
Generalized Context-Free GrammarsNik�e van VugtMay 24, 1996

AbstractWe consider several language generating formalisms from the literature, such asstring-valued attribute grammars with only s-attributes, parallel multiple context-freegrammars, relational grammars and top-down tree-to-string transducers, of which wehave chosen the OnlyS string-valued attribute grammars to be our vantage point. Weprove that OnlyS string-valued attribute grammars, parallel multiple context-free gram-mars and relational grammars generate the same class of languages, and we prove thatevery language accepted by an OnlyS string-valued attribute grammar is the image ofa top-down tree-to-string transducer.The main result of this thesis is the proof of equivalence of the special string-valuedattribute grammars, the multiple context-free grammar, the special relational grammarand the �nite copying top-down tree-to-string transducer.In order to prove these equivalences, de�nitions of some of these formalisms havebeen slightly modi�ed, and normal forms have been (re)de�ned and proven.

AcknowledgementsWorking on this thesis has been a great pleasure to me. Of course, I could not do itall on my own. I would like to thank everyone who was interested in my thesis and inthe progress I made. In particular Joost Engelfriet, for coming up with this subject fora thesis and for all his suggestions, Hendrik Jan Hoogeboom, who was my supervisor,for all his help and encouraging comments, and Jurriaan Hage, for helping me withcorrecting, structuring and struggling with proofs that wouldn't work. My very specialthanks go out to Jurriaan and Hendrik Jan for always being there when I needed theirsupport.

1

Contents
1 Introduction 32 Context-free grammars and attribute grammars 42.1 Preliminaries : 42.2 Context-free grammars : 52.3 Attribute grammars : 62.3.1 Syntax : 62.3.2 Semantics : 92.3.3 Examples and notation : 112.3.4 Some simple normal forms for ag's : : : : : : : : : : : : : : : : : 132.3.5 String-valued attribute grammars : : : : : : : : : : : : : : : : : : 153 Generalized context-free grammars 263.1 Introduction : 263.2 Parallel multiple context-free grammars : : : : : : : : : : : : : : : : : : 283.3 Results on pmcfg's : 303.4 Multiple context-free grammars : 314 Relational grammars 344.1 De�nitions and examples : 344.2 Results : 374.2.1 Equivalence of rg and OnlyS-sag : : : : : : : : : : : : : : : : : : 374.2.2 Correctness of the construction : : : : : : : : : : : : : : : : : : : 395 Top-down tree-to-string transducers 435.1 Preliminaries : 435.2 De�nitions : 435.3 Results : 496 Conclusion and further research 58

2

Chapter 1IntroductionAmong computational linguists there has been considerable interest in grammatical for-malisms, with generative power in between the context-free languages and the context-sensitive languages, to describe the syntax of natural languages. Some of those for-malisms are the combinatory categorial grammars ([A],[S85],[S86]), head grammars([P]), linear indexed grammars ([Ga]), tree adjoining grammars ([JLT], [J], [V]) andgeneralized context-free grammars (gcfg's, introduced in [P]).In this thesis we have compared a subclass of gcfg's, called the parallel multiplecontext-free grammars (pmcfg's), with a number of formalisms that have been devel-oped in the area of theoretical computer science, in particular the OnlyS string-valuedattribute grammar (OnlyS-sag, see for instance [E86], [K]), an adapted version of therelational grammar (rg) of [GR], and the top-down tree-to-string transducer with recog-nizable input languages (yT(REC) transducer) from [ERS]. We have shown thatPMCFL = OnlyS-SAL = RL � yTL(REC)where XXXL denotes the class of languages generated by xxx grammars. In order to dothis, we have described and proven some normal forms for these types of grammars.Our main result is the equivalence of the 'special' versions of pmcfg, OnlyS-sag, rgand yT(REC) transducers, in which duplication of information is restricted.This thesis is structured as follows : in Chapter 2 we describe the context-freegrammar and the attribute grammar, that we have chosen to be our vantage point.In Chapter 3 we consider the (parallel) multiple context-free grammars from [SMFK].Chapter 4 describes the variant of the relational grammar from [GR] that we have con-sidered. In Chapter 5 we discuss the (�nite copying) top-down tree-to-string transducersfrom [ERS]. Finally, Chapter 6 summarizes our results and indicates possible directionsfor further research.

3

Chapter 2Context-free grammars andattribute grammars2.1 PreliminariesWe write N for the set of nonnegative integers, and Q for the set of rational numbers.We write Sn for S � S � : : : � S, the n-fold cartesian product of set S. We denote theempty set by ;.An alphabet is a �nite set. An alphabet S is ranked if it has an associated totalfunction d : S ! N, such that, for each s 2 S, d(s) is the rank or dimension of s. Notethat, in our de�nition, an element of a ranked alphabet has exactly one rank.We denote the empty string by �. The length of a string w is denoted as jwj, whilejwja is the number of symbols a that occurs in the string w, and wR is the reverse of w.For a total function f : D ! R and a nonempty subset D0 of D, we denote therestriction of f to D0 by f jD0 (so f jD0 : D0 ! R and, for all d 2 D0, f jD0(d) = f(d)). ByRD we denote the set of all functions with domain D and range R.The set of derived functions of the free monoid �� (generated by the elements of analphabet �) is the set containing all functions fv, where v 2 (� [fy1; : : : ; ymg)� (withy1; : : : ; ym 62 � and m � 0), such that fv(w1; : : : ; wm) is the result of substituting wi foryi throughout v, with 1 � i � m and wi 2 �� (de�nition from [E86]).A �nite directed graph is a pair (Q;E), where Q is a �nite set of nodes and E � Q�Qis a set of edges. An edge e2 = (p2; q2) is called a successor of an edge e1 = (p1; q1)if q1 = p2. A path in a directed graph is a sequence e1e2 : : : en (n � 0 and ej 2 E for1 � j � n) such that, if n � 2, then ei+1 is a successor of ei for 1 � i � n� 1; n is thelength of e1 : : : en. A path (p1; q1)(p2; q2) : : : (pn; qn) with n � 1 in a directed graph is a(directed) cycle if p1 = qn. A directed graph is cyclic if it contains a cycle; otherwise itis acyclic.A directed graph t is a directed tree if there is a node r, called the root of t, suchthat, for each node x of t, there is exactly one path from r to x. In the sequel we willsimply write tree instead of directed tree. For a tree t, node(t) is the set of nodes of tand root(t) 2 node(t) is the root of t. Each node x of a tree t is the root of a subtreet0 of t. The nodes of t0 are x and all its descendants, while the edges of t0 are the edgesthat exist in t between the nodes of t0. 4

We will discuss grammars, languages and classes of languages using the followingconventions : if xxx is a class of grammars, then xxxg abbreviates `xxx grammar', xxxldenotes the language generated by an xxxg and XXXL is the class of xxxl's. E.g.,we use cfg and c
 for `context-free grammar' and `context-free language', respectively;CFL denotes the class of context-free languages. Two grammars G and G0 are calledequivalent if the language generated by G is equal to the language generated by G0.2.2 Context-free grammarsThe classical context-free grammar forms the basis of many generative devices consideredin this thesis.De�nition 2.1A context-free grammar (cfg) is a 4-tuple G = (N;T; P; S0) wherei. N is a �nite set of nonterminals;ii. T is a �nite set of terminals, and N \ T = ;;iii. P � N � (N [T)� is a �nite set of productions;iv. S0 2 N is the initial symbol. 2A production (X; �) is written as X ! �. It is called a terminating production if� 2 T �. If � contains at least one nonterminal it is called a nonterminating production.By convention, we will use capitals for nonterminals and lower case letters for terminals.We now formalize how words are generated by a cfg. Let G = (N;T; P; S0) be a cfgand let � = N [T .Let x; y 2 �� and let p : X ! � 2 P . We say that x directly derives y in G (usingp) if x = x1Xx2 and y = x1�x2 for certain x1; x2 2 ��. This derivation step is denotedas x)G y (or x)pG y).Let)�G be the re
exive and transitive closure of the binary relation)G � �� � ��.We say that x derives y in G if x)�G y. We will omit the subscript 'G' if the cfg underconsideration is obvious from the context.The language L(G) generated by G is de�ned as L(G) = fx 2 T � j S0)�G xg. Theelements of L(G) are called words of G.A derivation tree of G is a node labelled ordered tree in which every internal nodehas either label X0 and exactly one child, that has label �, where X0 ! � is in P , orlabel X0 and k � 1 children, with labels �1; : : : ; �k in N [T , where X0 ! �1 : : : �k is inP . For x 2 node(t), labelt(x) is the label of x in t. A node labelled with a (non)terminalis a (non)terminal node. A derivation tree of G is called complete if the root has labelS0 and the leaves are labelled with terminals or with �.Example 2.1We give a cfg G that generates the language L = fw 2 fa; bg� j jwja = 2 � jwjbg.5

