;, j;) for 1 < i < m. R(p) contains one
semantic rule defining each attribute (a,0) with a € S(Xp), and one semantic rule
defining each attribute (a, j) with 1 < j <k and a € I(X};), and no other semantic
rules.

Notes :



i. If our cfg Gy = (N, T, P, Sy) has productions in the right-hand side of which the
initial symbol occurs, we can easily construct an equivalent cfg Gf that does not
have this kind of productions : G = (N U{Z},T,PU{Z — So},Z), where Z is
a new nonterminal.

ii. Although a nonterminal with rank 0 cannot contribute to the values of the at-
tributes of the ag, it is technically more convenient to allow such nonterminals, in
particular it facilitates the proof of Lemma 2.3.

iii. Sometimes, an ag is a 5-tuple G = (Go, D, B, R, C'), where C is a set of semantic
conditions. These semantic conditions impose an extra restriction (in addition to
the semantic rules) on the number of possible correct decorations of derivation
trees (see below). Since we will only consider ag’s with C' = () for every p € P, we
have left C' out of our definition.

iv. Note that terminals do not have attributes; for technical reasons it is sometimes
convenient to have the notation S(X) and I(X) available for them.

The cfg Gy of an ag G is called the underlying cfg of G. It is possible for an ag to
have only s-attributes. Such an ag will be called an OnlyS-ag.

We will introduce some notation in order to make it easier to discuss attributes of
an ag G :

S-Att = {a | a € S(X) for some X € N} is the set of s-attributes of G,
I-Att = {a | @ € I(X) for some X € N} is the set of i-attributes of G,
Att = S-Att U I-Att is the set of attributes of G, and,

for every X € N, A(X) = S(X) UI(X) is the set of attributes of X in G.

When we discuss an ag G', for instance, we write S-Att’, I-Att’', and Att' for the sets
of s-attributes, i-attributes and attributes of G’, respectively. A’(X) denotes the set of
attributes of X, where X is a nonterminal of G'.

For a production p : Xg = w1 Xjws ... wi Xpwgy1, we define inner(p) = {{(a, j) | ( =
0 and o € S(Xp)) or (1 <j <k and a € I(X}))}, the set of inner attributes of p, and
outer(p) = {{(o,7) | (j =0 and a € I(Xy)) or (1 < j <k and a € S(Xj))}, the set of
outer attributes of p.

We say that an ag is in normal form if, for every production, the semantic rules
define the inner attributes of the production in terms of the outer attributes of the
production. Formally, an ag is in normal form if, for every semantic rule
(ag,jo) = f({a1,41)s- -+, (@m,Jm)) of every production p : Xg — wy Xqws ... wXpwgy1,
(ai, ji) € outer(p) (for 1 <7 < k).

Restriction 2.1
From now on, we will assume that our ag’s are in normal form.

We will not prove that this is indeed a normal form, but it can be shown that, for
every (non-circular, see below) ag, (repetitive) replacing of definiendum by definiens
results in an equivalent ag in normal form ([E94], [B]).

For an OnlyS-ag in normal form, the outer attributes of a production
p: Xo = wiXqwsy ... wpXgwiy1 are the (s-)attributes of Xi,..., Xk, while the inner
attributes of p are the (s-)attributes of Xy. Consequently, the semantic rules of p define
the attributes of Xy in terms of the attributes of X1,..., Xj.



2.3.2 Semantics

Let G = (Go,D,B,R) be an ag, with Gy = (N,T,P,Sy), D = (2,®) and B =
(Sa Ia o, W)

Every derivation tree of G is also a derivation tree of G, and there are no other
derivation trees of G. An occurrence of a production p: Xy — 6 in a derivation tree ¢
of GG consists of a node zg of ¢, labelled X, and its children, such that the labels of the
children, from left to right, form the string . We say that p s applied at xg.

For a derivation tree ¢ and a node = of ¢ that is not labelled with A\, we define
the attributes of v as A(z) = {{a,z) | @ € A(labely(z))}. I(z) and S(z) are defined
analogously. For t we define the attributes of t as A(t) = U{A(z) | = € node(t)}, i.e.,
A(t) = {{o,z) | * € node(t) and o € A(labeli(z))}; (o, z) is also called an attribute
instance.

We now have to determine the values of every attribute of every node, i.e., the
derivation tree has to be ’decorated’ with attribute values. A decoration of t is a total
function val : A(t) — U9, such that, for each (a,z) € A(t), val({a, z)) € W (). The
pair (t,val) is called a decorated tree.

We also have to define when a decoration is correct, i.e., we have to define when
the attribute values satisfy the semantic rules. For an occurrence of a production
p: Xo = wiXjwsy... wgXgwg,1 with nonterminal nodes zg,z1,...,z; in a derivation
tree ¢, if R(p) contains the semantic rule (ag,jo) = f({a1,41),---,{@m,jm)), then the
string (ao, zjo)=f((a1, 2z}, )s . -»{am, xj,)) is called a semantic instruction of t; it is a
string over A(t) U® U {(, ), ,, =}. The set of all semantic instructions is called R(?),
i.e., R(t) is a set of equations (where the unknown elements are the elements of A(t))
that has to be solved. A decoration val of ¢ is defined to be a correct decoration if
for every semantic instruction (ag, zj,)=f((a1,Z},),. . -s(@m, z;,,)) the following holds :
val({ao, $j0>) = f(val({a1, wjl))a - val({am, wjm)))'

Another concept that we need to be able to work with ag’s is the dependency graph.
If R(p) contains a semantic rule (ag,j0) = f({a1,71),- -, (@m,Tm)), we say that (a;, j;)
is necessary for {(ag,jo) , with 1 < 7 < m. If R(t) contains a semantic instruction
(ao, jo)=f (a1, ). . »(@m,xj,)) We say that (a;,z;;) is necessary for (ao,zj,), with
1<i<m.

So ’is necessary for’ is a binary relation on A(p) and on A(t). Since a finite directed
graph is a binary relation on a finite set, we now have two finite directed graphs :
D(p) = (A(p), is necessary for), and D(t) = (A(t), is necessary for). D(p) and D(t) are
called the dependency graphs of p and ¢, respectively.

We will depict the dependency graph of a production p : Xg — wi Xjws ... wp Xpwia1
as follows. Open circles denote the nonterminal nodes of the derivation tree, while
smaller black dots denote the attributes. We draw the s-attributes of a nonterminal
to the right of the circle corresponding to (and labelled with) that nonterminal, and
the i-attributes to the left. Dependencies between attributes are represented by arrows
between the corresponding black dots. An arrow from (aq,71) to (ag,jo) denotes that
(a1, 71) is necessary for (ag,jo). Every open circle with label X is connected to the
attributes of X by a horizontal line, and with those horizontal lines a trapezium is built,
to delimit the occurrence of p in the derivation tree. The terminal strings are written
below the horizontal line connecting the circles for X; through Xj, and terminals and



nonterminals are separated by thicker vertical lines. Often we will omit a terminal string
that is equal to A, and the corresponding separator. The dependency graph of a deriva-
tion tree t is depicted by ’putting together’ the dependency graphs of the productions
that occur in ¢ (see Example 2.4 (2)).

As an example of the possible dependencies in an ag in normal form, we draw the
dependency graph of p : Xy — X; X5, where p is a production of an ag in normal
form. For simplicity, we assume that each of the nonterminals Xy, X; and X5 has
one s-attribute s and one i-attribute i. To show every possible dependency, we assume
moreover that every outer attribute of p is necessary for every inner attribute of p.

For an OnlyS-ag in normal form, there are even less dependencies possible, as we
have only s-attributes. We give the dependency graph for ¢ : Yy — aaY;bbYs, where Yy,
Y7 and Y5 are nonterminals and a and b are terminals. Again, to show all possibilities, we
assume that every outer attribute of ¢ (i.e., every s-attribute of Y7 and Y5) is necessary
for every inner attribute of ¢ (i.e., every s-attribute of Yy). Let Y; have s-attributes s;
through syy;), for i = 0,1,2, where d(Y;) denotes the rank of Y;.

An ag G is called circular if there is a derivation tree ¢ of G such that D(t) is cyclic;
otherwise the ag is called non-circular.

Restriction 2.2
We will only consider non-circular ag’s.

We impose this restriction on our ag’s because we want to be sure that there is
exactly one correct decoration for every complete derivation tree. It is known that this
is the case for non-circular ag’s without semantic conditions (see [E86]).

10



An ag G defines the string-value translation 7(G), that is defined as 7(G) =
{(yield(¢),val({cvo,ro0t(t)))) | t is a complete derivation tree of G, val is a correct deco-
ration of ¢}. This translation adds a unique meaning to each complete derivation tree.
There are other translations possible, like the ’(derivation) tree-(decorated) tree’, the
'string-(decorated) tree’ and the ’(derivation) tree-value’ translation, but the string-value
translation is the appropriate notion in the context of this thesis.

Usually, the language generated by G, L(G), is defined to be the language that
consists of all strings that satisfy both the context-free syntax (of the underlying cfg)
and the context-sensitive syntax (of the semantic conditions). Since we consider only
ag’s without semantic conditions, in our case £(G) would have been equal to £L(Gp), and
consequently this definition of £(G) would not be very useful to us : it is context-free.

Since we are mainly interested in the meanings of the complete derivation trees of
an ag G, we will define the language generated by G as L(G) = {val({a,root(t))) | ¢
is a complete derivation tree of G, and val is a correct decoration of ¢}. In [E86] this
language is called OUT(G), the output set of G. Observe that this is not always a string
language.

2.3.3 Examples and notation

We first give a formal description of a sample ag.

Example 2.3

We construct an ag G that counts the number of occurrences of a’s, b’s and c¢’s, respec-
tively, in words of the form awbw’c, where w € {a, b, c}*. Therefore, we make a cfg Gy
that generates words of the required form (awbw®c), and to each production of G we
add semantic rules that will count the occurrences of a’s, b’s and ¢’s, as follows.

G = (Gy, D, B, R) where

=({X,Y} {a,b,c},{X = a¥Ye,V - aYa,V = bYDY — cYc,Y — b}, X),

= (Q,®) with Q = {N, N3} and & = {f, g,id, Cy,C' },

where f(z,y,2) =(x+ 1,y,2+ 1), g(z) =z + 2, id(z) =z, Co() =0 nd Cy() =
B =(S,1,a0, W) with S(X) = {0}, S(Y) ={e, 8,7}, I(X) =0, I(Y) =0, oy = 0,

W(5) = N3, W(a) = W(B) = W(y) =N, and
R(X — aYc) ={(6,0) = f({a, 1), (B,1), {7,1)) },
R(Y — aYa) = { (@, 0) = g({a, 1)), (6,0) =1d({5,1)), (7,0) =1d({y,1)) },
R(Y = bYb) = { (,0) = id((a, 1)), (8,0) =g((8,1)), (7,0) =id((7,1)) },
R(Y = cYe) = { (o,0) —Zd(( 1)), (B id((8,1)), (7,0) =g((v,1)) }
R(Y — b) ={ (a,0) = Co(), (8,0) = (7,0) = Co() }-

G is an OnlyS-ag and translates words u that are generated by its underlying cfg G
into 3-tuples (z,y,2) in N* such that = = |ul,, y = |uly and z = |u]L.
L(G) ={(z,y,2) | z,y,2 € N and z,y and z are odd }. O

b

,0)
70>
C1(),

Since the notation used in the previous example is not easy to read, we will now
introduce some conventions and abbreviations to describe concrete ag’s.

The formal description of a production is p : Xg = w1 Xjwe. .. wgXgwry1, as in-
dicated in Definition 2.3. In a concrete production we will implicitly add the same
numbering to the occurrences of the nonterminals as we did in this formal description.

11



E.g., in the production A — aAbB there are three occurrences of nonterminals num-
bered 0 (the left-hand A), 1 (the right-hand A) and 2 (the B). Furthermore, we will
write a; instead of (a,j) when we are discussing attributes.

We will often describe an ag as follows : we give all the productions of P and to the
right of each production we write all the semantic rules that define its inner attributes.
Moreover, we will use infix notation for the functions in the semantic rules. We will not
explicitly give the attributes of each nonterminal, the semantic domain and so forth; all
the additional information will be implicit from the productions and semantic rules.

Example 2.4
(1) The OnlyS-ag from Example 2.3 is described as follows, when we use the conventions
mentioned above.

X s aYe do = (a1 + 1,81, +1)

Y —waYa ag =1 +2 Bo = B Yo =7

Y =2 bY) apg = B0:B1+2 Y0 ="

Y =+ cYe g = o Bo = B Yo=m+2
Y —>b 04020 50=1 70:0

An example of a correctly decorated derivation tree (t, val ) is the following, where ¢ is

S
&)
&
)
IS

)
b

and V&l((a,LEg)) - 0 Vﬁ.l((ﬁ,xg)) = 17 Vﬁ.l((’)/,xg» = 07
val({a, zg)) = 2, val((8,z6)) = 1, val({y,zs)) =0,
V&l((a,LEg)) = 2 Vﬁ.l((ﬁ,xg,)) = 37 Val(<7,$3>) = 07
val((d,z1)) = (3 3,1).

(2) We give an ag G', with synthesized and inherited attributes, that defines the trans-
lation 7(G') = {{x,y) | = is a string of the form w or w.v, with w,v € {0,1}*, that
represents a binary number (with or without fraction) and y is the decimal value of z}
(from [K]).

12



B—=0 v9 =10

B—1 vy = 2%

L—+ B Vo = V1 S1 = Sp 6021

L — LB Vg = V1 + Vo S9 = Sp st =80+ 1 Zozfl-i—l
N — L Vo = V1 81=0

N — L.L Vg = U1 + V2 s1=0 89 = —4y

where v is the value of B, L, or N, ¢ is the length of L, s is the scale of B or L,
W(w)=Q, W) =N, W(s) =N, S-Att = {v, £}, and I-Att = {s}.

The dependency graph D(t) for a derivation tree ¢ of 110.1 can be depicted as follows.
The values of the attributes are written between parentheses.

N 11(65)
(-1
[ I e\
1 %_/%) Jaa
+B v (=3)
(-1
(4)
s A2)—~w 1 \S U
L SILAD B . 0 1
()
s JA2) B v4) .
1

2.3.4 Some simple normal forms for ag’s

It is known that, for every cfg, we can construct an equivalent cfg in which every symbol
(terminal or nonterminal) is productive, which means that it can generate a terminal
word, and in which every symbol can be reached from the initial nonterminal. We will
give a definition of this normal form (without proof that it is indeed a normal form) and
we carry it over to ag’s.

13



Definition 2.4
Let Gy = (N,T,P,Sp) be a cfg and let X € NUT. X is called useful (in Go) if X
occurs in a complete derivation tree of Gy. If every X € N UT is useful in Gy, or if
Go = ({So},0,0,S0), Gy is called a reduced cfg.

Let G = (Go, D, B, R) be an ag. X is called useful in G if X is useful in Gy. G is
called a reduced ag if G is a reduced cfg. a

It is possible that the initial symbol of a cfg is not productive. In that case, no
symbol can be useful, so the language generated by the cfg is empty; an equivalent cfg
is then ({So},0,0,S), as stated in the definition.

In the following lemma we explain that reduced ag’s are a normal form of the ag’s.

Lemma 2.1

For every ag we can construct an equivalent reduced ag.

Proof

We know that the reduced cfg is a normal form for cfg’s. Reducing a cfg means deleting
productions that contain symbols that are not useful. Reducing an ag then means
deleting those productions and their semantic rules, but not changing any productions
or semantic rules. Since the complete derivation trees of the cfg do not change, the
translation defined by the ag does neither, and thus the language generated by the ag
stays the same. Consequently, the reduced ag is equivalent to the original one. a

Nonterminals of rank 0 do not contribute to the value computed by the ag. Hence
they do not contribute to the language of the ag we considere here. We can easily remove
these nonterminals without changing the language.

Lemma 2.2

Let G be an ag with set of nonterminals N, rank function d and with £L(G) # 0. Then
we can construct an equivalent (reduced) ag G’ with set of nonterminals N’ and rank
function d', such that d'(X’) > 1 for all X' € N'.

Proof

According to Lemma 2.1, we may assume that G is reduced.

We assume that every nonterminal of G is useful. Let G = ((N,T, P, Sy), D, B, R).
We remove every production p : Xo — wy Xqws ... wpXpwg1 with d(Xy) = 0 from P,
since X cannot pass any (attribute) values from itself or its children to its parent in
a derivation tree, nor from itself or its parent to its children. We remove p’s semantic
rules from R.

Furthermore, we replace every occurrence of a nonterminal X with rank 0 in the
right-hand side of a production by A. This does not have any effect on the semantic
rules of those productions, since X did not have any attributes that could occur in these
semantic rules.

The resulting ag G' = (N', T, P', Sy), D, B, R') where P' and R’ are described above,
N'={X | X € N and d(X) > 0}, and G’ has rank function d’ = d|y-.

Note that G’ is reduced. O

In this proof, the assumption that G is reduced is necessary, because the construc-
tion described in the previous lemma can remove useless symbols with rank 0 from a
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production, which may cause the production to occur in a complete derivation tree of
G’ while it could not occur in a complete derivation tree of G (see the example in sub-
subsection 2.3.5.3). Obviously, this would change the language generated by the ag. If
G is reduced, this cannot happen.

2.3.5 String-valued attribute grammars

In general, the attribute values of an ag can be of any type (integers, strings, vectors
etc.). Since our main concern is string languages, we will now define an ag with a
restricted semantic domain: the string-valued ag (see [E86]). Its attribute values are
strings over an alphabet 3, and the basic operation on these strings is concatenation.

2.3.5.1 Definitions and examples

Definition 2.5

A string-valued attribute grammar (sag) is an ag with semantic domain ({¥*}, ®) for
some alphabet 3, where @ consists of all derived functions of the free monoid >* gener-
ated by the elements of X. a

Informally, this means that we specify our semantic rules by (ag, jo) =
ut (a1, 41)u9 - - Um(amy Jm Yma1, with u; € * and 1 <7 < m + 1. Thus the right-hand
side of a semantic rule of a production p is given as an element of (X U A(p))*.

Example 2.5

Consider the cfg G from Example 2.3, that generates the language K = { awbw®c | w €
{a,b,c}*}. Here is an example of a sag G that ’sorts’ the letters a, b and ¢ that occur
in the words that are generated by Gy. Formally, G generates the language M =
{ a™™ck | |v|g = n,|v|p = m, |v]. = k for some v € K} = {a™b"c* | m,n,k odd }. The
translation defined by G is 7(G) = {(v,a"b™c*) | v € K, |v|q = n, |v]p = m, |v|. = k}.

X —aYe 0o = aa1 By

Y —»aYa ap = aaay Bo=061 Y=m

Y = bYD ap = aq Bo=0bbG1 vo=m

Y = cYe ap = a1 Bo=HB  v=cm

Y =) ()é():)\ ,30:[) ’)/0:>\

This sag is an OnlyS-sag. a

In the OnlyS-ag’s that we have defined, it is possible that not every outer attribute
of a production is used to define the inner attributes of this production. Consequently
there can be loss of information. On the other hand, we can also have duplication :
some of the outer attributes of a production may be used more than once to define the
inner attributes of that production.

The following definition, that was suggested by J. Engelfriet (see also [Gi]), describes
an OnlyS-ag that can have neither duplication nor loss of information.

Definition 2.6
A special attribute grammar is an OnlyS-ag such that, for every production p, every
outer attribute of p is used exactly once in a definition of an inner attribute of p.

O
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This means that every attribute in a dependency graph has exactly one outgoing
edge (except for the designated attribute, of course).

Since we will use the concept of special string-valued ag rather frequently, we intro-
duce an abbreviation for it : ssag.

Example 2.6
(1) The sag of Example 2.5 is also an ssag, since, for every production p, every attribute
in outer(p) is used exactly once to define an inner attribute of p.

(2) We give an ssag G for the (non-context-free) language L = {we™ | w € {a,b}*, |w|, =
|w|p = n}. Note that the attribute w of a node z in a derivation tree has a value that is
equal to the yield of the subtree rooted at z.

S()—>X Q) = Wiyl

X — bA wo =b wq Yo=cM
X —aB Wy = a wi Yo=cm
X = A w0:)\ ’)/0:>\

A= XaX Wy = W10 wo Yo = Y172
B — XbX wy = w1b wo Yo = Y172

The dependency graph of a derivation tree for a?b%c? is the following.

S

w
69 3
| Y v
al @
w
[ I
X X
S [T Xl
w
| w1y
al B Py
el
Mlbl
wry wry
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2.3.5.2 A normal form for OnlyS-sag’s

We define a structural normal form for OnlyS-sag’s. It is structural in the sense that
every production and every semantic rule should have a special form.

In Lemma 2.2 from [SMFK] this normal form is formulated for (parallel) multiple
context-free grammars. We have filled in some of the details of the proof of that lemma,
and we prove this normal form for OnlyS-sag’s instead of (parallel) multiple context-free
grammars, because we thought that technically more convenient.

For proving that this is indeed a normal form for OnlyS-sag’s, it would be convenient
to know that the initial symbol has rank 1. If necessary, we can easily construct an
equivalent ag that satisfies this requirement, by adding a new initial symbol Z, that has
a single (synthesized) attribute ag, and adding the production Z — Sy with semantic
rule (a,0) = (ap, 1). Here Sy and ag are the initial symbol and the designated attribute
of the original ag, respectively.

In the proof of the following lemma, we will use nonterminals of the form XV, where
U is a subset of the set of s-attributes of the nonterminal X. The variant XV of
X represents a nonterminal whose attributes generate exactly the same values as the
attributes of X that are contained in U (we could say that XU is the restriction of X to
U). We use these variants XU of X on two occasions in the proof : first U contains only
those attributes of X that are indeed used to compute attribute values of the parent of
X in a derivation tree, and later U contains only those attributes of X that cannot have
the value .

An OnlyS-sag is in structural normal form if it satisfies five properties mentioned
in Lemma 2.3 below. Our proof will construct an equivalent ag in normal form in five
consecutive steps. In each step an additional requirement will be satisfied (without
violating the previous ones).

In this proof, the language generated by the underlying cfg will change, and so will
the translation defined by the OnlyS-sag. But, of course, the language generated by the
OnlyS-sag does not change, since the resulting OnlyS-sag should be equivalent to the
original one.

Lemma 2.3
For every OnlyS-sag G, it is possible to construct an equivalent OnlyS-sag G’, with
initial symbol S, that has the following properties :

i. For every production p, every outer attribute of p is used at least once in a
definition of an inner attribute of p. This is called the information-lossless condi-
tion.

ii. Every nonterminal that occurs in the left-hand side of a terminating production
has rank 1.

iii. For every nonterminating production g, the right-hand side of every semantic rule
of ¢ can be written as an element of (outer(q))*.
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iv. For every nonterminal X # Sj, of G', no attribute of X can have the value A.

v. For every terminating production r with left-hand side X # S, the length of the
right-hand side of the semantic rule of r is 1. If the left-hand side of r is Sj, then
the length of the right-hand side of the semantic rule of r is 0 or 1.

Proof
Let G = (Gy, D, B, R) with Gy = (N, T, P,Sy), D = ({£*},®), B = (S,1,a9, W), rank
function d : N — N, and d(Sp) = 1.

i. We construct an OnlyS-sag 1, that satisfies the information-lossless condition and
is equivalent to G, from G as follows. Let G; = ((Ny,T, P1,Sy), D, (S1, I1, a0, W), Ry)
with rank function di, and let N; = P, = 0.

For every production p : Sp = w1 Xjwsy ... wpXgwir1 in P, we add to P; the
production p’ : Sy — leylwg...kakakH with Ry (p') = R(p), V; = {s €
S(X;) | s occurs in the right-hand side of the semantic rule in R(p)}, S1(X,}?) = V;
and I; (X)) = 0 (for 1 < i < k). We add the XlVZ and Sy to Ny, and we
let di(X,") = |Vi| and d1(Sy) = d(Sp) = 1. Note that the newly introduced
productions and semantic rules have the required property.

We also have to make productions and semantic rules for the newly introduced
nonterminals and for the nonterminals that we are going to introduce.
For every X" in N; for which there are no productions in P; yet, consider all
productions ¢ for X; in P, where
q:X; > vY1ve...0nYmune1 has semantic rules

(50,0) = wg1(se,1,de,1)%e2 - - - Ueny (Stings Jong ) Uemer1 for 1 <2 < d(X;).
For each of these productions ¢ we add to P; the production
¢ : X" = 0 Yy 0, Ym0, 0 with Ry(¢) = {(s,0) = 8 | (s,0) = 8 € R(q)
and s € V;} and, for 1 < j <m, U; = {s € S(Y}) | (s,7) occurs in the right-hand
side of a semantic rule in R;(q")}, Sl(YjUj) = U; and Il(YjUj) = (). We add the

YjUj to Ny, and we let dl(YjUj ) = |Uj|. Again, the newly introduced productions
and semantic rules have the desired property.

When there is no XiVi left for which we have to add productions, we have reached
our goal. This construction will end eventually, since there are only finitely many
nonterminals and there are at most 25! variants of a nonterminal X, for each
of which we have to make finitely many productions.

ii. We construct G, that satisfies i and ii and is equivalent to G, from G;. From
Lemma 2.2, we may assume that every X € N; has rank greater than 0 (the
construction in Lemma 2.2 preserves i).

For every terminating production p : X — w in P, with d1(X) > 1, S1(X) =
{s1,-++,84,(x)} and semantic rules (s;,0) = v; (with v; € ¥* for 1 <1 < dy(X)),
we add dy(X) new nonterminals X; to Ny, with d»(X;) = 1, and to P; we add
dy(X) new terminating productions X; — A, with Ro(X; — A) = {(s,0) = v;}.
Let SQ(Xl) = {8}, IQ(Xi) = 0 and WQ(S) = Y*.
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iii.

1v.

Furthermore, we remove production p from P; and we add a new nonterminating
production ¢ : X — Xi... Xy (x) to P1, with di(X) semantic rules : Ra(q) =

{(Sla 0> = <37 1>7 ceey <3d1(X)70> = <37d1(X)>}
In this way we obtain G2 == ((NQ,TQ,PQ,SU) ({Z*} '1)) (SQ,IQ,O{O,WQ),RQ), and
rank function do : No — N, that satisfies both i and ii.

We adjust G2 in order to make it satisfy iii as well.

Consider a nonterminating production p : Xo — w1 Xjws ... wp Xpwg41 in Py, with
semantic rules (s;,0) = w;1(ai1, Ji,1)%i2 - - - Wim; (@i.m;» Ji,m; ) Wi,m;+1. For every u; g,
we add to Nz a new nonterminal X;,, with d3(X;,) = 1, and to P we add
Xiq — A, with semantic rule (s,0) = u;q, S35(Xiq) = {s}, I3(Xi,) = 0, and
Ws(s) = £*.

Furthermore, we replace p by

pl : XO — ’UJ1X1’LU2 e ’kak’wk+1X1,1 e Xl,m1+1X2,1 [N Xd?(XO)ymd2(X0)+1'
The semantic rules of p’ are the same as those of p, but we replace w; 4 by (s, 2 q),
where z; , = k + Xj<;(mj + 1) + ¢ is the position of X;, in the right-hand side of
p.
After executing this procedure for every nonterminating production we have G3 =
((Ng,Tg, Ps, S[)), ({2*}, '1)), (53, I3, ap, W3), R3) and rank function ds : N3 — N,
that satisfies i through iii, and is equivalent to Gs.

We construct G4, that satisfies iv as well, from G3.

First we adjust the terminating productions that have a semantic rule with right-
hand side A\. We replace every terminating production p : X — w, where X # Sy,
with semantic rule (s,0) = A (where S3(X) = {s} and d3(X) = 1, since G5 satisfies
ii), by the production p’ : X? — w with dy(X?) = 0, S4(X?) = I,(X?) = 0 and
R4(p') = 0. We add X? to Nj.