G = (fX;Ag; fa; bg; fX ! bAA;X ! AbA;X ! AAb;X ! �;A ! aX;A ! Xag;X).Some sample derivations in G areX) AbA) aXbA) aXbXa) aXbbAAa) aAAbbbAAa)�aaXXabbbXaXaa)� aaabbbaaa, andX) AbA) XabA) abA) abaX) abaAbA) abaXabA) abaabA) abaabaX)abaabaAAb)� abaabaaab. 2In the sequel we will not always explicitly specify all the components of a cfg. Itsu�ces to give the productions and the initial symbol; all the elements of N and T canbe found implicitly in the productions.2.3 Attribute grammarsMost of the de�nitions in subsections 2.3.1 and 2.3.2 are suggested by J. Engelfriet([E94], see also [DJL], [Gi]).2.3.1 SyntaxIn this subsection we de�ne the notion of attribute grammar, which can be viewed as acfg in which every nonterminal can have �nitely many attributes. To be able to assignvalues to those attributes, we need the concept of semantic domain.De�nition 2.2A 2-tuple (
;�) is a semantic domain if
 is a �nite collection of sets and � is a set oftotal functions f : W1 � : : : �Wm ! Wm+1 where m � 0 and Wi 2
. In particular,when m = 0, � can contain elements of W1 2
, i.e., constants. 2Hence, in a semantic domain (
;�) the functions in � de�ne the typed operationsthat may be applied to the values of a speci�c direct product of sets in
, and the resultof applying such an operation is a member of a speci�c set in
.Example 2.2(1) A sample semantic domain is D1 = (
1;�1) with
1 = fNg and �1 = fCn j n 2Ng [fsuccg, where Cn() = n for all n 2 N, and succ(x) = x+ 1 for all x 2 N.(2) Another example of a semantic domain is D2 = (f��g;�2), where � is an alphabet,and �2 consists of all derived functions of the free monoid ��. The values that we canuse are strings over �, and the basic operation is concatenation (from [E86]). Note thatevery string x 2 �� is a constant in �, it is represented by the unction fx().(3) The semantic domain D3 = (
3;�3) is a combination of D1 and D2 :
3 = fN;��g,�3 = �1 [�2 [f len g, where len : �� ! N assigns the length to a string. 2We are now ready to give a de�nition of attribute grammars. As stated before, anattribute grammar is in fact a cfg in which a �nite number of attributes is added toeach nonterminal. In a (complete) derivation tree, the values of these attributes can bepassed from one nonterminal to another, and functions can be applied to those values.6

The possible attribute values and the functions that can be applied to them are givenby a semantic domain.There are two kinds of attributes, that are called synthesized and inherited attributes.The value of a synthesized attribute of a nonterminal X is usually composed of (orsynthesized from) the values of attributes of the nonterminal children ofX in a derivationtree, while the value of an inherited attribute of X is usually passed through by (orinherited from) the nonterminal parent of X in a derivation tree (but it is also possiblethat the value of an i-attribute of X is constructed with the value of an s-attribute of asibling of X).An ag translates complete derivation trees into attribute values. The language gen-erated by an ag consists of the values that a designated attribute of the initial symbolcan have in complete derivation trees of the grammar.De�nition 2.3An attribute grammar (ag) is a 4-tuple G = (G0;D;B;R), wherei. G0 = (N;T; P; S0) is a cfg such that S0 does not occur in the right-hand side ofany production. N is a ranked alphabet with rank function d : N ! N;ii. D = (
;�) is a semantic domain;iii. B = (S; I; �0;W) is an attribute description, i.e.,� For each X 2 N [T , S(X) and I(X) are �nite disjoint sets of synthesized (s-)and inherited (i-) attributes of X, respectively. There are three restrictions :(1) I(S0) = ;, (2) for each X 2 N , jS(X) [I(X)j = d(X), and (3) for allX 2 T : S(X) = I(X) = ;;� �0 2 S(S0) is the designated attribute;� For each a 2 SfS(X)[I(X) j X 2 Ng, W (a) 2
 denotes the set of attributevalues of a.iv. For a production p : X0 ! w1X1w2 : : : wkXkwk+1 2 P (with k � 0, wi 2 T � for1 � i � k+1, and Xj 2 N for 0 � j � k), a pair ha; ji such that a 2 S(Xj)[I(Xj)is called an attribute of p (with 0 � j � k). The set of all attributes of p is denotedA(p). For each p 2 P , R(p) is a �nite set of semantic rules of p, de�ned asfollows. Each semantic rule of p is speci�ed by a function f 2 �, say of typeW1 � : : :�Wm !W0 (m � 0), and a sequence of m+1 (not necessarily distinct)attributes of p : (ha0; j0i; ha1; j1i; : : : ; ham; jmi) with W (a`) = W` for 0 � ` � m.Such a semantic rule is denoted as the string ha0; j0i = f(ha1; j1i; : : : ; ham; jmi)and we say that it de�nes ha0; j0i using hai; jii for 1 � i � m. R(p) contains onesemantic rule de�ning each attribute ha; 0i with a 2 S(X0), and one semantic rulede�ning each attribute ha; ji with 1 � j � k and a 2 I(Xj), and no other semanticrules. 2Notes : 7

i. If our cfg G0 = (N;T; P; S0) has productions in the right-hand side of which theinitial symbol occurs, we can easily construct an equivalent cfg G00 that does nothave this kind of productions : G00 = (N [fZg; T; P [fZ ! S0g; Z), where Z isa new nonterminal.ii. Although a nonterminal with rank 0 cannot contribute to the values of the at-tributes of the ag, it is technically more convenient to allow such nonterminals, inparticular it facilitates the proof of Lemma 2.3.iii. Sometimes, an ag is a 5-tuple G = (G0;D;B;R;C), where C is a set of semanticconditions. These semantic conditions impose an extra restriction (in addition tothe semantic rules) on the number of possible correct decorations of derivationtrees (see below). Since we will only consider ag's with C = ; for every p 2 P , wehave left C out of our de�nition.iv. Note that terminals do not have attributes; for technical reasons it is sometimesconvenient to have the notation S(X) and I(X) available for them.The cfg G0 of an ag G is called the underlying cfg of G. It is possible for an ag tohave only s-attributes. Such an ag will be called an OnlyS-ag.We will introduce some notation in order to make it easier to discuss attributes ofan ag G :S-Att = f� j � 2 S(X) for some X 2 Ng is the set of s-attributes of G,I-Att = f� j � 2 I(X) for some X 2 Ng is the set of i-attributes of G,Att = S-Att [I-Att is the set of attributes of G, and,for every X 2 N , A(X) = S(X) [I(X) is the set of attributes of X in G.When we discuss an ag G0, for instance, we write S-Att0, I-Att0, and Att0 for the setsof s-attributes, i-attributes and attributes of G0, respectively. A0(X) denotes the set ofattributes of X, where X is a nonterminal of G0.For a production p : X0 ! w1X1w2 : : : wkXkwk+1, we de�ne inner(p) = fh�; ji j (j =0 and � 2 S(X0)) or (1 � j � k and � 2 I(Xj))g, the set of inner attributes of p, andouter(p) = fh�; ji j (j = 0 and � 2 I(X0)) or (1 � j � k and � 2 S(Xj))g, the set ofouter attributes of p.We say that an ag is in normal form if, for every production, the semantic rulesde�ne the inner attributes of the production in terms of the outer attributes of theproduction. Formally, an ag is in normal form if, for every semantic ruleha0; j0i = f(ha1; j1i; : : : ; ham; jmi) of every production p : X0 ! w1X1w2 : : : wkXkwk+1,hai; jii 2 outer(p) (for 1 � i � k).Restriction 2.1From now on, we will assume that our ag's are in normal form.We will not prove that this is indeed a normal form, but it can be shown that, forevery (non-circular, see below) ag, (repetitive) replacing of de�niendum by de�niensresults in an equivalent ag in normal form ([E94], [B]).For an OnlyS-ag in normal form, the outer attributes of a productionp : X0 ! w1X1w2 : : : wkXkwk+1 are the (s-)attributes of X1; : : : ;Xk, while the innerattributes of p are the (s-)attributes of X0. Consequently, the semantic rules of p de�nethe attributes of X0 in terms of the attributes of X1; : : : ;Xk.8