Next, we change the terminating productions that do not have a semantic rule
with right-hand side A. This is necessary because of the construction applied
to nonterminating productions described below. We replace every terminating
production 7 : Y — v, with semantic rule (s,0) = u (where u € £1, S3(Y) = {s}
and d3(Y) = 1, since G5 satisfies ii), by the production ' : Y15} — ¢ with
dy(Yihy =1, §y(v{sh) = {s}, I,(Y) = 0 and Ry(+') = {(5,0) = u}. We add
vt to N3,
Furthermore, we replace every nonterminating production
q:Xo—wXjws...  wgXpwry1, with semantic rules

(8i,0) = (8i,15i1) - - - (Sisns» Jins)

withn; > 0for 1 <4 < d3(Xj), by the productions ¢ : Xgo — ’Ll)leUl’U)Q e kagkwkH

with U; C S3(X;) for 1 < j < k (so we construct 253 (X0 % . x 2153(X0)| pew
productlons) the XgU 0 <<k are new nonterminals that we add to Ns,
54( ) Ula d4( ) |U[| and I4( ) = @

If Xog # Sp, or X9 = Sp and XA € L(G), then we set Ry(q') = {(s,0) = ' | (s,0)
B € Ri(q), /' is constructed from (3 by replacing every (s,j) € U; for 1 < j <

> |l
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that occurs in 3 by A, and ' # A}, and Uy = {s € S3(Xp) | there is a semantic
rule for (s,0) in R4(q")}.

If Xo =Sy and XA € L(G), then Uy = S5(Sp), and R4(¢') = {(s,0) = 5’ | (s,0) =
B € R3(q) and /' is constructed from [ by replacing every (s,j) ¢ Uj for 1 <j <k
that occurs in 3 by A}. To simplify notation, we write Sy instead of SSJ o

To make sure that the resulting grammar satisfies ii, we have to reduce it and
remove nonterminals with rank 0 (see Lemma 2.2).

The resulting grammar is Gy = ((Ny, Ty, Py, So), {X*}, @), (Sy, 14, g, Wy), Ry)

with rank function d4 : Ny — N, which satisfies i through iv and is equivalent to
Gs.

v. We construct the required OnlyS-sag G’ from Gjy.

Consider the terminating production p : X — w in Py with S4(X) = {s}, one
semantic rule (s,0) =vandv =v;...vp (withv; € £, 1 <i<mandm >1). We
add m new nonterminals X; (for 1 < j < m) to N4, with d'(X;) = 1, and to Py we
add m new terminating productions X; — X\. We let R'(X; — X) = {(s,0) = v;},
S'"(X;) = {s}, I'(X;) = 0 and W'(s) = T*.

Furthermore, we remove production p and we add a new nonterminating pro-
duction ¢ : X — wX;...X,, to Py with one semantic rule : R'(¢q) = {(s,0) =
(s,1)...(s,m)}. We apply this procedure to every terminating production in P
of which the semantic rule’s right-hand side has length greater than 1.

Now we have G’ = ((N',T',P', Sy), ({Z*}, @), (S",I', a9, W'), R') and rank func-
tion d' : N' — N, that satisfies i through v and is equivalent to G.

|

Note that, for an OnlyS-sag that satisfies iii and iv, the following holds : for every
nonterminating production ¢ with left-hand side # Sy, the right-hand side of every
semantic rule of ¢ can be written as an element of (outer(q))™.

2.3.5.3 Example

Here is an example of applying Lemma 2.3 to a given OnlyS-sag G.
Let G be

S — AB Sy = Qa17Y2

A — AB ap = Paa1ye

A —a ag = A

B -+ B B[) :aﬂlb Yo =cd
B —a Bo = ab Yo =cd

G generates the language £(G) = {a™b™ ...a™b™ (cd)**' | n; > 1 for 1 <4 < k and
kE > 0}.

We bring G, step by step, in structural normal form. We use the following notational
convention here : a set of (s-)attributes is written as a string that is the concatenation
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of all the elements of the set, in an arbitrary order. Thus for instance S(B) = {3,v}
will be written as (.

(i) G does not satisfy the information-lossless condition, because in the semantic rule
sg = a1yg of S — AB, 2 is not used, and in the semantic rules By = af1b and vy = cd
of B — B, v does not occur. We start by making an equivalent OnlyS-sag G that
satisfies the information-lossless condition.

S — A*BY S0 = Q172

AY — A*BPY ap = foaryz

A% —a ap = A

BY — BY Yo =cd

B —a Yo =cd

B’ny — Bﬁ ,30 = aﬂlb Yo = cd
B 5 q Go = ab Yo =cd
B" — BY

BY g4

BS — Bf Go = afb

Bf Sq Bo = ab

(ii) Next, we are going to make sure that the nonterminals that occur in the left-hand
side of a terminating production have rank 1 (this is only necessary for B’ and BY.
since A%, BY and B? already have rank 1). First, we have to reduce G;. Since every
symbol in (i1 is useful, G is already reduced. Then we have to remove the nonterminals
with rank 0 (i.e., B?). This gives us G :

S — A*BY S0 = Q172

AY — A*BPY ap = faaryz

A% —a apg = A

BT — ) Yo =cd

BY —a Yo =cd

Bﬂ’y — BB ,30 = aﬁlb Yo = cd
B ¢ Bo = ab Yo =cd
B8 — Bf Go = aBb

Bf Sq Bo = ab

Now we can apply the construction of Lemma 2.3 ii to G}, which leads to G5 :

S — A*BY S0 = Q172

A® — A*BPY ap = a1y

A% —a ap = A

BY — ) Yo =cd

B —a Yo =cd

B’ny — Bﬁ ,30 = aﬂlb Yo = cd
X =2 & =ab

Y —A & =cd

B - XY Bo = &1 Yo = &2
BB — Bf ,30 = a,ﬁlb

B Sa Go = ab
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(iii) Now we have to replace the constant strings that occur in the right-hand sides of
the semantic rules of the nonterminating productions B%Y — B? and B? — B”.

We do not follow the construction given in Lemma, 2.3 iii exactly, however. We will
reuse nonterminals, if possible, instead of adding new nonterminals (see for instance
Bf — BAUVY, in which we have used the already present nonterminal Y rather than
introducing a new one). We will do the same with the other nonterminals that we should
introduce during this example.

This gives G35 :

S — A*BY S0 = Q172

A® — A*BPY ap = faaryr

A% = q ap = A

BY — X Yo =cd

BY —»a Yo =cd

B BSUVY By = &his Yo =&
U — A & =a

V =2 & =0

X = &y =ab

Y — A & =cd

B XY Bo = &1 Yo = &2
B — B°UV Bo = &651€3

Bf Go = ab

Before we remove ’A-semantic rules’, we will rename the nonterminals of G5, yielding
G%. Note that this is not really necessary: it is only done for reasons of clarity.

S — AC So = (172

A — AD ap = faa1y2

A —a apg = A

cC = Yo =cd

C —a Yo =cd

D — BUVY [y =868 Yo =&
U — A & —a

Vo & =b

X S £ = ab

Y A ¢ =cd

D — XY Bo =& Y =&
B — BUV Bo = &26183

B —a Bo = ab

(iv) Applying the construction of Lemma 2.3 iv now gives G :

S5 — A*C7Y Sp = (172
S5 = A007 Sp = Y2

S* — A s = a1

S? - AP

A — AO‘Dﬁ’Y Q) = ,32041’)’2
A — AOéDB o) = ,320[1
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A* — AD7Y apg = 172

A — z‘laD0 o) = 0]

A — A®D67 g = ,32’)’2

A — A(Z)Dﬁ g = ,32

A — A@D’y Qg = Y2

AV A0DY

A" g

c? = A Yo = cd

C7" —a Yo = cd

DPT — BFUSVEYS By = &1 Yo = &4
DY — BPUSVEY? By = 6ol

D% — BPUSVIYE By =& Yo = &4
D% — BAUYVEYS By =Bigs Yo = &4
DA — BAUWWIYE By = Yo =&

DP — BPUPVEY? By = Bi&3
DF - BAUty Py Bo = &6

DPY — BUtVEYE Bo = &a283 Yo = &4
DF — BYUSVEYD By =6ads

DPv — BUUtVIye Bo = &2 Yo =&
D% — BUVEyE Bo = &3 Yo = &4
DY — BUlvly¢ Yo =&

DS — Biyly ey By =&
DS — BIWyty oy Bo =&
D’ — Bylyly?

Ut =\ £ =a

VE A & =b

X¢ ) & =ab

Yé =\ & =cd

DAY — X&'t Bo =& Yo = &2
DY — x"y¢ Y =&
DS — Xx¢y? By =&

DY — x0y?

Bf — BAUtVE Bo = &061€3

BS — BAUSYY Bo = &b

B? — BSUVE Bo = Bt

Bﬂ — BBU(DV(D BU = ,31

Bf — BYUtvE Bo = &als

Bﬂ — BQ’UfVQ’ ,80 = fg

Bﬂ — BQUV)VE ,80 = fg

BY — BUiy?

B g Bo = ab

This grammar, however, does no longer satisfy the condition of Lemma 2.3 ii, since A"
occurs in the left-hand side of a terminating rule (4% — @) and has rank 0. So we reduce
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G, (in which §?, ¢?, D5 D7, DY U v X? v and B? are not useful), which leads
to GYf :

S5 — A*C7Y Sp = (172

S — Ale S0 =2

A% — A“DPY apg = Poarye

A* — A'DBY ag = [oye

AV g

c? = A Yo = cd

C7" —=a Yo = cd

DFY — BPUSVEYS By = &pi&s Yo = &4
Ut £ —=a

VE € =b

X6 A £ = ab

YE S ¢ =cd

DAY — X¢Y*¢ Bo =& Yo = &2
BF — BSUSVE By = &piés

B g Bo = ab

Now we remove from G/ the nonterminals with rank 0, of which A? is the only one.

Observe that it is important that a grammar is reduced before removing nonterminals
with rank 0. If we had not reduced G, we would have introduced, for instance, the
production D? — BAUSVE by removing Y?. But in G, Y? is not useful, which causes
DF — BSUSVEY? never to be used in a complete derivation tree. So DP — BAUSVE
should not occur in our grammar, because it might now be used in a complete derivation
tree, and thus it would change the language generated by the ag.

Using the construction of Lemma, 2.2, the result is G4 :

S — A*CY Sp = Q17Y2

S5 = C7 S = Y2

A% — Ao‘l)’ny g = ,32041’)’2

A® — DBY ag = P22

Cc? = A Yo = cd

C7" —a Yo = cd

DI s BOUSVEYE By = 616 Yo =&
Ut =\ & =a

Ve =\ & =0

X¢ A & =ab

Y =\ & =cd

DAY — X¢y*¢ Bo =& Yo = &2
B — BAUCVE Bo = &61€3

Bf g Bo = ab

(v) The last step of the construction involves breaking up right-hand sides of semantic
rules that are too long. The result of this step is G', with £L(G') = L(G), which is in
structural normal form.

S5 — A*C7Y Sp = (172
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S5 = C7

A — A2DPY
A — DB

cCT -WZ

W =

Z = A

C7" —aWZ
DB 5 BAUEVEYE
Ué —

VE S

X¢ — Usve
Y¢ - WZ
DAY 5 X¢Y¢
Bf — BAUtVE
Bf 5 qUSVE

50 =72

apg = Paarye
ag = [oye
Yo = &1&2
o =c

§o =d

Yo = &1é2
Bo = 20183
o =a

§o =b

§o = &1é2
§o = &6
Bo =&

Bo = 20183
Bo = &i&2

Yo =&

Y0
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Chapter 3

Generalized context-free
grammars

3.1 Introduction

In this chapter we discuss generalized context-free grammars, which can be viewed as
cfg’s in which the nonterminals generate tuples of strings instead of strings.

We now give our definition of a generalized context-free grammar. We have slightly
modified the definition given in [SMFK] in order to show the similarities between gen-
eralized context-free grammars and the other grammars that we describe in this thesis
(in particular the attribute grammar), and in order to make the definition more precise.

We need some terminology concerning functions that have tuples of strings over
some alphabet T as input and output values. For such a function f, let a(f) denote the
number of arguments of f, d;(f) (for 1 < i < a(f)) the dimension of the i*" argument
of f, and r(f) the dimension of the result of applying f. Hence f is a function from
(T*) 1) x (T%)2(N) x5 (T*) %) 4o (T*)"()). The description of the i component
of the result of applying f is denoted f?, where 1 <4 < r(f).

We also define, for each f, #; = (7;1,%i2,...,%;4,s), the ith argument of f, and
V(f) ={zi; | 1 <i<a(f)and 1 <j < d;i(f)}, a set of variables that denote the
components of the arguments of f.

Definition 3.1
Let m be a positive integer. An m-generalized context-free grammar (m-gcfg or gefg) is
a b-tuple G = (N, T, D, P, Sy) where

i. N is a ranked alphabet of nonterminal symbols. The rank or dimension of each
nonterminal is given by the total function d : N — N;

ii. T is a finite set of terminal symbols which is disjoint with V;

iii. D is a semantic domain ({O1,02,...,0,}, F), where O; is the set of all tuples
of dimension i of strings over T, i.e., O; = (T*)" for 1 < i < m. There are no
restrictions on F', thus each f € F' is an arbitrary function from Oy, (p) X Og, sy X
S X Oda,(f)(f) to Op(yy- Obviously, r(f) and d;(f) are not greater than m;
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iv. Pisa finite set of (rewriting) rules each of which is of the form (f, Xo, X1, ..., X,(5))
where f € F' and X; € N for 0 <i < a(f). If arule (f, Xo, X1,..., Xq(p)) is in P,
then r(f) = d(Xy) and d;(f) = d(X;) for 1 <i < a(f);

v. Sy € N is the initial symbol, and d(Sy) = 1, i.e., Sy generates strings (more
precisely tuples of dimension 1).

Notes :
i. We will omit the parentheses of tuples of dimension 1.

ii. We have the range of the rank function defined to be N, although, as in the case
of ag’s, nonterminals with rank 0 are 'not needed’.

We abbreviate {O1,...,0,} as O. An element (f, Xy, X1,...,X,) of P is written
as Xo — f[X1,...,Xg]. If ¢ =0, ie. if f is a constant element of O,y , the rule is
called a terminating rule; otherwise it is called a nonterminating rule.

The language generated by X € N in G, La(X) C (T*)4X) | is defined as follows.
For X € N, L;(X) is the smallest set satisfying the following two conditions :

i. If a terminating rule X — 0 is in P, then 6 € L (X);

ii. If, for 1 <4 < gq, 0; € La(X;), X — f[X1,...,Xy] is in P and f(61,...,0,) is
defined, then f(0y,...,0,) € La(X).

We denote the generalized context-free language (gcfl) generated by G by L(G), and we
define £(G) = Lc(So) € T™.
We define a derivation tree in a gcfg G as follows :

i. For a terminating rule X — 0, the tree whose root (labelled with X') has only one
child (labelled with @) is a derivation tree of 6,

ii. If ¢; is a derivation tree of 6; whose root is labelled with X; (for 1 < i < gq),
X = f[Xy,...,X,] isin P and f[f,...,60,] is defined, then a derivation tree of
fl01,...,6,] is a tree such that

(a) the root is labelled with X,

(b) the root has ¢ children, which are connected to it by edges labelled with f,
and

(c) the subtree rooted at the i** child is isomorphic to t; (for 1 < i < g).
iii. Every derivation tree is built using conditions i. and ii. a finite number of times.

So derivation trees of gcfg’s and those of cfg’s are very much alike, except that the
leaves of the former are tuples of strings while those of the latter are strings, and the
former have edge labels indicating functions that have to be applied to tuples generated
by nonterminals.
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3.2 Parallel multiple context-free grammars

We will now define a class of gcfg’s with a restricted semantic domain : the only operation
that may be applied to the strings is concatenation. That makes the grammars in this
class, the parallel multiple context-free grammars, very similar to the string-valued
attribute grammars.

Definition 3.2
Let m be a positive integer. An m-parallel multiple context-free grammar (m-pmcfg or
pmcfg) is an m-gefg G = (N, T, D, P, Sy), with D = (O, F), which satisfies the following

requirement : for each function f € F, f(Z1,...,T4(s)) can be written as an element of
(V(HyuT) ). O
Example 3.1

The 2-pmcfg G = (N,T,D, P,S), where N = {A,B}, d(A) = 1, d(B) =2, T =
{a,b,c,d}, D = ({T*,T* x T}, {,g}) with f(z, (y,2)) = ywz and g((y, )) = (ayb, c=d),
P={A— fl[A,B],A— X\, B — g|B],B — (ab,cd)} and Sy = A, generates the language
L={a™b" ...a" " c"kd™ ... c"d" | n; >1for 1 <i<kandk>0}.

The following tree is a derivation tree of aba’b?>c?d’cd € L. Instead of drawing nodes
and putting the labels next to the nodes, we have replaced the nodes by their labels.

Y
v

(ab, cd)

B
o
A B

(ab, cd)

According to this tree, A € Lg(A) and (ab,cd) € Li(B). From the application of
B — g[B], (a®V?,c*d?) € Le(B), and then, from the ’leftmost’ application of A —
flA, B, a®b*c*d? € Lg(A). Finally, the 'topmost’ application of A — f[A, B] gives
aba’b’c?d*cd € Li(A). Consequently, aba?b?cd?cd € L(G) (and X and a?b?c2d? are in
L(G) as well). O

When discussing ag’s, we introduced a simpler, less formal, notation for describing
them. For pmcfg’s, we will use a similar notation : we will just give the rewriting rules,
the descriptions of the functions that we use, and the initial symbol. The dimension of
the nonterminals can be derived from the rules and the functions. This is illustrated in
the following example.

28



Example 3.2
(1) The 2-pmcfg G of Example 3.1 can be described as follows :

A— A
B — g¢[B] 9((y,2)) = (ayb, czd)
B — (ab, cd)

(2) The language {ww | w € {a,b}*} can be generated by the following 2-pmcfg :

X = flY] f((2,y)) = 2y

Y = afY] a((z,y)) = (ax,ay)
Y — glY] B((z,y)) = (bz, by)
Y = (A A)

(3) A 4-pmcfg (with initial symbol X') that generates the language
{wwlww? | w € {a,b}*} is the following :

X = f[Y] f((uaxaya Z)) = uryz
Y — alY] a((u, z,y, 2)) = (au, za, ay, za)
Y — p[Y] B((u, z,y, 2)) = (bu, zb, by, zb)

Y = O\ 0)
(4) Consider the following 5-pmcfg G4 (with initial symbol X) :

X = fY] f((u,v,w,3,y)) = wowzy
Y = (AN

G4 generates the language {a"b"c™d"e™ | n > 0}.

(5) This sample 2-pmcfg (with initial symbol X) is from [SMFK]. Tt generates {a("”) | n >
0}, based on the identity (n + 1)2 = n? + 2n + 1.

X = f[Y] f(z,y)) = azxy
Y — g[Y] 9((z,y)) = (az,azzy)
Y = (A A)

(6) The language {a®*") | n > 0} can be generated by the following 1-pmcfg (also from
[SMFK]) :

X o f[X] 1) = w0
X —a
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3.3 Results on pmcfg’s

A pmcfg is very similar to an OnlyS-sag : they both generate strings and they both walk
bottom-up through a derivation tree. Moreover, a nonterminal of rank n in a pmcfg is
almost the same as a nonterminal of rank n in an OnlyS-sag, since the former generates
tuples of dimension n, while the latter has n s-attributes. So the components of tuples
in pmcfg’s correspond to s-attributes in OnlyS-sag’s, where the only difference is that
tuples are ordered and sets of attributes are not (but we can add an ordering to a set).
In the following theorem we will formalize this idea.

Since in an ag the initial symbol is not supposed to occur in the right-hand side
of a production, there might be a problem when we want to translate a pmcfg G in
which the initial symbol does occur in the right-hand side of a production to a sag.
This problem, however, is easy to solve. For a pmcfg G = (N, T, (O, F), P,Sy), with
rank function d : N — N, an equivalent pmcfg that has the required property is G' =
(NU{Z},T,(0,F U{id}),P U{Z — id[So]}, Z), where Z is a new nonterminal with
d(Z) =1, and id is a new function with id(z) = z for all z.

Theorem 3.1
PMCFL = OnlyS-SAL
Proof

First we prove that for each m-pmcfg G = (N, T, D, P, Sy) we can construct an OnlyS-
sag G' = ((N',T", P', S}), (22, ®), B, R') such that £(G) = L(G'). We may assume that
Sp does not occur in the right-hand side of any rule in P.

Let N' =N, Sj = Sy, Q = {T*} and ® consists of all derived functions of the free
monoid T*. Let N’ have the same rank function d as N, so every X € N’ will have
d(X) s-attributes : s; through syx). Then the attribute description B’ of G’ consists
of S'(X) ={s; |1 <j<d(X)} for each X € N', I'(X) = () for each X € N, o = 51
and W' (a) = T* for every a € Att'. To determine T' , P’ and R', we have to consider
each rule in P. Let T' = P’ = ().

For each nonterminating rule r : Xy — f[X1,...,Xx] in P, we add the production
p: Xo— fX1... X to P, and the new terminal 'f’ to T". The semantic rules in R'(p)
are (s;,0) = f'(({s1,1),--+, (8q(x1)s 1))y -+ -5 ({81, k) -+ o5 (Sarx, s K))) for 1< 0 < r(f).
The terminal that is added to the production may look somewhat superfluous, but it is
necessary to prevent us from adding the same production more than once, with different
semantic rules.

For each terminating rule v’ : Xo — (v1,...,v4x,)) in P (where v; € T* for 1 <4 <
d(Xp)) we add a new terminal 'r”’ to T", and to P’ we add the production p’ : Xy — 7.
The semantic rules for p’ will be (s1,0) = v1,. .., (54(x,),0) = va(x,)- Now L(G) = L(G")
and consequently PMCFL C OnlyS-SAL.

Our next task is to prove that OnlyS-SAL C PMCFL. Let G = (Gy, D, B, R) be
an OnlyS-sag, with Go = (N,T,P,Sy), D = ({£*}, ®) for some alphabet ¥ and G
has rank function d. According to the remark just before Lemma 2.3 we may assume
that d(Sp) = 1, and by Lemma 2.2 we assume that d(X) > 0 for every X € N. For
each terminating production p : Xo — w in P, R(p) = {(s1,0) = v1,...,(84(x,),0) =
Vi(x,) )}, Where v; € X* for 1 <4 < d(Xp). For each nonterminating production g :
Xo > w Xiwa ... wp Xpwgy1, let
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(Si, 0> = fi(<81, 1), ceey <3d(X1)7 1>, cey (Sl, k>, ceey <3d(Xk)7 k)) S R(q)
be the semantic rule for s; (with 1 <i < d(Xj)).
(Tt is possible to describe every function f € ® that occurs in R(q) as a function that
takes the attributes (s1,1),...,(sq(x)s 1)s- -+, (51,k), ..+, (Sq(x,), k) of ¢ in this order as
its arguments, and of which the description of the result can be given as an element of
(A(g) UX)*. Note that not every argument has to be used in this description!)

Let m = max{d(X) | X € N}. We construct an m-pmcfg G' = (N',T', D', P, S{),
with D' = (O', F'), such that £(G") = L(G). Let N' = N, where N and N’ have the
same rank function d, 7" = %, O' = {(T")*, (T")*)?,..., ((T")*)™} and S} = Sy. For a
function f € ®, that is described as above, we define f((£1,1,..., %11 )y (Tn1y---»Tnn))
to be f(1,1,.- s T1jis-- s Tnds---,Tny,) Where n >0 and j; > 1 (for 1 <i < n). For
every nonterminating production ¢ : Xo — wi Xjws ... wx Xpwg 41 in P we add the fol-
lowing rule to P' : Xo — f[X1,...,X}], where f' = f; for 1 < i < d(Xp), and we add |
to F'. For every terminating production p: Xy — w in P, we add the following rule to
P2 Xo = (v1,---,04(x,))- Now L(G") = L(G) and thus OnlyS-SAL C PMCFL.

Consequently PMCFL = OnlyS-SAL. O

Since we now know that the pmcfg is equivalent to the OnlyS-sag, we can bring every
pmcfg in a structural normal form that corresponds to the one in Lemma 2.3 (Lemma
2.2 from [SMFK]). Note that it is important that the initial symbol of the pmcfg does
not occur in the right-hand side of any rule!

Corollary 3.2

We can bring every pmcfg G = (N, T, D, P,Sy) with D = (O, F) and rank function d
in structural normal form, i.e., we can adjust G in order to let it have the following
properties :

i. For every f € F,if f(T1,...,%q(s)) = (Y1,---,Yr(p))> then every x € V(f) appears
at least once in y1 ...y, () (the information-lossless condition).

ii. Every nonterminal that occurs in the left-hand side of a terminating rule has rank
1.

iii. For every nonterminating rule Xy — f[X1,..., Xy] in P, the description of
f(Z1,...,T;) can be given as an element of ((V(f))*) /).

iv. For every nonterminal X # Sp, if (01,...,04x)) € La(X), then 6; # A for 1 <i <
d(X).

v. For every terminating rule X — 6, with X # S, |#] = 1. If X = Sj, then |#] is 0
or 1.

a

3.4 Multiple context-free grammars

In pmcfg’s, it is possible to use the elements of the generated tuples more than once to
compute the elements of another tuple (‘parallellism’). We will now define a class of
pmcfg’s in which this duplication cannot occur : the multiple context-free grammars.
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Definition 3.3

Let m be a positive integer. An m-multiple context-free grammar (m-mcfg or mcfg) is
an m-pmcfg G = (N, T, D, P, Sy), with D = (O, F'), where all functions in f € F' satisfy
this condition : for each variable z in V(f), the total number of occurrences of z in the

description of f is at most one, i.e., each z is used at most once to describe the result
of f. O

Example 3.3
(1) Here is an example of a 3-mcfg for the language M = {a™b"c* | m,n,k odd } from
Example 2.5. The grammar directly corresponds to the OnlyS-sag from that example.

X — f[Y] f((z,y,2)) = azycz

Y — afY] a((z,y,2)) = (aazx,y, 2)
Y = p[Y] B((z,y,z)) = (z,bby, z)
Y — V[Y] 7((x7y7z)) = (:v,y,ccz)
Y — (A b,N)

(2) The pmcfg’s in Example 3.2 (1), (2), (3) and (4) are also mcfg’s, but those in (5)
and (6) are not, since in the description of the functions f and ¢ in (5) and f in (6) the

variable z is used more than once.
O

It is easy to see that (p)mcfg’s are generalizations of cfg’s. In a cfg G = (N, T, P, Sy),
a nonterminal Xy that has Xy,..., X} as its children will generate a string that is the
concatenation of the strings generated by Xi,..., X} (in this order!) and some terminal
strings that can occur before, between and after the strings generated by Xi,..., X} :
Xo = i Xiwy ... wpXpwiqr (with w; € T* and X; € N). In a pmcfg, however, a
nonterminal X that has k children X1,..., X} can generate a tuple of strings, that are
also concatenations of the strings in the tuples generated by Xi,..., X and terminals,
but the order of the strings generated by the children may be disturbed, and these
strings may be used any number of times. Since in an mcfg the strings generated by the
children cannot be used more than once, mcfg’s and cfg’s are very much alike. In the
next theorem we will prove that every cfg can be simulated by a 1-mcfg and vice versa.

Theorem 3.3

CFL = 1-MCFL

Proof

The easiest part of the proof is CFL C 1-MCFL. Let G = (N, T, P,Sj) be a cfg. We
construct a 1-mcfg G' = (N,T, D', P',Sy), with D' = (O, F'), and rank function d,
from G as follows. Let O' = {T*} and, for every X € N', d(X) = 1. For each
p: Xo = wiXqwy ... wgXgwgyy in P we construct the following rule in P’ : X5 —
fp[Xl, ..., Xk| where fp(Tl, cey D) = WL WD - . . W T 1 Why1. Leb F' = {fp | p € P}.
Now L(G) = L(G') and thus CFL C 1-MCFL.

Now we have to prove that 1-MCFL C CFL. Let G = (N,T,D, P, Sy), with D =
(O, F), be a 1-mcfg. We know that O = {T*} and that the rules in P are of the form
r:Xo— f[X1,..., Xp] with & > 0, where f(z1,1,...,2,1) can be written as an element
of ({:El,l, e 737]4:,1} U T)*, i.e., f(xl,l, e 737]4:,1) = W1Tj;,1W2 ... WtTj;, 1 W41 with Wy € T*
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for1 <¢<t+1,4; € {1,...,k}and i; =iy = j =7 (for 1 <j <tandt<Ek).
We construct a cfg G' = (N',T', P', Sy) with L(G") = L(G) as follows : let 7" = T and
Sy = Sp. Foreach r: Xy — f[X1,...,X}] in P we construct the following production in
P Xo = w1 Xjwy ... wp Xj,we1 and we add X;,, ..., X;, and Xy to N'. This proves
1-MCFL C CFL.