2.3.2 SemanticsLet G = (G0;D;B;R) be an ag, with G0 = (N;T; P; S0), D = (
;�) and B =(S; I; �0;W).Every derivation tree of G0 is also a derivation tree of G, and there are no otherderivation trees of G. An occurrence of a production p : X0 ! � in a derivation tree tof G consists of a node x0 of t, labelled X0, and its children, such that the labels of thechildren, from left to right, form the string �. We say that p is applied at x0.For a derivation tree t and a node x of t that is not labelled with �, we de�nethe attributes of x as A(x) = fh�; xi j � 2 A(labelt(x))g. I(x) and S(x) are de�nedanalogously. For t we de�ne the attributes of t as A(t) = SfA(x) j x 2 node(t)g, i.e.,A(t) = fh�; xi j x 2 node(t) and � 2 A(labelt(x))g; h�; xi is also called an attributeinstance.We now have to determine the values of every attribute of every node, i.e., thederivation tree has to be 'decorated' with attribute values. A decoration of t is a totalfunction val : A(t) ! S
, such that, for each h�; xi 2 A(t), val(h�; xi) 2 W (�). Thepair ht;vali is called a decorated tree.We also have to de�ne when a decoration is correct, i.e., we have to de�ne whenthe attribute values satisfy the semantic rules. For an occurrence of a productionp : X0 ! w1X1w2 : : : wkXkwk+1 with nonterminal nodes x0; x1; : : : ; xk in a derivationtree t, if R(p) contains the semantic rule ha0; j0i = f(ha1; j1i; : : : ; ham; jmi), then thestring ha0; xj0i=f(ha1; xj1i,: : :,ham; xjmi) is called a semantic instruction of t; it is astring over A(t) [� [f(;); ,; =g. The set of all semantic instructions is called R(t),i.e., R(t) is a set of equations (where the unknown elements are the elements of A(t))that has to be solved. A decoration val of t is de�ned to be a correct decoration iffor every semantic instruction ha0; xj0i=f(ha1; xj1i,: : :,ham; xjmi) the following holds :val(ha0; xj0i) = f(val(ha1; xj1i); : : : ;val(ham; xjmi)).Another concept that we need to be able to work with ag's is the dependency graph.If R(p) contains a semantic rule ha0; j0i = f(ha1; j1i; : : : ; ham; jmi), we say that hai; jiiis necessary for ha0; j0i , with 1 � i � m. If R(t) contains a semantic instructionha0; xj0i=f(ha1; xj1i,: : :,ham; xjmi) we say that hai; xjii is necessary for ha0; xj0i, with1 � i � m.So 'is necessary for' is a binary relation on A(p) and on A(t). Since a �nite directedgraph is a binary relation on a �nite set, we now have two �nite directed graphs :D(p) = (A(p); is necessary for), and D(t) = (A(t); is necessary for). D(p) and D(t) arecalled the dependency graphs of p and t, respectively.We will depict the dependency graph of a production p : X0 ! w1X1w2 : : : wkXkwk+1as follows. Open circles denote the nonterminal nodes of the derivation tree, whilesmaller black dots denote the attributes. We draw the s-attributes of a nonterminalto the right of the circle corresponding to (and labelled with) that nonterminal, andthe i-attributes to the left. Dependencies between attributes are represented by arrowsbetween the corresponding black dots. An arrow from ha1; j1i to ha0; j0i denotes thatha1; j1i is necessary for ha0; j0i. Every open circle with label X is connected to theattributes of X by a horizontal line, and with those horizontal lines a trapezium is built,to delimit the occurrence of p in the derivation tree. The terminal strings are writtenbelow the horizontal line connecting the circles for X1 through Xk, and terminals and9

nonterminals are separated by thicker vertical lines. Often we will omit a terminal stringthat is equal to �, and the corresponding separator. The dependency graph of a deriva-tion tree t is depicted by 'putting together' the dependency graphs of the productionsthat occur in t (see Example 2.4 (2)).As an example of the possible dependencies in an ag in normal form, we draw thedependency graph of p : X0 ! X1X2, where p is a production of an ag in normalform. For simplicity, we assume that each of the nonterminals X0, X1 and X2 hasone s-attribute s and one i-attribute i. To show every possible dependency, we assumemoreover that every outer attribute of p is necessary for every inner attribute of p.
X1 X2i s i ssi X0

For an OnlyS-ag in normal form, there are even less dependencies possible, as wehave only s-attributes. We give the dependency graph for q : Y0 ! aaY1bbY2, where Y0,Y1 and Y2 are nonterminals and a and b are terminals. Again, to show all possibilities, weassume that every outer attribute of q (i.e., every s-attribute of Y1 and Y2) is necessaryfor every inner attribute of q (i.e., every s-attribute of Y0). Let Yi have s-attributes s1through sd(Yi), for i = 0; 1; 2, where d(Yi) denotes the rank of Yi.
s1 : : : sd(Y2)

s1 : : : sd(Y0): : : : : :Y1 Y2Y0aa bbs1 : : : sd(Y1)An ag G is called circular if there is a derivation tree t of G such that D(t) is cyclic;otherwise the ag is called non-circular.Restriction 2.2We will only consider non-circular ag's.We impose this restriction on our ag's because we want to be sure that there isexactly one correct decoration for every complete derivation tree. It is known that thisis the case for non-circular ag's without semantic conditions (see [E86]).10

An ag G de�nes the string-value translation �(G), that is de�ned as �(G) =fhyield(t);val(h�0;root(t)i)i j t is a complete derivation tree of G, val is a correct deco-ration of tg. This translation adds a unique meaning to each complete derivation tree.There are other translations possible, like the '(derivation) tree-(decorated) tree', the'string-(decorated) tree' and the '(derivation) tree-value' translation, but the string-valuetranslation is the appropriate notion in the context of this thesis.Usually, the language generated by G, L(G), is de�ned to be the language thatconsists of all strings that satisfy both the context-free syntax (of the underlying cfg)and the context-sensitive syntax (of the semantic conditions). Since we consider onlyag's without semantic conditions, in our case L(G) would have been equal to L(G0), andconsequently this de�nition of L(G) would not be very useful to us : it is context-free.Since we are mainly interested in the meanings of the complete derivation trees ofan ag G, we will de�ne the language generated by G as L(G) = fval(h�0;root(t)i) j tis a complete derivation tree of G, and val is a correct decoration of tg. In [E86] thislanguage is called OUT(G), the output set of G. Observe that this is not always a stringlanguage.2.3.3 Examples and notationWe �rst give a formal description of a sample ag.Example 2.3We construct an ag G that counts the number of occurrences of a's, b's and c's, respec-tively, in words of the form awbwRc, where w 2 fa; b; cg�. Therefore, we make a cfg G0that generates words of the required form (awbwRc), and to each production of G0 weadd semantic rules that will count the occurrences of a's, b's and c's, as follows.G = (G0;D;B;R) whereG0 = (fX;Y g; fa; b; cg; fX ! aY c; Y ! aY a; Y ! bY b; Y ! cY c; Y ! bg;X),D = (
;�) with
 = fN;N3g and � = ff; g; id; C0; C1g,where f(x; y; z) = (x+ 1; y; z + 1), g(x) = x+ 2, id(x) = x, C0() = 0 and C1() = 1,B = (S; I; �0;W) with S(X) = f�g, S(Y) = f�; �;
g, I(X) = ;, I(Y) = ;, �0 = �,W (�) = N3, W (�) =W (�) =W (
) = N, andR(X ! aY c) = f h�; 0i = f(h�; 1i; h�; 1i; h
; 1i) g,R(Y ! aY a) = f h�; 0i = g(h�; 1i); h�; 0i = id(h�; 1i); h
; 0i = id(h
; 1i) g,R(Y ! bY b) = f h�; 0i = id(h�; 1i); h�; 0i = g(h�; 1i); h
; 0i = id(h
; 1i) g,R(Y ! cY c) = f h�; 0i = id(h�; 1i); h�; 0i = id(h�; 1i); h
; 0i = g(h
; 1i) g,R(Y ! b) = f h�; 0i = C0(); h�; 0i = C1(); h
; 0i = C0() g.G is an OnlyS-ag and translates words u that are generated by its underlying cfg G0into 3-tuples (x; y; z) in N3 such that x = juja, y = jujb and z = jujc.L(G) = f(x; y; z) j x; y; z 2 N and x; y and z are odd g. 2Since the notation used in the previous example is not easy to read, we will nowintroduce some conventions and abbreviations to describe concrete ag's.The formal description of a production is p : X0 ! w1X1w2 : : : wkXkwk+1, as in-dicated in De�nition 2.3. In a concrete production we will implicitly add the samenumbering to the occurrences of the nonterminals as we did in this formal description.11