Consequently CFL = 1-MCFL. |

We have already proven that the pmcfg is equivalent to the OnlyS-sag. Both for-
malisms have a restricted version (the mcfg and the ssag, respectively), in which du-
plication is prohibited. The only difference left between those two restricted versions
is the fact that in mcfg’s loss of information is possible, while in ssag’s that is not al-
lowed. In the next theorem we prove that that can be overcome with the help of the
information-lossless condition of Corollary 3.2

Theorem 3.4
MCFL = SSAL
Proof

We know that each mcfg G is equivalent to an mcfg G’ that satisfies the information-
lossless condition of Corollary 3.2. This means that for G’ the following is true : for each
f € F' where f(Z1,..., %)) = (Y1,-- -, Yn()), every x € V(f) appears ezactly once in
Y- Yr(f)-

According to Theorem 3.1, we can construct an OnlyS-sag G” such that L(G') =
L(G"). Tt is clear from the proof of that theorem that for each production p : Xy —
fX1... Xk in P" the dependency graph D(p) has the following property : for each s-
attribute s of X; through X, there is exactly one edge from s to some s-attribute of Xj.
The designated attribute of an OnlyS-sag cannot have any outgoing edges. Hence the
dependency graph of each derivation tree is an inverted tree.

On the other hand, it is clear from the proof of Theorem 3.1 that when an OnlyS-sag
is special, the equivalent pmcfg that can be constructed is also an mcfg. a

Example 3.4
Using the construction in Theorem 3.1 we construct the following 2-mcfg G’ for the
language L given in Example 2.6(2).

S — f[X] f(z,y)) ==y
X — B[A] B((z,y)) = (b, cy)
X — o[B] a((z,y)) = (az, cy)

X = (\A)
A—=glX. X]  g((z,y), (u,v)) = (zau,yv)
B — hlX, X] h((z,y), (u,v)) = (zbu, yv)
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Chapter 4

Relational grammars

4.1 Definitions and examples

We will give an adapted version (suggested by J. Engelfriet) of the definition of relational
grammars from [GR]. Our relational grammars generate strings, while in [GR] trees are

generated.
Let V be an infinite set of variables. We will use =1, %2, %3, ..., Y1, Y2, Y3, -+, T, Y, 2,
..., T,Y,Z,... as variable names.

Definition 4.1

Let T be an alphabet of terminal symbols, and let N be a ranked alphabet of nonterminal
symbols with rank function d : N — {1,2,...}. A derivation tuple over N and T is a
tuple ((v1,...,v), R), with k > 1, that satisfies the following requirements :

iovg,...,0 € (TUV)

ii. R is a finite subset of NV such that each element of R is of the form Xz, ...z,
with n = d(X) and the zy,...,x, are all distinct. Moreover, if Xz ...z, and
Yyi...ym arein R, then z; #y; (for 1 <i<n,1<j<mandm=d(Y));

iii. A variable occurs in vy ..., if and only if it occurs in some element of R.

d

In [GR] derivation tuples are called ’parameterized relations’. We will however not
use that name, since we think that ’derivation tuple’ gives a better description of its
use.

A derivation tuple is a 2-tuple ((v1,...,v), R). As we will see later in this chapter,
the first component of this tuple, (vy,...,v,), indicates what has been derived so far.
The second component is a set of elements of the form Xz; ... 74 x). Such an element
indicates that the variables zi,..., 74 x) still have to be rewritten, with the help of a
production with left-hand side X.

Moreover, a derivation of a relational grammar (defined below) starts with a deriva-
tion tuple, and in each derivation step a new derivation tuple is generated.

Note that, according to Definition 4.1, the variables that occur in R occur at least
once in v; ... v, and that any variable occurring in v; ... v appears ezactly once in R.
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The rank of a derivation tuple ((vy,...,vx), R) is k. Two derivation tuples that differ
only by the names of the variables are isomorphic. Two derivation tuples are disjoint if
no variable occurs in both.

Definition 4.2
A relational grammar (rg) is a 4-tuple G = (N, T, P, Sy), with

i. N is a ranked alphabet of nonterminals. The rank of each nonterminal is given by
a total function d : N — {1,2,...};

ii. T is a finite set of terminals, and NNT = ();

iii. P is a finite set of productions of the form X — p where p is a derivation tuple
over N and T with the same rank as X € N;

iv. So € N is the initial nonterminal.

|

A derivation step p1 = p2 between derivation tuples is defined as follows. Let
p1 = ((v1,...,v;),R) and let Xz ...z, € R. Let X — p be a production in P and let
((wy,...,wy), R") be an isomorphic copy of p that is disjoint with p;. Then p; = po
where po = ((v],...,v;), (R\{Xz1...2,}) UR') and v} = v;[z1/wi,..., 25 /wy], the
result of substituting w; for =; in v; (where 1 <7 <k and 1 <j <m).

A relational grammar G generates a set of m-tuples of terminal strings, where
m = d(Sp). To be precise, the language generated by G is defined to be L(G) =
{(iy.oyom) | (1,0 2m), {S0x1 -« - Zm }) = ((v1,...,0m),0)}.

This means that every derivation is started by the derivation tuple
((z1,...,2m),{Sox1...2m}). Then an appropriate production is applied to this deriva-
tion tuple, which gives us a new derivation tuple. The process of applying productions
is executed until a derivation tuple ((vq,...,vy),0) is encountered. Note that every
derivation tuple in such a derivation has rank m.

Restriction 4.1
Since we are mainly interested in string languages, we will only consider rg’s of which
the initial nonterminal has rank 1.

We give an example of an rg. As we did with pmcfg’s, we will omit the parentheses
of tuples of dimension 1.

Example 4.1
Consider the relational grammar G = ({S, X'}, {a}, P, Sy), with P = {Sy — (azzy, {Xzy}),
X = ((az,azzy), {Xzy}),X — (A, A),0)}. G generates the language {a) | n > 0}
(see Example 3.2 (5)). A sample derivation of G is
(5 {Sos}) =
azxy, {Xzy}) =
aaTaTaTTY,{XTY}) =
acazaaraararazzy,{Xzry}) =
aaaaaaaaa, D) 0

(
(
(
(
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From this example, it is clear that variables that occur in the second component of
a derivation tuple may be used more than once in the first component. We have seen a
similar property with ag’s and pmcfg’s. Now we can impose a restriction on relational
grammars as we did on pmcfg’s and ag’s : we prohibit duplication of variables.

Definition 4.3

A special relational grammar (srg) is a relational grammar of which every derivation tuple
((vi,...,vg), R) in the right-hand side of a production satisfies the following additional
requirement : each variable in V occurs at most once in vy ... vg. O

This means that every variable that occurs in an element of R occurs ezactly once
invy...v.

Example 4.2
Consider the special relational grammar G = (N, T, P, Sy) where
N = {A, B},
T ={a,b,c,d},
P={4o 0D,
— (zyz,{Bzz, Ay}),
— ((ab, cd), 0),
— ((axb,czd),{Bxz})}, and
So = A.
G generates the language {a™b™ ... a"kb™ ™ d™ .. " d™ | n; >0 for 1 <i <k and
k> 0}.
A sample derivation of G is
(v, {Ay}) =
(2yz,{Bzxz, Ay}) =
(abyed, {A7}) =
(abryzed, { Ay, Bxz}) =
(abazbyczded, { Ay, BT z}) =
(aba?b?ycid?cd, {Ay}) =
(aba?b?2yzc?d?cd, { Ay, Brz}) =
(aba’b?abycdc®d’cd, { Ay}) =
(aba’b?abedctd?cd, ),
where z, y, 2z, T, y, and Z € V. |

Both our rg and srg satisfy an information-lossless condition, because of the third
requirement of our definition of derivation tuples. We could however define a derivation
tuple in which loss of information is possible, by changing the condition in Defini-
tion 4.1 iii to ’if a variable occurs in v;...wvg, then it occurs in some element of R’.
And then we could prove that, for every rg (or srg), we can construct an equivalent rg
(or srg) that satisfies an information-lossless condition similar to the ones mentioned in
Lemma 2.3 and Corollary 3.2.
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4.2 Results

4.2.1 Equivalence of rg and OnlyS-sag

We can look at an rg as if it was an OnlyS-sag, as follows. In a derivation tuple
((v1,...,vk), R), the elements of R denote nonterminals with their s-attributes. A pro-
duction X — ((wy,...,wy), R') states that X has to be rewritten as the sequence of
nonterminals that occur in R’ (in an arbitrary order, because R’ is a set), and that the ¢
s-attributes of X are defined by wy, ..., wy, respectively. Since the variables that occur
in R' and also in w ... w, represent the s-attributes of the nonterminals in R’, we can
say that the s-attributes of X are defined in terms of the s-attributes of its children.
The translation of an OnlyS-sag into an rg is analogous.

Theorem 4.1

RL = OnlyS-SAL.

Proof

First, we prove that RL C OnlyS-SAL.

Let G = (N, T, P, Sp) be an rg with rank function d : N — {1,2,...}. We will construct
an equivalent OnlyS-sag G’ = ((N',T', P', S), ({T*}, ®), B', R') with rank function d’ :
N — N.

Let N' = N U{S}}, Sj is a new nonterminal, ® consists of all derived functions
of the free monoid T, B' = (5,1, 9, W) with S(X) = {s1,...,s4(x)} for all X € N,
I(X) = 0 for all X € N, S(S}) = {ao}, I(S)) = 0, W(s) = T* for all s € S-Att',
d|y =dand d(S}) = 1. Let P' = 0 and T’ = 0.

Consider a production p : X — ((v1,...,v4(x)), R) in P, and R = {X1711... 710y,
Xo%o 1. Tomyy ey XpZp1 . Ty, t (with £ > 0 and n; = d(X;) for 1 < @ < ).
We construct a production ¢ : X — pX1Xy...X, in P/, with R'(q) = {(s1,0) =
v1 [/ (85,0 -+ -5 (Sacx), 0) = vacxy[wij/(s5,0)]} for 1 <i < fand 1 < j < ny, and we
add p to T". We execute this procedure for every p € P.

Furthermore, to make sure that S} does not occur in the right-hand side of any
production in P’, we add to P’ the production S — Sy with semantic rule (g, 0) =
(s1,1). Now L(G') = L(G).

Consequently, RL C OnlyS-SAL.

We still have to prove that OnlyS-SAL C RIL.
Let G = ((N,T, P,Sy), ({X*}, ®),(S,I,a0, W), R) be an OnlyS-sag, for some alphabet
¥, and with rank function d. According to Lemma 2.2 we may assume that d(X) > 0
for all X € N, and according to the remark just before Lemma 2.3 we may assume
that d(Sp) = 1. We construct an equivalent rg G’ = (N, X, P', Sp), with the same rank
function, as follows.

For every production p : Xg = w1 Xjws... wpXpwgy1 in P with semantic rules
(8i,0) = wi1(ai1, Ji1)wi2 - Win;(@Gings Jimg; ) Win;+1 for 1 <i < d(Xp), and with S(X,,,) =
{51,--+,8a(x,,)} for 0 <m <k, we add to P’ a production

q:Xo—= ((wia{a,1,51,0001,2 - Uin (@1, J100 )W 0415
g1 (o1, J0,1)U0,2 - - - Won, (Qlnys Jom, ) Ulnp+1)s
{X1(s1, 1) {52, 1) .. . (sacxy)> 1)y - oo, Xie(s1, k) (s2, k) - .- (sacx,), B) })
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for £ = d(Xy). We let (s,7) € V for 1 <j <k and s € S(X;). Now L(G") = L(G), and
thus OnlyS-SAL C RL.
Consequently RL = OnlyS-SAL. O

Corollary 4.2
RL = PMCFL. O

If the original rg is special, then the corresponding OnlyS-sag will be special as well,
since from the restrictions on the derivation tuples of srg’s (all the variables that occur
in R’ are distinct, and they all occur exactly once in wy...wp) we see that every s-
attribute of a child is used exactly once to define the s-attributes of X. Furthermore,
the s-attribute (recall that d(Sp) = 1) of the occurrence of Sy at the root of a derivation
tree can never be used to define another attribute, since the derivation tuple (z, {Spz})
starts the derivation. Thus the dependency graph of each derivation tree of such an
OnlyS-sag is an inverted tree, and consequently the OnlyS-sag is special.

Theorem 4.3

SRL = SSAL

Proof

Assume that we use the construction described in Theorem 4.1 to translate a special rg
into an OnlyS-sag. Because of the restrictions on the derivation tuples of the srg (for
a derivation tuple ((w1,...,w),C), all the variables that occur in C are distinct, and
they all occur exactly once in wj ... wy) it is obvious that the resulting OnlyS-sag is
special.

The translation from OnlyS-sag into rg gives an srg if the OnlyS-sag is special,
since then the tuples in the right-hand sides of the constructed productions obviously
satisfy the requirements for derivation tuples given in Definition 4.1 and the additional
condition of Definition 4.3. a

Corollary 4.4

SRL = MCFL. O
Example 4.3

(1) An ssag corresponding to the srg of Example 4.2 is

Sp— A @y = ay

A — P1 ap = A

A= pAB  ap = Baonye

B — p3 Bo = ab Yo =cd

B — pyB fo = afib Yo =cend

with designated attribute a.

(2) An srg that is equivalent to the ssag of Example 2.6 (2) is the following :

So = (wy, {Xwv})
X = ((bw, cy), {Awv})
X = ((aw, c¢y), {Bwv})
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= (A N),0)
A — ((wiawa, 1172), { Xw171, Xwaye})
B — ((wibwa, y172), {Xwiv1, Xway2})

A sample derivation is

(s,{Sos}) =

(W, {Xwy}) =

(awcy,{Bw7}) =

(awr bwa cyr y2, { Xwim1, Xwaye}) =

(aaw bws ccyye,{Bwy, Xweya}) =
(aawy bwbws cecyr ¥ y2, { Xwaya, Xwiv1, X07}) =*
(aabbece, D).

(3) The following srg, with initial symbol X, generates the same language as the 3-mcfg
from Example 3.3 (1).

X — (azycz,{Yzyz})

(aaz,y,z),{Y zyz})
(z,bby, 2),{Y zyz})
Eaz v y,cez),{Y zyz})

=
=
=
— (A b, ), 0)

4.2.2 Correctness of the construction

Throughout this thesis, we give several constructions to transform one grammar for-
malism into another. We have however never given a formal proof of the correctness of
those constructions. In this subsection we will give such a proof for the construction of
translating an rg into an OnlyS-sag. This is the only correctness proof that we will give
in this thesis, since the other ones are analogous.