E.g., in the production A ! aAbB there are three occurrences of nonterminals num-bered 0 (the left-hand A), 1 (the right-hand A) and 2 (the B). Furthermore, we willwrite aj instead of ha; ji when we are discussing attributes.We will often describe an ag as follows : we give all the productions of P and to theright of each production we write all the semantic rules that de�ne its inner attributes.Moreover, we will use in�x notation for the functions in the semantic rules. We will notexplicitly give the attributes of each nonterminal, the semantic domain and so forth; allthe additional information will be implicit from the productions and semantic rules.Example 2.4(1) The OnlyS-ag from Example 2.3 is described as follows, when we use the conventionsmentioned above.X ! aY c �0 = (�1 + 1; �1;
1 + 1)Y ! aY a �0 = �1 + 2 �0 = �1
0 =
1Y ! bY b �0 = �1 �0 = �1 + 2
0 =
1Y ! cY c �0 = �1 �0 = �1
0 =
1 + 2Y ! b �0 = 0 �0 = 1
0 = 0An example of a correctly decorated derivation tree ht; val i is the following, where t is

b x10x11
x1x2 x3 x4x7x6x5x8 x9
YYYaba ab

cX

and val(h�; x9i) = 0, val(h�; x9i) = 1, val(h
; x9i) = 0,val(h�; x6i) = 2, val(h�; x6i) = 1, val(h
; x6i) = 0,val(h�; x3i) = 2, val(h�; x3i) = 3, val(h
; x3i) = 0,val(h�; x1i) = (3; 3; 1).(2) We give an ag G0, with synthesized and inherited attributes, that de�nes the trans-lation �(G0) = fhx; yi j x is a string of the form w or w:v, with w; v 2 f0; 1g+, thatrepresents a binary number (with or without fraction) and y is the decimal value of xg(from [K]). 12

B ! 0 v0 = 0B ! 1 v0 = 2s0L! B v0 = v1 s1 = s0 `0 = 1L! LB v0 = v1 + v2 s2 = s0 s1 = s0 + 1 `0 = `1 + 1N ! L v0 = v1 s1 = 0N ! L:L v0 = v1 + v2 s1 = 0 s2 = �`2where v is the value of B, L, or N , ` is the length of L, s is the scale of B or L,W (v) = Q, W (`) = N, W (s) = N, S-Att = fv; `g, and I-Att = fsg.The dependency graphD(t) for a derivation tree t of 110:1 can be depicted as follows.The values of the attributes are written between parentheses.
ssss v

v
v 1vB B BL L L vs 011

v ` ` N v
s vBL vs:

(4)
(4) (2)

(6) (3)(0)(0)(0)
(2)(2) ` s (6) (�1)

(�1) (̀1)(1)
(2)(1) (1)

(� 12)
(6 12)

(� 12)

22.3.4 Some simple normal forms for ag'sIt is known that, for every cfg, we can construct an equivalent cfg in which every symbol(terminal or nonterminal) is productive, which means that it can generate a terminalword, and in which every symbol can be reached from the initial nonterminal. We willgive a de�nition of this normal form (without proof that it is indeed a normal form) andwe carry it over to ag's. 13

De�nition 2.4Let G0 = (N;T; P; S0) be a cfg and let X 2 N [T . X is called useful (in G0) if Xoccurs in a complete derivation tree of G0. If every X 2 N [T is useful in G0, or ifG0 = (fS0g; ;; ;; S0), G0 is called a reduced cfg.Let G = (G0;D;B;R) be an ag. X is called useful in G if X is useful in G0. G iscalled a reduced ag if G0 is a reduced cfg. 2It is possible that the initial symbol of a cfg is not productive. In that case, nosymbol can be useful, so the language generated by the cfg is empty; an equivalent cfgis then (fS0g; ;; ;; S0), as stated in the de�nition.In the following lemma we explain that reduced ag's are a normal form of the ag's.Lemma 2.1For every ag we can construct an equivalent reduced ag.ProofWe know that the reduced cfg is a normal form for cfg's. Reducing a cfg means deletingproductions that contain symbols that are not useful. Reducing an ag then meansdeleting those productions and their semantic rules, but not changing any productionsor semantic rules. Since the complete derivation trees of the cfg do not change, thetranslation de�ned by the ag does neither, and thus the language generated by the agstays the same. Consequently, the reduced ag is equivalent to the original one. 2Nonterminals of rank 0 do not contribute to the value computed by the ag. Hencethey do not contribute to the language of the ag we considere here. We can easily removethese nonterminals without changing the language.Lemma 2.2Let G be an ag with set of nonterminals N , rank function d and with L(G) 6= ;. Thenwe can construct an equivalent (reduced) ag G0 with set of nonterminals N 0 and rankfunction d0, such that d0(X 0) � 1 for all X 0 2 N 0.ProofAccording to Lemma 2.1, we may assume that G is reduced.We assume that every nonterminal of G is useful. Let G = ((N;T; P; S0);D;B;R).We remove every production p : X0 ! w1X1w2 : : : wkXkwk+1 with d(X0) = 0 from P ,since X0 cannot pass any (attribute) values from itself or its children to its parent ina derivation tree, nor from itself or its parent to its children. We remove p's semanticrules from R.Furthermore, we replace every occurrence of a nonterminal X with rank 0 in theright-hand side of a production by �. This does not have any e�ect on the semanticrules of those productions, since X did not have any attributes that could occur in thesesemantic rules.The resulting ag G0 = ((N 0; T; P 0; S0);D;B;R0) where P 0 and R0 are described above,N 0 = fX j X 2 N and d(X) > 0g, and G0 has rank function d0 = djN 0 .Note that G0 is reduced. 2In this proof, the assumption that G is reduced is necessary, because the construc-tion described in the previous lemma can remove useless symbols with rank 0 from a14

production, which may cause the production to occur in a complete derivation tree ofG0 while it could not occur in a complete derivation tree of G (see the example in sub-subsection 2.3.5.3). Obviously, this would change the language generated by the ag. IfG is reduced, this cannot happen.2.3.5 String-valued attribute grammarsIn general, the attribute values of an ag can be of any type (integers, strings, vectorsetc.). Since our main concern is string languages, we will now de�ne an ag with arestricted semantic domain: the string-valued ag (see [E86]). Its attribute values arestrings over an alphabet �, and the basic operation on these strings is concatenation.2.3.5.1 De�nitions and examplesDe�nition 2.5A string-valued attribute grammar (sag) is an ag with semantic domain (f��g;�) forsome alphabet �, where � consists of all derived functions of the free monoid �� gener-ated by the elements of �. 2Informally, this means that we specify our semantic rules by ha0; j0i =u1ha1; j1iu2 : : : umham; jmium+1, with ui 2 �� and 1 � i � m+ 1. Thus the right-handside of a semantic rule of a production p is given as an element of (� [A(p))�.Example 2.5Consider the cfg G0 from Example 2.3, that generates the language K = f awbwRc j w 2fa; b; cg�g. Here is an example of a sag G that 'sorts' the letters a, b and c that occurin the words that are generated by G0. Formally, G generates the language M =f anbmck j jvja = n; jvjb = m; jvjc = k for some v 2 Kg = fambnck j m;n; k odd g. Thetranslation de�ned by G is �(G) = fhv; anbmcki j v 2 K, jvja = n, jvjb = m, jvjc = kg.X ! aY c �0 = a�1�1c
1Y ! aY a �0 = aa�1 �0 = �1
0 =
1Y ! bY b �0 = �1 �0 = bb�1
0 =
1Y ! cY c �0 = �1 �0 = �1
0 = cc
1Y ! b �0 = � �0 = b
0 = �This sag is an OnlyS-sag. 2In the OnlyS-ag's that we have de�ned, it is possible that not every outer attributeof a production is used to de�ne the inner attributes of this production. Consequentlythere can be loss of information. On the other hand, we can also have duplication :some of the outer attributes of a production may be used more than once to de�ne theinner attributes of that production.The following de�nition, that was suggested by J. Engelfriet (see also [Gi]), describesan OnlyS-ag that can have neither duplication nor loss of information.De�nition 2.6A special attribute grammar is an OnlyS-ag such that, for every production p, everyouter attribute of p is used exactly once in a de�nition of an inner attribute of p. 215