To prove the correctness of the construction described in Theorem 4.1, we need to
define the language generated by a nonterminal in an rg and an OnlyS-sag, respectively.
For rg’s, this definition is simple.

Definition 4.4
Let G = (N, T, P,Sy) be an rg with rank function d: N — {1,2,...}.
For every X € N, the language generated by X in G, Lg(X) C (T*)X), is defined to

be L(;(X) == {(’01,... ,’Ud(X)) | ((fl?l,... ,fEd(X)),{XQZI fEd(X)}) =* ((1)1,... ,Ud(X)),w)}.
O

Consequently, L;(Sy) = L(G).

For OnlyS-sag’s, the definition is somewhat more complicated, since the nonterminals
have sets of attributes (i.e., the attributes are not ordered). Therefore we use functions
to associate values with the attributes, as follows.

Definition 4.5
Let G = (Go, D, B,R) be an OnlyS-sag, with Gy = (N,T,P,Sy), D = ({£*},®),
B = (S,I,ap,W) and rank function d : N — N.
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For every X € N, the language generated by X in G, La(X) C (2*)9X), is defined
to be Le(X) = {o | 0 : S(X) — ¥* is a total function, and there is a derivation tree
t of G of which the root r is labelled with X, such that val({(e,r)) = o(«) for every
a € S(X), and val is a correct decoration of t}.

Furthermore, for every subset U # () of S(X), we define L& (X )|y to be the restriction
of EG(X) to U, i.e., L(;(X)|U = {J|U | S L(;(X)} a

Now L£6(S0)|(ae} = £(G).

Let G = (N, T, P,Sp) be an rg with rank function d : N — {1,2,...}. Let G' =
(Gy, D', B',R') be an OnlyS-sag that is created using the construction described in
Theorem 4.1, with G, = (N, 7', P',S})), D' = ({T*},®), B' = (S,I, a9, W) and rank
function d’, where d'|y = d and d'(Sj) = 1. Note that N' = N U {S}}. Let S(X) =
{s1,--+,84(x)} for all X € N.

In the proof of the following lemma we will use the fact that, for a derivation « :

(@15 zax)) AX T mgx)}) = (W1, wan), AKXz Traxg )y -
Xezo .. 2ogx)}) =" ((v1,...,v4x)),0) of G, there are unique derivations a; :
@1y @ax ) AXGzi0 - mjax) ) =7 ((wgns -, uj40x;)), 0) that are 'part’ of a

in the sense that some reordering of them is precisely o, and such that v; = w;[z; . /u; ;]
for 1 <i<d(X),1<j</¢¢>0and1<z<d(X;).

Lemma 4.5

For all X € N, (v1,...,v4x)) € La(X) iff 0 € Lo(X) with o(s;) = v; for 1 <7 < d(X).
In particular, v € Lg(So) iff 0 € L (S)) with o(ag) = v, and consequently L(G) =
L(G").

Proof

"only if” (with induction to the length of the derivation in G)

e (basis)
Consider a derivation of length 1 of (vy,...,v4x)) € La(X), ((z1,...,Z4x)),
{Xz1 .. 2qx)}) = ((v1,---,v4(x)),0). This means that the production p : X —
((v1,...,v4(x)),0) is in P. Then, following the construction given in Theorem 4.1,
the production ¢ : X — p is in P', with R'(¢) = {(51,0) = v1,...,{s4(x),0) =
vg(xy}- And thus o € Lo (X), where o(s;) = v; for 1 <4 < d(X).

e (induction hypothesis)
For all X € N, if (v1,...,v4(x)) €

(X)) and there is a derivation
(@1, max))s {XT1 - 2y }) =T
i

(v1,---,v4(x)),0) with n > 1, then o €

e (induction step)
Consider the derivation a: ((z1,...,Zqx)), {X21 ... 2401 }) ="
(V155 4(x)), D) of (v1,-.-,v4x)) € La(X). Let the first step of a be
((fl?l, .. ,fEd(X)), {Xﬂjl e fEd(X)}) = ((wl, .. ,’U)d(X)), {leEl,l s T (X ) s
Xgxp1 - Ty q(x,)}) using a production p : X — ((wi, ..., wacx)), {X12Z1,1 - T1 gx,)5
ooy XoTg1 oo Ty gex,) }) from P. Since the derivations for X1, ..., X, that are 'part’

of a have length < n, we know by induction that, for Xy,..., Xy, if (u;1,... ,uj,d(Xj)) €

La(X;), then 0; € La(X;), where 0j(s,) = uj, for 1 < j </fand1 < 2z <
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d(X;). According to the construction given in Theorem 4.1, p is translated to
q: X — le cee XE in Pla with R,(Q) = {<3170> = wl[gjj,z/<327j>]7 ey (Sd(X)a[)) =
Wq(x)[Tj,2/(52,7)]}. Now we can say that o € L& (X), where

o(si) = wilzj./o((s2,7))]
= wi[fﬂj,z/uj,z]

for 1 <i < d(X).

Moreover, the production Sj — Sy with semantic rule (ap,0) = (s1,1) is in P'. If
v € Li(Sy), then o € L(Sy) with o(s1) = v, as we just proved.

Let ¢ be a derivation tree of Sy =* w (for some w € (T")*) with val({s1, root(t))) = v,
for a correct decoration val of ¢. Then we can construct a derivation tree t' of S =
So =* w with val({ag, root(t'))) = v, and thus o € L (S)) with o(ag) = v.

”if” (with induction to the depth of the correctly decorated derivation tree of G')

e (basis)
Consider o € L(X), with o(s;) = v; for 1 <14 < d(X). If there is a derivation tree
t of depth 1 of G’ of which the root r is labelled with X, and with val({s1,7)) = v;
and val is a correct decoration of ¢, then apparently a production p : X — w
with semantic rules (s1,0) = v1,...,(s4x),0) = vgcx) is in P". According to the
construction of Theorem 4.1, this production is a translation from a production
q: X = ((v1,---,94x)),0) in P, and thus (vi,...,v4x)) € La(X).

e (induction hypothesis)
Forall X € N, if o € L&/(X) with o(s;) = v; for 1 <i <d(X) and X is the label
of the root r of a derivation tree ¢ of depth n > 1 of G, with val({s;,r)) = v; and
val is a correct decoration of ¢, then (vy,...,v4x)) € La(X).

e (induction step)

Consider the occurrence of ¢ : X — pXj ... Xy from P’ (for k > 0), with R'(q) =
{(52'7 0> = ’U,i,1<8i,1,ji,1>’u,i,2 e Ui,ni<5i,niaji,ni>ui,ni+1 | 1 S ) S d(X)}, at the root r,
labelled with X, of a derivation tree ¢t of G’ with depth n +1, with val({s;,r)) = v;
for 1 < i < d(X), and val is a correct decoration of t. Then o € L (X) with
o(s;) = v;.

By induction, since the subtrees of ¢ of which the nonterminal children of r are
the roots (that are labelled with Xi,..., X}, respectively) have depth < n, the
following holds : if 0; € La(X;) with oj(sg) = vjpfor 1 <j < kand1 < /¢ <
d(Xj), then ('Uj,la ca avj,d(Xj)) € ﬁg(X])

Since ¢ is in P’, apparently a production

pr X = (((ura(s1,1, 71,0012 - ULng (S1na5 J1,00) U100 +1) [(Se, ) /T 5,0],

e
(um,1<3m,17 jm,l)um,Z - Umong, (Sm,nmajm,nm>um,nm+l)[<3£7 j>/$j,€] )7
{Xaz11 o @y gx,) e ooy XkTh1 - - Thoa(x,) })
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where m = d(X), is in P. And since (vj1,...,v;4.x;)) € Lc(X}), now

( (U1,1<31,1,j1,1>u1,2 - Ul (51,n1ajl,n1>ul,n1+1)[<5€aj>/vj,l]a
(Um,l <5m,17jm,1>um,2 < Umng, <3m,nm7jm,nm>um,nm+1)[<5€7j)/vjaf] ) =
(V1,5 v4(x)) € La(X)

Moreover, if o € L(S])) with o(ag) = v, then also o € L5/(Sp), since p : S, — Sy is
the only production with left-hand side Sj) in P’, and since R'(p) = {{a,0) = (s1,1)}.
And then, as we just proved, v € L(S)). a

Since the construction for the translation of an rg into an OnlyS-sag introduces a new

nonterminal Sj), we should also prove that v € L(G) iff 0 € L(S]), with o(ag) = v.
This is obvious from the construction.
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Chapter 5

Top-down tree-to-string
transducers

5.1 Preliminaries

We will use an alphabet 3 with rank function d : ¥ — N, and by *,, we denote the set
{o |0 € £ and d(o) =n}. A tree over ¥ is either a symbol of rank 0 or a string of the
form o(ty ...t,), where o has rank n, with n > 1, and ¢; is a tree over ¥ (for 1 <14 < n).
The set of all trees over ¥ is denoted T, thus Tx, C (X U {(,)})*. A tree language over
Y is a subset of T¥,.

A tree language is recognizable if it can be accepted by a finite tree automaton (see
[T73]). The class of recognizable tree languages will be denoted by REC. (For properties
of REC see for instance [T73], [T67], [TW] and [E75].)

We use V' = {x1, %2, x3, ...} as a denumerably infinite set of variables, V = () and, for
n>1,V,={z,...,2,}. In examples we will use z,y, 2, ... rather than =1, zs, z3,.. ..

For an alphabet ¥ and strings wy € (¥ U V,)* and wy,...,w, € ¥* (for n > 0),
wplwy, . .., wy] denotes the result of substituting w; for x; in wy (where 1 <i <n).

5.2 Definitions

We will now give the definitions concerning top-down tree-to-string transducers, that
we have found in [ERS].

A top-down tree-to-string transducer translates an input tree over some ranked al-
phabet into a string, by walking top-down through the input tree and meanwhile making
translations of the subtrees of the input tree. During this top-down walk through the
input tree, several not necessarily distinct translations can be made of one subtree, and
there can be subtrees of which no translation is made (so those subtrees are discarded).

Definition 5.1
A top-down tree-to-string transducer (yT transducer) is a construct M = (Q, 3, A, qo, R),
where

i. @ is a finite set of states;
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ii. ¥ is the ranked input alphabet;
ili. A is the output alphabet;
iv. qq is the initial state;

v. R is a finite set of (transducer) rules of the form
q(o(z1 ... k) = wiqi(Ti w2 . . . Wpqn (Ti, ) Wnt1
with n,k > 0; 0 € Xk; ¢,q1, - .., qn are (not necessarily distinct) elements of @Q;
Wiy, W1 € A% and 1 <, <k for 1 <m <n.

M is deterministic if different rules in R have different left-hand sides.

Let M = (Q,%,A, qo, R) be a yT transducer.

Let Q(S) = {q(s) | ¢ € Q,s € S} for some set S. A sentential form of M is an
element of (Q(Tx) U A)*, i.e., a string of the form wuipy(t1)uapa(t2) ... UmpPm (tm)tms1
withm >0,p; € Q, t; €Tx, 1 <i<mand, for 1 <j<m+1, u; € A"

For sentential forms s; and sy we write s; = s if s is obtained from s; by replacing
a substring q(o(ty ...t;)) of s1, for certain ty,...,t; € Tx, by
w1q1(ti, )waqa(tiy) - - - wnqn (i, )wny1, using the rule in Definition 5.1 v. As usual, =* is
used to denote derivations, i.e., the reflexive and transitive closure of =-.

The (tree-to-string) translation defined by M, also denoted by M, is defined by
M = {(t,w) € Tx x A*| qo(t) =* w}. We define the language generated by M to be
L(M) ={w e A* | go(t) =* w for some t € Tx}.

The class of (deterministic) top-down tree-to-string transducers will be denoted by
yT (yDT). We will denote the class of languages they generate by yTL (yDTL).

Example 5.1

(1) We have found this example in [ERS].

Consider the yT transducer My = ({qo,q1,92}, {0, 7,d},{a,b,c,d}, qo, R1) such that o,
7 and ¢ have ranks 2, 1 and 0, respectively, and Ry consists of the rules

do(o(zy)) = q1(z)qo(y)gz(z),

(z)) — cqa(z)d,

QQ(5) = A
M, translates a tree of the form o (7" (§)o(7"2(d) - o (7™ (§)d)--+)) into the string
a™ba™ "2 L a"ehe e d™ L 2 dM2 ¢ d™ . The language generated by M is L(My) =
{a™b™a™b"2 .. a"k DA R L 2™ M d™ |y > 0 for 1 <4 < Kk and kK > 0} (see
Example 4.2).
A sample derivation in M; is

qo (o (7%(8)(7(9)9))) =

q1(7%(9))ao(0(7(9)8)) a2 (72(0)) =

aq1(7(6))bq1(7(0))qo (0)g (7(5))&12( (6))d =~

aaqy (8)bbaqy (0)bega (0)deegs (6)dd =*
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aabbabcedeedd

(2) The yT transducer My = ({q},{0,d},{a},q, R2), where o has rank 1 and ¢ has rank
0, and with Ry = {q(o(z)) — q(z)q(x),q(d) — a} generates the language L(M>) =
{a®") | n >0}
A sample derivation is

Q(03(5)) =

q(0%(8))a(0?(9)) =*

a(0(0))a(o(0))q(o(0))q(o(d)) =

q(6)q(0)q(6)q(0)q(6)q(6)q(6)q(d) =~
The translation realized by My is My = {(c™(6),a*™)) | m > 0}.

(3) Let M3 = (Q, %, A, qo, R3) be ayT transducer, with @ = {qo, ¢1, 92,93}, ¥ = {a,b, 0},
Yo = {0}, ¥1 ={a,b}, A ={1,2,3} and R3 consists of the following rules :

qola(z)) = 1q1(x)2q(x) q(b(z)) = q2(z)g3(2) q(d) = A
q1(a(z)) = lq1 () q1(b(7)) = ga(z) q1(8) = A
q2(a(r)) — 2q2(x) q2(b(z)) — g3(2) q2(0) = A
g3(a(z)) = 3g3(7) g3(b(7)) = q1(z) g3(9) = A

M3 translates a tree of the form a™ba™2b...a™*§, withn; > 0 for 1 <47 <k and k > 0,
into the string 1712723"31™4 gk 2n13021n3204 - g™k where m and ¢ are symbols in
A and m =1if (k mod 3) =1, 2 if (k mod 3) = 2, 3 if (k mod 3) =0, and £ = 1 if
((k+1) mod 3) = 1, 2 if (k + 1) mod 3) = 2, and 3 if ((k + 1) mod 3) = 0.
The language generated by M3 is £L(Msz) = {1712m23"31™4 | mqmPk2013n2 N304 - % | n; >
0 for 1 <i<kandk >0} with m and £ as above.
A sample derivation is

qo(a®bba’bad) =

1q1 (abbabad)2qs (abbabad) =

11q (bbabad)22qz (bbabad) =

11go(ba®bad)22q3 (ba®basd) =

11¢3(a®bad)22q; (a*bad) =

11333¢3(bad)22111q, (bad) =

11333¢1 (ad)22111¢2(ad) =

113331q; (5)221112¢5 (5) =*

113331221112

(4) Consider the yT transducer My = ({p, ¢}, {7, 0}, {a, b}, p, {p(7(2)) — q(x)q(z),p(d) =
A q(1(x)) = aq(z), q(T(x)) — bg(z),q(d) = a,q(d) — b}), with g = {§} and &y = {7}.
The translation defined by My is My = {(7™(§),u) | m > 0, u € {a,b}* and |u| = 2m}
and the language generated by My is L(My) = {u | u € {a,b}* and |u]| is even }.

A sample derivation is
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bbbq(0)aaaq(d) =*
bbbbaaaa
Note that M;, Ms and M3 are deterministic, but M, is not, because of the rules
4(7(2)) = ag(z), (r(z)) - ba(z) and q(3) — a, g(6) — b.
O

Until now, we could use any tree in T, as an input tree. But if we want, for instance,
to generate the language {w € {a,b}* | |w| = 22") for some n > 0}, then, intuitively,
we need an input language of the form {¢(*")(6) | n > 0}, because if we use o™ (4)
(with m > 1) as an input tree, then we cannot be certain that m = 2" for some n > 0.
Therefore in [ERS] a class of transducers is defined, that can have a specified subset of
Tx, as an input language.

Definition 5.2

Let C be a class of tree languages. A top-down C-tree transformation system (yT(C)
transducer) is a pair (M, L), where M = (Q,%, A, qo, R) is a yT transducer, L C T
and L € C. (M, L) is deterministic if M is. O

The language generated by (M, L) is M(L) = {w € A* | qo(t) =* w for some t € L}.
M (L) is called a top-down C-tree transformation language. L is called the input language.

We will denote the class of (deterministic) top-down C-tree transformation systems
by yT(C) (yDT(C)), and the class of languages they generate by yTL(C) (yDTL(C)).

Remark : the ’y’ in yT transducer means ’yield’. A top-down tree-to-string trans-
ducer is called a yT transducer because the C-tree transformation languages are usually
defined by taking the yield of the tree languages which are images of C-tree languages
under conventional top-down transducers ([Ro]).

Example 5.2
This is Example (3.1.4)(iii) from [ERS].
The language {w € {a,b}* | |w| = 2(") for some n > 0} is generated by the top-down
EDTOL-tree (see [ERS]) transformation system (M, L), where L = {¢(")(§) | n. > 0},
M = ({q},{0,6},{a,b},q,R), with 0 € ¥; and § € Xy, and R consists of the following
rules :

q(o(z)) = q(z)q()

q(0) = a

q(0) = b

d

In [ERS] now restrictions on the derivations of yT transducers are introduced. In
order to do so, the concept of state-sequence of a derivation at a node of an input tree
is needed. Intuitively, it is the sequence of states in which the transducer starts to
translate (the left to right sequence of copies of) the subtree which has the given node
as its root.

In the following definition we will use sequences of states. These sequences are
elements of Q*, but for reasons of clarity we will write such a sequence between ( and ).
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Definition 5.3

Let M = (Q,%,A,qo, R) bein yT. Let « : ¢(t) = w be a derivation of M with q € @,
t € T, and w € A*. Let d be a node of ¢.

The state-sequence of «a at d is a sequence (q; . .. ¢n) of states of M (with m > 0) defined
recursively as follows.

i. If t =0 € ¥y and d is the unique node labelled by o, then the state-sequence of «
at d is (q).

ii. Assume that ¢t = o(¢;...t) with 0 € ¥ and k£ > 1. If d is the root of ¢ then the
state-sequence of « at d is (q). Now let d be a node of ¢; for some i, 1 < i < k.
Consider the first step of the derivation a : q(o(ty...t)) = rlt1,...,tk] = w,
where q(o(z1...2;)) — r is in R. If x; does not occur in r, then the state-
sequence of a at d is empty, i.e., (). Assume now that z; occurs in r and let
r = u1q1(x;)uaqa (i) « - Unqn () upsq with n > 1 and up € (AU Q(Xi\{z;}))* for
1 < ¢ < n+1. It should be clear that there are unique derivations ¢ : g;(t;) =" v;
(with v; € A* for 1 < j < n) which are a 'part’ of the derivation r[ti,...,#] =" w.
Let s; be the state-sequence of j at d. Then their concatenation s;s3 ... s, is the
state-sequence of « at d.

|

In this definition we have used the obvious fact that if wyqi (t1)ws . . . Wy gy (tn)wp 1 =*
w for some w,w; € A*, with 1 <i<n+1, and ¢; € Q, t; € Ty, with 1 < j < n, then
there are unique derivations qj(tj) =* v; such that w = wiviwz ... wyVwWy41 and the
latter derivations are 'part’ of the original one in the sense that some reordering of them
is precisely the original derivation.

Example 5.3

(1) For the derivation and the input tree of the transducer M; given in Example 5.1,
the state-sequence at each node labelled o and at the right-most ¢ is (gg); at each node
labelled 7 and at all other nodes labelled § the state-sequence is {q;q2).

(2) For the derivation and the input tree of the transducer Mj given in Example 5.1,
the state-sequence at the top-most node labelled o (the root, that is) is (g), the second
o has state-sequence (qq), the third (gqqq) and the node labelled § has state-sequence

(9999999q)-

(3) For the derivation and the input tree of the transducer M3 given in that same ex-
ample, the state-sequence at the root of the input tree (the first a) is (gp). The second
a has state-sequence (q1q2), the first b (q1¢2), the second b (g2q3), the third, fourth and
fifth a (g3q1), the last b (g3q1), the last a (q1g2), and the d also {qi¢2).

(4) For the derivation and the input tree of the transducer My given in Example 5.1,
the topmost 7 has state-sequence (p), the other nodes have state-sequence (qq). a

Since a state-sequence is not very easy to determine if we have to use the above def-
inition, we will clarify the construction of state-sequences with the help of a ’derivation
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tree’. The ’derivation tree’ ¢ for the derivation of M; given in Example 5.3 (1) can be
given as follows :

qo(01(T172(81)02(73(62)d3)))

/\
01 (m172(61)) qo(02(73(02)d3)) ¢2(1172(01))
a  q(ra(0)) b q1(73(d2)) 0(d3)  q2(73(d2)) ¢ gn(0)) d
a @) b a/ql(Db A c Z(Dd c @) d

We have added subscripts to the input symbols in order to distinguish different
nodes with the same label. The state-sequence of this derivation at, for instance, 79,
can be found at the third level of ¢, by simply concatenating, in the order in which they
appear in t, the states that are applied to the occurrences of the subtree with root m in
t : {(q1,q2). Note that, when we draw the ’derivation tree’ of a derivation « as we did
above, the state-sequence of a at a node of the input tree can always be found at one
level of the ’derivation tree’.

We are now ready to define the restrictions on yT transducers.

Definition 5.4

Let M = (Q, %, A, qo, R) beinyT, and let £ > 1 be an integer. A derivation « : go(t) =*
w has copying-bound k if, for each node d of t, the length of the state-sequence of a at
d is at most k.

Let L be a tree language. (M, L) has copying-bound k if for each w € M (L) there
exist t € L and a derivation ¢o(t) =* w with copying-bound k. (M, L) is finite copying
if it has copying-bound k for some k. The same terminology holds for M if it is true of
(M, TE) . a

Finite copying is denoted by a subscript ’fc’, and a copying-bound is indicated by
a subscript ’(k)’. Thus for instance the classes of copying-bound k and finite copying
top-down C-tree transformation languages are denoted by yTg)L(C) and yTeL(C),

respectively.

Example 5.4
In this example we will discuss the transducers of Example 5.1.
(1) M; has copying-bound 2, thus M is finite copying.
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(2) My does not have a copying-bound, because the length of the state-sequences of
nodes of an input tree grows as the depth of the input tree grows.

(3) M3 is finite copying; it has copying-bound 2.

(4) M4 has copying-bound 2, so L(M) € yTy.o)L. a

5.3 Results

In this section we prove that ssag’s generate the same languages as yT¢ (REC) trans-
ducers.

The states of a transducer generate translations of the subtrees of an input tree,
while the attributes of an OnlyS-sag add meanings to the subtrees of a derivation tree
of the underlying cfg. Therefore it seems natural to suppose that states in a transducer
correspond to attributes in an OnlyS-sag, and that the derivation trees of an OnlyS-sag
correspond to the input trees of a transducer. In the following lemma we will prove that
indeed for every OnlyS-sag we can construct a yT(REC) transducer that generates the
same language.

We label the productions of a cfg G = (N, T, P, Sp) with p; through p p|. An abstract
syntaz tree of G is a derivation tree ¢t of G in which the label of each nonterminal node
is replaced by the label of the production applied at that node, and in which all the
terminal nodes are removed.

By encoding every derivation tree of G, we get a tree language over {p1,... \ D) P|},
and each p; (for 1 < ¢ < |P|) has exactly one rank, being the number of nonterminals
in the right-hand side of the production labelled p;. Obviously, this tree language is in
REC (see [ERS] p. 160).

Example 5.5

Consider the cfg given in Example 2.6 (2), of which we have labelled the productions
p1 through pg (so Sy — X has label p; and B — XbX has label pg), and the following
derivation tree ¢ for a?b? of that cfg.
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t: S t: D1

X p3
/\ ‘
a B Pe
N
X b X p3 y2!
e | |
a B A Pe
/[\ /\
X b X j2 D4
| |
A A
The encoded version of ¢ is t'. O

Lemma 5.1
OnlyS-SAL C yDTL(REC)
Proof
Let G = (Gy, D, B, R) be an OnlyS-sag with Gy = (N, T, P, Sy), where P consists of | P|
productions that are labelled p; through pp|, D = ({I'*}, ®) for some alphabet I' and
B =(S,I,ap,W). Let K = {t | t is an abstract syntax tree of Gy}, then K € REC. We
will construct a yT transducer M = (Q, %, A, qo, R'), with Q = S-Att, ¥ = {p1,...,p|p|}
where, for n > 0, £, = {p; | 1 < i < |P| and the right-hand side of the production
labelled p; in P contains exactly n nonterminals }, A = I' and ¢y = «g, such that
M(K) = L(G). Let R' = 0.
For every terminating production p : X — w in P with semantic rules (s1,0) =
U1y -y {Sm,0) = vy, where m = d(X), we add the rules s1(p) = v1,...,8m(p) = vy to
R’
For every nonterminating production

q: XO — ’UJ1X1’LU2 . kakwk+1
in P, with semantic rules

(317 0) = U1,1<31,17j1,1>ul,2 <o Ul ny (31,n17j1,n1>u1,n1+1

(s6,0) = wue1(se1,Je,1)ue2 - - e, (Semps Jon, ) em+1
where £ = d(Xj), we add the rules

si(q(zr ... 2k)) = u1181,1 (%), )u1,2 -+ Uny 81y (T, JUL0+1

se(q(@r .. mk)) = weasen (T, )ue2 - e, Sen,(Tj, ., )eng+1
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to R'.
The resulting transducer will, with input language K, generate the same language as G

does. a
Example 5.6

Consider the OnlyS-sag G, with the following productions and semantic rules :

pr: So— X ap = afiim

p2: X=X Bo = ap Yo = af1im

p3 - X = A ,30 = Yo = A

and with initial symbol Sy and designated attribute «.

L(G) = {a™) | n > 0} (see also Example 3.2 (5)).

According to the construction given in the previous lemma, we can create the following
yT(REC) transducer : M = (Q, %, A, qo, R) with Q = {«, 5,7}, £ = {p1,p2,p3} where
Y1 ={p1,p2} and ¥y = {p3}, A = {a}, o = o and R consists of the rules

a(pi(z)) — aB(z)B(z)y(x)
B(p2(z)) — aB(z)
(p2(x)) — aB(z)B(z)y(x)
(p3) = A
v(p3) = A

==

M translates trees of the form p;p5'ps into am+)? If K = {t | t is an abstract syntax
tree of G}, then M (K) = L(G). O

As described before Lemma 5.1, encoding a derivation tree ¢ of an ag gives a tree
that can be used as an input tree t' of a transducer. The root of every subtree of #
corresponds to exactly one occurrence of a nonterminal, say X, in ¢. If the ag under
consideration is special, then we know that every (s-)attribute of X is used exactly
once. Since, according to Lemma 5.1, there is a one-to-one correspondence between the
attributes of X and the states that are applied to the subtree ¢’, that corresponds to
X, of the input tree, there are exactly d(X) states applied to t”, where d is the rank
function on the nonterminals of the ag. This holds for every subtree of every input tree
of the transducer. Since, in an ag, every nonterminal has a fixed and finite number of
attributes, the number of states applied to every subtree of every input tree is at most
max{ |S(X)| | X € N}, where N is the set of nonterminals of the ag.

In terms of mcfg’s, it is even easier to determine this copying bound : using the
method of Lemma 5.1 to translate an m-mcfg to a transducer gives a yTg () (REC)
transducer.

This proves the following lemma.

Lemma 5.2
SSAL C yT¢L(REC).

Example 5.7
A yTg(2)(REC) transducer that is equivalent to the ssag of Example 2.6 (2) (which

generates the language L = {wc" | w € {a,b}*,|w|, = |w|y, = n}) is the following :
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a(pi(z)) = w(z)y()

w(p2(z)) = bw(w) Y(p2(7)) = cy(z)
w(ps(z)) = aw(w) Y(p3()) = cy(z)
w(ps) = A Y(pa) = A

w(ps(7y)) — w(z)aw(y) v(ps(zy)) = y(z)v(y)
w(ps(zy)) — w(w)bw(y) v(ps(zy)) — ()7 (y)

For reasons of clarity, we will label the nodes of the abstract syntax tree #' given in
Example 5.5 as follows.

po a(1)
‘ /\
ps 2 w(2) 7(2)
DPs
Y pi ® w(4) w(8) 7(4) 7(8)
| A \ N |
5
Pe ¢ v(5) A
6 7
P4 P4 w(6) w(7) (6) (7)

>~
>
>~
>~

The rightmost tree is the ’derivation tree’ of the derivation a(p1pspg(p3pe(papa)ps)) =
a’b?c?, in which we have replaced each subtree by the number referring to its root in
the leftmost tree.