This means that every attribute in a dependency graph has exactly one outgoingedge (except for the designated attribute, of course).Since we will use the concept of special string-valued ag rather frequently, we intro-duce an abbreviation for it : ssag.Example 2.6(1) The sag of Example 2.5 is also an ssag, since, for every production p, every attributein outer(p) is used exactly once to de�ne an inner attribute of p.(2) We give an ssag G for the (non-context-free) language L = fwcn j w 2 fa; bg�; jwja =jwjb = ng. Note that the attribute ! of a node x in a derivation tree has a value that isequal to the yield of the subtree rooted at x.S0 ! X �0 = !1
1X ! bA !0 = b !1
0 = c
1X ! aB !0 = a !1
0 = c
1X ! � !0 = �
0 = �A! XaX !0 = !1a !2
0 =
1
2B ! XbX !0 = !1b !2
0 =
1
2The dependency graph of a derivation tree for a2b2c2 is the following.

� �X b

S0

�!

! !

!

�!

!
!a

a b

XBX
B X
X

16

22.3.5.2 A normal form for OnlyS-sag'sWe de�ne a structural normal form for OnlyS-sag's. It is structural in the sense thatevery production and every semantic rule should have a special form.In Lemma 2.2 from [SMFK] this normal form is formulated for (parallel) multiplecontext-free grammars. We have �lled in some of the details of the proof of that lemma,and we prove this normal form for OnlyS-sag's instead of (parallel) multiple context-freegrammars, because we thought that technically more convenient.For proving that this is indeed a normal form for OnlyS-sag's, it would be convenientto know that the initial symbol has rank 1. If necessary, we can easily construct anequivalent ag that satis�es this requirement, by adding a new initial symbol Z, that hasa single (synthesized) attribute �0, and adding the production Z ! S0 with semanticrule h�0; 0i = h�0; 1i. Here S0 and �0 are the initial symbol and the designated attributeof the original ag, respectively.In the proof of the following lemma we will use nonterminals of the form XU , whereU is a subset of the set of s-attributes of the nonterminal X. The variant XU ofX represents a nonterminal whose attributes generate exactly the same values as theattributes of X that are contained in U (we could say that XU is the restriction of X toU). We use these variants XU of X on two occasions in the proof : �rst U contains onlythose attributes of X that are indeed used to compute attribute values of the parent ofX in a derivation tree, and later U contains only those attributes of X that cannot havethe value �.An OnlyS-sag is in structural normal form if it satis�es �ve properties mentionedin Lemma 2.3 below. Our proof will construct an equivalent ag in normal form in �veconsecutive steps. In each step an additional requirement will be satis�ed (withoutviolating the previous ones).In this proof, the language generated by the underlying cfg will change, and so willthe translation de�ned by the OnlyS-sag. But, of course, the language generated by theOnlyS-sag does not change, since the resulting OnlyS-sag should be equivalent to theoriginal one.Lemma 2.3For every OnlyS-sag G, it is possible to construct an equivalent OnlyS-sag G0, withinitial symbol S00, that has the following properties :i. For every production p, every outer attribute of p is used at least once in ade�nition of an inner attribute of p. This is called the information-lossless condi-tion.ii. Every nonterminal that occurs in the left-hand side of a terminating productionhas rank 1.iii. For every nonterminating production q, the right-hand side of every semantic ruleof q can be written as an element of (outer(q))�.17

iv. For every nonterminal X 6= S00 of G0, no attribute of X can have the value �.v. For every terminating production r with left-hand side X 6= S00, the length of theright-hand side of the semantic rule of r is 1. If the left-hand side of r is S00, thenthe length of the right-hand side of the semantic rule of r is 0 or 1.ProofLet G = (G0;D;B;R) with G0 = (N;T; P; S0), D = (f��g;�), B = (S; I; �0;W), rankfunction d : N ! N, and d(S0) = 1.i. We construct an OnlyS-sagG1, that satis�es the information-lossless condition andis equivalent toG, fromG as follows. LetG1 = ((N1; T; P1; S0);D; (S1; I1; �0;W); R1)with rank function d1, and let N1 = P1 = ;.For every production p : S0 ! w1X1w2 : : : wkXkwk+1 in P , we add to P1 theproduction p0 : S0 ! w1XV11 w2 : : : wkXVkk wk+1 with R1(p0) = R(p), Vi = fs 2S(Xi) j s occurs in the right-hand side of the semantic rule in R(p)g, S1(XVii) = Viand I1(XVii) = ; (for 1 � i � k). We add the XVii and S0 to N1, and welet d1(XVii) = jVij and d1(S0) = d(S0) = 1. Note that the newly introducedproductions and semantic rules have the required property.We also have to make productions and semantic rules for the newly introducednonterminals and for the nonterminals that we are going to introduce.For every XV in N1 for which there are no productions in P1 yet, consider allproductions q for Xi in P , whereq : Xi ! v1Y1v2 : : : vmYmvm+1 has semantic ruleshs`; 0i = u`;1hs`;1; j`;1iu`;2 : : : u`;n`hs`;n`; j`;n`iu`;n`+1 for 1 � ` � d(Xi).For each of these productions q we add to P1 the productionq0 : XVii ! v1Y U11 v2 : : : vmY Umm vm+1 with R1(q0) = fhs; 0i = � j hs; 0i = � 2 R(q)and s 2 Vig and, for 1 � j � m, Uj = fs 2 S(Yj) j hs; ji occurs in the right-handside of a semantic rule in R1(q0)g, S1(Y Ujj) = Uj and I1(Y Ujj) = ;. We add theY Ujj to N1, and we let d1(Y Ujj) = jUjj. Again, the newly introduced productionsand semantic rules have the desired property.When there is no XVii left for which we have to add productions, we have reachedour goal. This construction will end eventually, since there are only �nitely manynonterminals and there are at most 2jS(X)j variants of a nonterminal X, for eachof which we have to make �nitely many productions.ii. We construct G2, that satis�es i and ii and is equivalent to G1, from G1. FromLemma 2.2, we may assume that every X 2 N1 has rank greater than 0 (theconstruction in Lemma 2.2 preserves i).For every terminating production p : X ! w in P1, with d1(X) > 1, S1(X) =fs1; : : : ; sd1(X)g and semantic rules hsi; 0i = vi (with vi 2 �� for 1 � i � d1(X)),we add d1(X) new nonterminals Xi to N1, with d2(Xi) = 1, and to P1 we addd1(X) new terminating productions Xi ! �, with R2(Xi ! �) = fhs; 0i = vig.Let S2(Xi) = fsg, I2(Xi) = ; and W2(s) = ��.18

Furthermore, we remove production p from P1 and we add a new nonterminatingproduction q : X ! X1 : : : Xd1(X) to P1, with d1(X) semantic rules : R2(q) =fhs1; 0i = hs; 1i; : : : ; hsd1(X); 0i = hs; d1(X)ig.In this way we obtain G2 = ((N2; T2; P2; S0); (f��g;�); (S2; I2; �0;W2); R2), andrank function d2 : N2 ! N, that satis�es both i and ii.iii. We adjust G2 in order to make it satisfy iii as well.Consider a nonterminating production p : X0 ! w1X1w2 : : : wkXkwk+1 in P2, withsemantic rules hsi; 0i = ui;1hai;1; ji;1iui;2 : : : ui;mihai;mi ; ji;miiui;mi+1. For every ui;q,we add to N2 a new nonterminal Xi;q, with d3(Xi;q) = 1, and to P2 we addXi;q ! �, with semantic rule hs; 0i = ui;q, S3(Xi;q) = fsg, I3(Xi;q) = ;, andW3(s) = ��.Furthermore, we replace p byp0 : X0 ! w1X1w2 : : : wkXkwk+1X1;1 : : : X1;m1+1X2;1 : : : Xd2(X0);md2(X0)+1.The semantic rules of p0 are the same as those of p, but we replace ui;q by hs; zi;qi,where zi;q = k +�j<i(mj + 1) + q is the position of Xi;q in the right-hand side ofp0.After executing this procedure for every nonterminating production we have G3 =((N3; T3; P3; S0); (f��g;�); (S3; I3; �0;W3); R3) and rank function d3 : N3 ! N,that satis�es i through iii, and is equivalent to G2.iv. We construct G4, that satis�es iv as well, from G3.First we adjust the terminating productions that have a semantic rule with right-hand side �. We replace every terminating production p : X ! w, where X 6= S0,with semantic rule hs; 0i = � (where S3(X) = fsg and d3(X) = 1, since G3 satis�esii), by the production p0 : X; ! w with d4(X;) = 0, S4(X;) = I4(X;) = ; andR4(p0) = ;. We add X; to N3.Next, we change the terminating productions that do not have a semantic rulewith right-hand side �. This is necessary because of the construction appliedto nonterminating productions described below. We replace every terminatingproduction r : Y ! v, with semantic rule hs; 0i = u (where u 2 �+, S3(Y) = fsgand d3(Y) = 1, since G3 satis�es ii), by the production r0 : Y fsg ! v withd4(Y fsg) = 1, S4(Y fsg) = fsg, I4(Y fsg) = ; and R4(r0) = fhs; 0i = ug. We addY fsg to N3.Furthermore, we replace every nonterminating productionq : X0 ! w1X1w2 : : : wkXkwk+1, with semantic ruleshsi; 0i = hsi;1; ji;1i : : : hsi;ni ; ji;niiwith ni � 0 for 1 � i � d3(X0), by the productions q0 : XU00 ! w1XU11 w2 : : : wkXUkk wk+1with Uj � S3(Xj) for 1 � j � k (so we construct 2jS3(X1)j � : : : � 2jS3(Xk)j newproductions), the XU`` (0 � ` � k) are new nonterminals that we add to N3,S4(XU``) = U`, d4(XU``) = jU`j and I4(XU``) = ;.If X0 6= S0, or X0 = S0 and � 62 L(G), then we set R4(q0) = fhs; 0i = �0 j hs; 0i =� 2 R3(q), �0 is constructed from � by replacing every hs; ji 62 Uj for 1 � j � k19

that occurs in � by �, and �0 6= �g, and U0 = fs 2 S3(X0) j there is a semanticrule for hs; 0i in R4(q0)g.If X0 = S0 and � 2 L(G), then U0 = S3(S0), and R4(q0) = fhs; 0i = �0 j hs; 0i =� 2 R3(q) and �0 is constructed from � by replacing every hs; ji 62 Uj for 1 � j � kthat occurs in � by �g. To simplify notation, we write S0 instead of SU00 .To make sure that the resulting grammar satis�es ii, we have to reduce it andremove nonterminals with rank 0 (see Lemma 2.2).The resulting grammar is G4 = ((N4; T4; P4; S0); (f��g;�); (S4; I4; �0;W4); R4)with rank function d4 : N4 ! N, which satis�es i through iv and is equivalent toG3.v. We construct the required OnlyS-sag G0 from G4.Consider the terminating production p : X ! w in P4 with S4(X) = fsg, onesemantic rule hs; 0i = v and v = v1 : : : vm (with vi 2 �, 1 � i � m andm > 1). Weadd m new nonterminals Xj (for 1 � j � m) to N4, with d0(Xj) = 1, and to P4 weadd m new terminating productions Xj ! �. We let R0(Xj ! �) = fhs; 0i = vjg,S0(Xj) = fsg, I 0(Xj) = ; and W 0(s) = ��.Furthermore, we remove production p and we add a new nonterminating pro-duction q : X ! wX1 : : : Xm to P4 with one semantic rule : R0(q) = fhs; 0i =hs; 1i : : : hs;mig. We apply this procedure to every terminating production in P4of which the semantic rule's right-hand side has length greater than 1.Now we have G0 = ((N 0; T 0; P 0; S0); (f��g;�); (S0; I 0; �0;W 0); R0) and rank func-tion d0 : N 0 ! N, that satis�es i through v and is equivalent to G. 2Note that, for an OnlyS-sag that satis�es iii and iv, the following holds : for everynonterminating production q with left-hand side 6= S0, the right-hand side of everysemantic rule of q can be written as an element of (outer(q))+.2.3.5.3 ExampleHere is an example of applying Lemma 2.3 to a given OnlyS-sag G.Let G beS ! AB s0 = �1
2A ! AB �0 = �2�1
2A ! a �0 = �B ! B �0 = a�1b
0 = cdB ! a �0 = ab
0 = cdG generates the language L(G) = fan1bn1 : : : ankbnk(cd)k+1 j ni � 1 for 1 � i � k andk � 0g.We bring G, step by step, in structural normal form. We use the following notationalconvention here : a set of (s-)attributes is written as a string that is the concatenation20

of all the elements of the set, in an arbitrary order. Thus for instance S(B) = f�;
gwill be written as �
.(i) G does not satisfy the information-lossless condition, because in the semantic rules0 = �1
2 of S ! AB, �2 is not used, and in the semantic rules �0 = a�1b and
0 = cdof B ! B,
1 does not occur. We start by making an equivalent OnlyS-sag G1 thatsatis�es the information-lossless condition.S ! A�B
 s0 = �1
2A� ! A�B�
 �0 = �2�1
2A� ! a �0 = �B
 ! B;
0 = cdB
 ! a
0 = cdB�
 ! B� �0 = a�1b
0 = cdB�
 ! a �0 = ab
0 = cdB; ! B;B; ! aB� ! B� �0 = a�1bB� ! a �0 = ab(ii) Next, we are going to make sure that the nonterminals that occur in the left-handside of a terminating production have rank 1 (this is only necessary for B�
 and B;,since A�, B
 and B� already have rank 1). First, we have to reduce G1. Since everysymbol in G1 is useful, G1 is already reduced. Then we have to remove the nonterminalswith rank 0 (i.e., B;). This gives us G01 :S ! A�B
 s0 = �1
2A� ! A�B�
 �0 = �2�1
2A� ! a �0 = �B
 ! �
0 = cdB
 ! a
0 = cdB�
 ! B� �0 = a�1b
0 = cdB�
 ! a �0 = ab
0 = cdB� ! B� �0 = a�1bB� ! a �0 = abNow we can apply the construction of Lemma 2.3 ii to G01, which leads to G2 :S ! A�B
 s0 = �1
2A� ! A�B�
 �0 = �2�1
2A� ! a �0 = �B
 ! �
0 = cdB
 ! a
0 = cdB�
 ! B� �0 = a�1b
0 = cdX ! � �0 = abY ! � �0 = cdB�
 ! XY �0 = �1
0 = �2B� ! B� �0 = a�1bB� ! a �0 = ab 21

(iii) Now we have to replace the constant strings that occur in the right-hand sides ofthe semantic rules of the nonterminating productions B�
 ! B� and B� ! B�.We do not follow the construction given in Lemma 2.3 iii exactly, however. We willreuse nonterminals, if possible, instead of adding new nonterminals (see for instanceB�
 ! B�UV Y , in which we have used the already present nonterminal Y rather thanintroducing a new one). We will do the same with the other nonterminals that we shouldintroduce during this example.This gives G3 :S ! A�B
 s0 = �1
2A� ! A�B�
 �0 = �2�1
2A� ! a �0 = �B
 ! �
0 = cdB
 ! a
0 = cdB�
! B�UV Y �0 = �2�1�3
0 = �4U ! � �0 = aV ! � �0 = bX ! � �0 = abY ! � �0 = cdB�
! XY �0 = �1
0 = �2B� ! B�UV �0 = �2�1�3B� ! a �0 = abBefore we remove '�-semantic rules', we will rename the nonterminals of G3, yieldingG03. Note that this is not really necessary: it is only done for reasons of clarity.S ! AC s0 = �1
2A ! AD �0 = �2�1
2A ! a �0 = �C ! �
0 = cdC ! a
0 = cdD ! BUV Y �0 = �2�1�3
0 = �4U ! � �0 = aV ! � �0 = bX ! � �0 = abY ! � �0 = cdD ! XY �0 = �1
0 = �2B ! BUV �0 = �2�1�3B ! a �0 = ab(iv) Applying the construction of Lemma 2.3 iv now gives G04 :Ss ! A�C
 s0 = �1
2Ss ! A;C
 s0 =
2Ss ! A�C; s0 = �1S; ! A;C;A� ! A�D�
 �0 = �2�1
2A� ! A�D� �0 = �2�1 22