If we now draw the dependency graph’ of this ’derivation tree’, we get the inverted tree
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which is exactly the same as the dependency graph of the derivation tree for a?b?c?
given in Example 2.6 (2). This shows once more the similarities between ssag’s and
finite copying transducers, and in particular the one-to-one correspondence between

attributes and states. O

We will use the following terminology concerning a transducer M : we will write
‘state-sequence of M’ instead of ’state-sequence of a derivation of M at a node of an
input tree’. Furthermore, we call a rule g(o(zy...x)) — B, with g € (AU Q(Xy))*,
a 'rule for ¢’ or a ’rule for ¢’ or a 'rule for ¢ and ¢’, and we say that ¢ ’is applied to’
o(xy...xp).

Let M = (Q, %, A, qo, R) be in yT¢., with copying-bound c.
For a rule
roig(o(zr-..zK) = wiq(zi )ws . . . Wngn(Ti, )Wnt1
in R, we define, for 1 <17 <k, the state-sequence of x; in r, ss(r,i) € Q*, as follows :
53(r,3) = (1. pe)
where 0 </ <e¢, p1,...p¢ € Q, and p1(z;) . .. pe(x;) contains all occurrences of z; in the
right-hand side of , in this order (so r can be written as uypy (z;)uepa(x;) - . . ugpe(x;)uprq
with u; € (AU Q(Xip\{z;}))* for 1 < j < £41). Thus ss(r,i) is the part of the
state-sequence of the root of the it* subtree of a tree of the form o(t;...t;), with
t1,...,tx € T, that can be derived from the applied rule (r). Again, for reasons of
clarity, we put the state-sequence between ( and ).

Furthermore, if ss(r,i) = (p1 ... ps), we define ss7(r,4) to be (p1 ...p;—1D;Pj+1 - - Pe)
with 1 < j </, which is an element of Q* - Q - Q*, where Q = {7 | ¢ € Q} is a disjoint
copy of Q.

Finally, for some m > 1, we define ss(ry ...7p,%) to be an abbreviation of
88(11,4) + oo 88(rmy1).

We will now show that for every yTy¢. transducer M an ssag G can be constructed
such that L(M) = L(G).

If a yT transducer M has copying-bound ¢, this means that of each subtree of an
input tree at least 0 and at most ¢ copies or translations can be made, some of which
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may be equal. The state-sequence of a derivation at a node d of an input tree ¢ shows
exactly how many and which copies are made of the subtree with root d of . Often,
several subtrees of the input tree will have the same state-sequence (s), with s € Q*.
All these subtrees together will be denoted by the nonterminal Xy .

We will construct our OnlyS-sag such that all translations in (s) are made at the
same time. This is possible by giving X,y a synthesized attribute g for every state g
that occurs in (s). Unfortunately it is possible that the same state ¢ occurs more than
once (say r times) in (s). This would force us to use the attribute ¢ r times, which
prevents the resulting OnlyS-sag from being special. The solution that we have chosen
to solve this problem is to construct a yTy) transducer M with L(M) = L(M'), such
that there is no state-sequence of M’ that contains more than one occurrence of each
state.

In the following lemma we will prove that this is a normal form for determinis-
tic transducers, since for deterministic transducers the proof is easier than for non-
deterministic transducers. This is not a restriction, however, since from Lemma 3.2.3
from [ERS] we know that, for every k > 1, yTg ) L(REC) = yD T L(REC).

Lemma 5.3
Let M be in yDch(C).
It is possible to construct an equivalent transducer M’ in yDTy () such that every state-
sequence of length z of M’ (2 < z < ¢) consists of z different states.
Proof
Let M = (Q,%, A, qo, R), with copying-bound c¢. M’ will be (Q',%, A, ¢y, R'), and the
states of M’ will be the state-sequences of M, in which the state that was applied in M
is marked.

First, we will consider every rule for gy in R. These are of the form

rorqo(o(zy... o) = wiqi(zi )ws . . waqn(Ti, )W i1

For each of these rules we make the same rule in R’, but we replace gy by (qp), and in
the right-hand side we replace, for every z; (1 < i < k), the state that is applied to the
u? (1 < u < ¢) occurrence of z; in r by ss%(r,i). Then we add (g5) and the ss®(r,q)
that we have introduced to Q’. After having done this for every rule for ¢y in R, we set
40 = (o)-

We now have introduced new states in @', for which we have to make the appropriate
rules. Let (p1...pj—1Pjpj+1---Pm) be such a new state, with 1 < j <m < ¢. For every
o € X, consider the rules

i opi(o(zr..zg)) — win o qa(zi,) wig oo Wiy Gy (Ti,,)  Wing 41

'm : pm(o'($1 . 1"k)) - wmal qmal(l"im,l) U)m’Z ct e wmanm Qm,nm (mlm,nm) wmynm+1‘

Since M is deterministic these are all the possible rules for the p;, (1 < h <m) and o.
(If there is a pp, for which there is no rule for o, we cannot make, for this o, a rule for
(p1...Pj—1PjPj+1---Pm) in R', nor for the other marked versions of

(P1...Pj—1PjPj+1 - --Pm).) Therule that we can now add to R’ for (p1 ...pj—1Djpj+1 ... Pm)
is the same as r;, but in the left-hand side we replace p; by (p1...pj—1PjPj+1---Pm),
and in the right-hand side we replace, for every z; (1 <i < k), the state that is applied
to the £ occurrence of z; in the right-hand side of rj by
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58(ry .. rjot1,d) - 885(1j,0) - 88(Tjst - v Ty ).
We have to execute this procedure for every newly introduced nonterminal.
The above construction makes sure that each state-sequence of M’ consists of different
states, because now a state-sequence of length z of M’ (0 < z < ¢) is a sequence of
z equal state-sequences of M, except that the ;" state-sequence of M (in the state-
sequence of M’) has a mark on its j** element (1 < j < z). Since we only have renamed
the states of M, M’ has the same copying-bound as M.

Obviously, M’ is deterministic. O

Example 5.8
Applying the construction of Lemma 5.3 to M3 of Example 5.1 gives us the following
yDTy(2) transducer in normal form :

(@)(a(z)) — Uqig)()2{q1q2)(z) (20)(b(z)) — (@2a3)(2){@2@3)(x) (90)(6) — A
(@q2) (a(z)) — 1{T1gq2) (2) (@1q2) (b()) — (T203)(2) (@1g2)(6) — A
(132)(a(z)) = 2{q1q2) () (132)(b(z)) — (9203) () (@) () = A
(@g3) (a(z)) — 2(@gs) (z) (@43) (b(z)) — (T31)(2) (@43)(0) — A
(0203)(a(z)) — 3(q2q3) () (2203) (b()) — (g3q1)(2) (2@3)(6) = A
(@) (a(z) = 3(@Ba) (z) (@q1)(b(z)) — (Trae) (z) (@q1)(6) — A
(g3q1)(a(z)) — L{gsqr) () (g3q1) (b()) = (@1 q2) (2) (g3q1)(6) = A
with initial state (qg). O

We use Theorem 3.2.1 from [ERS], which states that a specific recognizable input
language can be coded as part of the transducer implying that we can consider arbitrary
input languages.

Theorem 5.4

For each top-down tree transformation system (M, L) with L € REC, there exists a
top-down yT transducer M’ such that M (L) = M'(Tx/), where X' is the input alphabet
of M'. The construction involved preserves determinism and copying-bound.

This theorem is the reason that, to reach the goal of this section, it is now sufficient
to prove that for every yTy, transducer there is an equivalent ssag. Again, we will give
the proof for the translation from deterministic yTy. transducers into ssag’s, because
that is easier than the non-deterministic case.

As mentioned before, we use in this proof nonterminals of the form X, which
denotes the set of all (subtrees of) input trees that can have state-sequence (s). Such
a nonterminal X, will have an s-attribute for every state that occurs in (s), and no
other attributes.

Lemma 5.5

yDTs. L. C SSAL.

Proof

Let M = (Q, %, A, qo, R), with copying-bound ¢, be a deterministic yTg. transducer. We
may assume that every state-sequence of M consists of different states (see Lemma 5.3).
We will construct an OnlyS-sag G such that £L(G) = L(M). G will be (Gy, D, B, R'),
with Gy = (N, T, P, Sy), D = (2, ®), and B = (S, I, a9, W). Since G is OnlyS, we know
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that I(X) will be the empty set for every X € N, and because G is an sag, we know
that Q = {A*}, W(s) = A* for all attributes s, and ® consists of all derived functions
of the free monoid A*.
Let N=T =P = .

We construct G from M as follows, starting with the rules for gg. For every rule

riqo(o(zy...2x)) = wiq(zi, )we . .. Wqn (T, )Wn 1
in R, we add the following production to P :

pb: X(qo) — TXss(r,l) s Xss(r,k)a
with R'(p) = {{(q0,0) = wi{q1,i1)w2 ... wy{qn,in)wnst1}. Note that we add a new ter-
minal r to the production to be able to distinguish between productions that have the
same nonterminals, but that are translations of different rules of R.
We add X460y, Xgs(r1)s --+> Xos(rg) t0 N, 7 to T, and we set S(X(4y) = {q} and
S(Xss(riy) = {g € Q | g occurs in ss(r,4)} for 1 <4 < k. Furthermore, to make sure
that the initial nonterminal of G does not occur in the right-hand side of any produc-
tion, we add the production Sy — X4 to P, Sy to N, S(Sp) = {ao}, and we set
R(So = X(4)) = {{c0,0) = (g0, 1)}

Now we have to make rules for the nonterminals (except for X ) that we have
introduced. Let X/ y be such a nonterminal (1 < £ < ¢). For every o € 3, consider
the £ rules in R

p1...pe
riipi(o(zr .. 2k)) = w1111 (Tiy Wi - Wy Ging (Tiy L, ) W0y +1

re:pe(o (... k) = weqe (Tig  )wez - - Wen Qen, (Tiy,, ) Wen,41-

Note that there cannot be more than one rule for p,, and o (1 < m < /), because M is

deterministic. Furthermore, if for some p,, there is no rule for o, then we cannot make,

for this o, a production for X, .-

We use these £ rules to make the following production for X,
P X(pl...p[> EAAREE Tles(rl...rl,l) SR Xss(rl...rl,k)a

where R'(p') consists of the following semantic rules :

p1.pe)

(P1,0) = w11(q1,1,%1,1)W1,2 -+ W10y (G1n1s 01,00 ) W00 +1

(pe, 0y = we,1{(qe1,%0,1)We2 - Wen,(GQeny, ton, ) Weny+1-

Then we add Xgg(r, . rp1)5 - - 3 Xos(riompk) O N, 71, ..oy to T and we set S(X o, rpi)) =
{q € Q| q occurs in ss(ry...ry,1)} for 1 < i < k. When we have made, for every non-
terminal, a production for every o € ¥ (if possible), then L(G) = L(M).

Since every state-sequence of M consists of different states, and since there is a one-
to-one correspondence between the s-attributes of G and the states of M, the OnlyS-sag
resulting from this construction is special. a

Example 5.9

(1) Using the construction of Lemma 5.5 we make an ssag that is equivalent to the
transducer in normal form of Example 5.8. To simplify notation, we will first rename
the states of that transducer :

o6



with in

itial state a.

a(b(z)) — e(x)C(z) ald) = A
Bb(z)) — €(z) B(6) — A
v(b(z)) = ((z) v(0) = A
e(b(z)) — n(z) €(d) = A
((b(z)) — (=) C(d) = A
n(b(z)) = B(z) n(é) = A
d(b(z)) = y(z) 9(0) = A

We number these rules p; through po; (from left to right and from top to bottom).

The corresponding ssag is the following :

(2) Consider the yDTy9) transducer My of Example 5.1. We label the rules p; through
pe. Since (go) and (qi1q2) are the only possible state-sequences of My, M; is already
in the normal form described in Lemma, 5.3. The construction of Lemma 5.5 gives the

= P1X(5y)

= P2X (e
— D3

= Pap7X ()
— P5Ds X ()
— P6P9

= P1oP13X (e¢)
= pr1p1aX 59y
— D12P15

— P16P19X (59)
— P17P20X (3+)
— D18P21

following ssag :

= X(go)
— ])14Xf<
— D2

q142)

X

ap = 16127
ap = €1(;
xg = A
Bo =15
Bo = €1
Bo = A
€0 = 2€1
€ =M
€= A

no = 3m
o = B1
m = A

A
a{qi, 1)b
A

Yo =27
Y = G1
Yo = A
Co =31
Co =
Co=A
Yo = 1
Yo =71
Y9 = A

By Lemma’s 5.2 and 5.5 we have now reached the goal of this section.

Theorem 5.6
yTr(REC) = SSAL.

Coroll

yTi(REC) = MCFL.

ary 5.7
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Chapter 6

Conclusion and further research

In this thesis we have proven the equivalence of mcfg’s, srg’s, ssag’s and yTs(REC)
transducers. Additional results are PMCFL = OnlyS-SAL = RL C yTL(REC), and
some normal forms for the grammar formalisms under consideration.

Of course, this is only a small part of the work that could be done in this area. As
interesting subjects for further research we propose :

Comparison of mcfg’s with local unordered scattered context grammars and control
grammars (see [RS], [RS94], [W], [PS]).

Comparison of pumping lemma’s for mcfg’s and y T (REC) transducers (see [SMFK]
and [ERS)).

Carrying over normal forms for cfg’s to ag’s.

Carrying over some of the results we proved for OnlyS-sag’s (e.g., the information-
lossless condition) to ag’s with i- and s-attributes.

Is there a generalization of the combinatory categorial grammar (see [VW]) that
is equivalent to the mcfg?

Is there a kind of relational grammar, that generates trees instead of strings (see
[R], [GR]), that generates the same tree languages as the tree adjoining grammar
([(VW])?

o8
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