A� ! A�D
 �0 = �1
2A� ! A�D; �0 = �1A� ! A;D�
 �0 = �2
2A� ! A;D� �0 = �2A� ! A;D
 �0 =
2A; ! A;D;A; ! aC
 ! �
0 = cdC
 ! a
0 = cdD�
 ! B�U �V �Y � �0 = �2�1�3
0 = �4D� ! B�U �V �Y ; �0 = �2�1�3D�
 ! B�U �V ;Y � �0 = �2�1
0 = �4D�
 ! B�U;V �Y � �0 = �1�3
0 = �4D�
 ! B�U;V ;Y � �0 = �1
0 = �4D� ! B�U;V �Y ; �0 = �1�3D� ! B�U �V ;Y ; �0 = �2�1D� ! B�U;V ;Y ; �0 = �1D�
 ! B;U �V �Y � �0 = �2�3
0 = �4D� ! B;U �V �Y ; �0 = �2�3D�
 ! B;U �V ;Y � �0 = �2
0 = �4D�
 ! B;U;V �Y � �0 = �3
0 = �4D
 ! B;U;V ;Y �
0 = �4D� ! B;U;V �Y ; �0 = �3D� ! B;U �V ;Y ; �0 = �2D; ! B;U;V ;Y ;U � ! � �0 = aV � ! � �0 = bX� ! � �0 = abY � ! � �0 = cdD�
 ! X�Y � �0 = �1
0 = �2D
 ! X;Y �
0 = �2D� ! X�Y ; �0 = �1D; ! X;Y ;B� ! B�U �V � �0 = �2�1�3B� ! B�U �V ; �0 = �2�1B� ! B�U;V � �0 = �1�3B� ! B�U;V ; �0 = �1B� ! B;U �V � �0 = �2�3B� ! B;U �V ; �0 = �2B� ! B;U;V � �0 = �3B; ! B;U;V ;B� ! a �0 = abThis grammar, however, does no longer satisfy the condition of Lemma 2.3 ii, since A;occurs in the left-hand side of a terminating rule (A; ! a) and has rank 0. So we reduce23

G04 (in which S;, C;, D�, D
 , D;, U;, V ;, X;, Y ; and B; are not useful), which leadsto G004 :Ss ! A�C
 s0 = �1
2Ss ! A;C
 s0 =
2A� ! A�D�
 �0 = �2�1
2A� ! A;D�
 �0 = �2
2A; ! aC
 ! �
0 = cdC
 ! a
0 = cdD�
 ! B�U �V �Y � �0 = �2�1�3
0 = �4U � ! � �0 = aV � ! � �0 = bX� ! � �0 = abY � ! � �0 = cdD�
 ! X�Y � �0 = �1
0 = �2B� ! B�U �V � �0 = �2�1�3B� ! a �0 = abNow we remove from G004 the nonterminals with rank 0, of which A; is the only one.Observe that it is important that a grammar is reduced before removing nonterminalswith rank 0. If we had not reduced G04, we would have introduced, for instance, theproduction D� ! B�U �V � by removing Y ;. But in G04, Y ; is not useful, which causesD� ! B�U �V �Y ; never to be used in a complete derivation tree. So D� ! B�U �V �should not occur in our grammar, because it might now be used in a complete derivationtree, and thus it would change the language generated by the ag.Using the construction of Lemma 2.2, the result is G4 :Ss ! A�C
 s0 = �1
2Ss ! C
 s0 =
2A� ! A�D�
 �0 = �2�1
2A� ! D�
 �0 = �2
2C
 ! �
0 = cdC
 ! a
0 = cdD�
 ! B�U �V �Y � �0 = �2�1�3
0 = �4U � ! � �0 = aV � ! � �0 = bX� ! � �0 = abY � ! � �0 = cdD�
 ! X�Y � �0 = �1
0 = �2B� ! B�U �V � �0 = �2�1�3B� ! a �0 = ab(v) The last step of the construction involves breaking up right-hand sides of semanticrules that are too long. The result of this step is G0, with L(G0) = L(G), which is instructural normal form.Ss ! A�C
 s0 = �1
2 24

Ss ! C
 s0 =
2A� ! A�D�
 �0 = �2�1
2A� ! D�
 �0 = �2
2C
 ! WZ
0 = �1�2W ! � �0 = cZ ! � �0 = dC
 ! aWZ
0 = �1�2D�
 ! B�U �V �Y � �0 = �2�1�3
0 = �4U � ! � �0 = aV � ! � �0 = bX� ! U �V � �0 = �1�2Y � ! WZ �0 = �1�2D�
 ! X�Y � �0 = �1
0 = �2B� ! B�U �V � �0 = �2�1�3B� ! aU �V � �0 = �1�2

25

Chapter 3Generalized context-freegrammars3.1 IntroductionIn this chapter we discuss generalized context-free grammars, which can be viewed ascfg's in which the nonterminals generate tuples of strings instead of strings.We now give our de�nition of a generalized context-free grammar. We have slightlymodi�ed the de�nition given in [SMFK] in order to show the similarities between gen-eralized context-free grammars and the other grammars that we describe in this thesis(in particular the attribute grammar), and in order to make the de�nition more precise.We need some terminology concerning functions that have tuples of strings oversome alphabet T as input and output values. For such a function f , let a(f) denote thenumber of arguments of f , di(f) (for 1 � i � a(f)) the dimension of the ith argumentof f , and r(f) the dimension of the result of applying f . Hence f is a function from(T �)d1(f)�(T �)d2(f)� : : :�(T �)da(f)(f) to (T �)r(f). The description of the ith componentof the result of applying f is denoted f i, where 1 � i � r(f).We also de�ne, for each f , xi = (xi;1; xi;2; : : : ; xi;di(f)), the ith argument of f , andV (f) = fxi;j j 1 � i � a(f) and 1 � j � di(f)g, a set of variables that denote thecomponents of the arguments of f .De�nition 3.1Let m be a positive integer. An m-generalized context-free grammar (m-gcfg or gcfg) isa 5-tuple G = (N;T;D; P; S0) wherei. N is a ranked alphabet of nonterminal symbols. The rank or dimension of eachnonterminal is given by the total function d : N ! N;ii. T is a �nite set of terminal symbols which is disjoint with N ;iii. D is a semantic domain (fO1; O2; : : : ; Omg; F), where Oi is the set of all tuplesof dimension i of strings over T , i.e., Oi = (T �)i for 1 � i � m. There are norestrictions on F , thus each f 2 F is an arbitrary function from Od1(f) �Od2(f) �: : : �Oda(f)(f) to Or(f). Obviously, r(f) and di(f) are not greater than m;26

iv. P is a �nite set of (rewriting) rules each of which is of the form (f;X0;X1; : : : ;Xa(f))where f 2 F and Xi 2 N for 0 � i � a(f). If a rule (f;X0;X1; : : : ;Xa(f)) is in P ,then r(f) = d(X0) and di(f) = d(Xi) for 1 � i � a(f);v. S0 2 N is the initial symbol, and d(S0) = 1, i.e., S0 generates strings (moreprecisely tuples of dimension 1). 2Notes :i. We will omit the parentheses of tuples of dimension 1.ii. We have the range of the rank function de�ned to be N, although, as in the caseof ag's, nonterminals with rank 0 are 'not needed'.We abbreviate fO1; : : : ; Omg as O. An element (f;X0;X1; : : : ;Xq) of P is writtenas X0 ! f [X1; : : : ;Xq]. If q = 0, i.e. if f is a constant element of Or(f) , the rule iscalled a terminating rule; otherwise it is called a nonterminating rule.The language generated by X 2 N in G, LG(X) � (T �)d(X), is de�ned as follows.For X 2 N , LG(X) is the smallest set satisfying the following two conditions :i. If a terminating rule X ! � is in P , then � 2 LG(X);ii. If, for 1 � i � q, �i 2 LG(Xi), X ! f [X1; : : : ;Xq] is in P and f(�1; : : : ; �q) isde�ned, then f(�1; : : : ; �q) 2 LG(X).We denote the generalized context-free language (gc
) generated by G by L(G), and wede�ne L(G) = LG(S0) � T �.We de�ne a derivation tree in a gcfg G as follows :i. For a terminating rule X ! �, the tree whose root (labelled with X) has only onechild (labelled with �) is a derivation tree of �;ii. If ti is a derivation tree of �i whose root is labelled with Xi (for 1 � i � q),X ! f [X1; : : : ;Xq] is in P and f [�1; : : : ; �q] is de�ned, then a derivation tree off [�1; : : : ; �q] is a tree such that(a) the root is labelled with X,(b) the root has q children, which are connected to it by edges labelled with f ,and(c) the subtree rooted at the ith child is isomorphic to ti (for 1 � i � q).iii. Every derivation tree is built using conditions i. and ii. a �nite number of times.So derivation trees of gcfg's and those of cfg's are very much alike, except that theleaves of the former are tuples of strings while those of the latter are strings, and theformer have edge labels indicating functions that have to be applied to tuples generatedby nonterminals. 27

3.2 Parallel multiple context-free grammarsWe will now de�ne a class of gcfg's with a restricted semantic domain : the only operationthat may be applied to the strings is concatenation. That makes the grammars in thisclass, the parallel multiple context-free grammars, very similar to the string-valuedattribute grammars.De�nition 3.2Let m be a positive integer. An m-parallel multiple context-free grammar (m-pmcfg orpmcfg) is an m-gcfg G = (N;T;D; P; S0), with D = (O;F), which satis�es the followingrequirement : for each function f 2 F , f(x1; : : : ; xa(f)) can be written as an element of((V (f) [T)�)r(f). 2Example 3.1The 2-pmcfg G = (N;T;D; P; S0), where N = fA;Bg, d(A) = 1, d(B) = 2, T =fa; b; c; dg, D = (fT �; T ��T �g; ff; gg) with f(x; (y; z)) = yxz and g((y; z)) = (ayb; czd),P = fA! f [A;B]; A! �;B ! g[B]; B ! (ab; cd)g and S0 = A, generates the languageL = fan1bn1 : : : ankbnkcnkdnk : : : cn1dn1 j ni � 1 for 1 � i � k and k � 0g.The following tree is a derivation tree of aba2b2c2d2cd 2 L. Instead of drawing nodesand putting the labels next to the nodes, we have replaced the nodes by their labels.
�A

A ABB
Bf f

g
ff

(ab; cd)
(ab; cd)

According to this tree, � 2 LG(A) and (ab; cd) 2 LG(B). From the application ofB ! g[B], (a2b2; c2d2) 2 LG(B), and then, from the 'leftmost' application of A !f [A;B], a2b2c2d2 2 LG(A). Finally, the 'topmost' application of A ! f [A;B] givesaba2b2c2d2cd 2 LG(A). Consequently, aba2b2c2d2cd 2 L(G) (and � and a2b2c2d2 are inL(G) as well). 2When discussing ag's, we introduced a simpler, less formal, notation for describingthem. For pmcfg's, we will use a similar notation : we will just give the rewriting rules,the descriptions of the functions that we use, and the initial symbol. The dimension ofthe nonterminals can be derived from the rules and the functions. This is illustrated inthe following example. 28

Example 3.2(1) The 2-pmcfg G of Example 3.1 can be described as follows :A! f [A;B] f(x; (y; z)) = yxzA! �B ! g[B] g((y; z)) = (ayb; czd)B ! (ab; cd)(2) The language fww j w 2 fa; bg�g can be generated by the following 2-pmcfg :X ! f [Y] f((x; y)) = xyY ! �[Y] �((x; y)) = (ax; ay)Y ! �[Y] �((x; y)) = (bx; by)Y ! (�; �)(3) A 4-pmcfg (with initial symbol X) that generates the languagefwwRwwR j w 2 fa; bg�g is the following :X ! f [Y] f((u; x; y; z)) = uxyzY ! �[Y] �((u; x; y; z)) = (au; xa; ay; za)Y ! �[Y] �((u; x; y; z)) = (bu; xb; by; zb)Y ! (�; �; �; �)(4) Consider the following 5-pmcfg G4 (with initial symbol X) :X ! f [Y] f((u; v; w; x; y)) = uvwxyY ! g[Y] g((u; v; w; x; y)) = (au; bv; cw; dx; ey)Y ! (�; �; �; �; �)G4 generates the language fanbncndnen j n � 0g.(5) This sample 2-pmcfg (with initial symbolX) is from [SMFK]. It generates fa(n2) j n >0g, based on the identity (n+ 1)2 = n2 + 2n+ 1.X ! f [Y] f((x; y)) = axxyY ! g[Y] g((x; y)) = (ax; axxy)Y ! (�; �)(6) The language fa(2n) j n � 0g can be generated by the following 1-pmcfg (also from[SMFK]) :X ! f [X] f(x) = xxX ! a 2
29

3.3 Results on pmcfg'sA pmcfg is very similar to an OnlyS-sag : they both generate strings and they both walkbottom-up through a derivation tree. Moreover, a nonterminal of rank n in a pmcfg isalmost the same as a nonterminal of rank n in an OnlyS-sag, since the former generatestuples of dimension n, while the latter has n s-attributes. So the components of tuplesin pmcfg's correspond to s-attributes in OnlyS-sag's, where the only di�erence is thattuples are ordered and sets of attributes are not (but we can add an ordering to a set).In the following theorem we will formalize this idea.Since in an ag the initial symbol is not supposed to occur in the right-hand sideof a production, there might be a problem when we want to translate a pmcfg G inwhich the initial symbol does occur in the right-hand side of a production to a sag.This problem, however, is easy to solve. For a pmcfg G = (N;T; (O;F); P; S0), withrank function d : N ! N, an equivalent pmcfg that has the required property is G0 =(N [fZg; T; (O;F [fidg); P [fZ ! id[S0]g; Z), where Z is a new nonterminal withd(Z) = 1, and id is a new function with id(x) = x for all x.Theorem 3.1PMCFL = OnlyS-SALProofFirst we prove that for each m-pmcfg G = (N;T;D; P; S0) we can construct an OnlyS-sag G0 = ((N 0; T 0; P 0; S00); (
;�); B0; R0) such that L(G) = L(G0). We may assume thatS0 does not occur in the right-hand side of any rule in P .Let N 0 = N , S00 = S0,
 = fT �g and � consists of all derived functions of the freemonoid T �. Let N 0 have the same rank function d as N , so every X 2 N 0 will haved(X) s-attributes : s1 through sd(X). Then the attribute description B0 of G0 consistsof S0(X) = fsj j 1 � j � d(X)g for each X 2 N 0, I 0(X) = ; for each X 2 N 0, �00 = s1and W 0(�) = T � for every � 2 Att0. To determine T 0 , P 0 and R0, we have to considereach rule in P . Let T 0 = P 0 = ;.For each nonterminating rule r : X0 ! f [X1; : : : ;Xk] in P , we add the productionp : X0 ! fX1 : : : Xk to P 0, and the new terminal 'f ' to T 0. The semantic rules in R0(p)are hsi; 0i = f i((hs1; 1i; : : : ; hsd(X1); 1i); : : : ; (hs1; ki; : : : ; hsd(Xk); ki)) for 1 � i � r(f).The terminal that is added to the production may look somewhat super
uous, but it isnecessary to prevent us from adding the same production more than once, with di�erentsemantic rules.For each terminating rule r0 : X0 ! (v1; : : : ; vd(X0)) in P (where vi 2 T � for 1 � i �d(X0)) we add a new terminal 'r0' to T 0, and to P 0 we add the production p0 : X0 ! r0.The semantic rules for p0 will be hs1; 0i = v1; : : : ; hsd(X0); 0i = vd(X0). Now L(G) = L(G0)and consequently PMCFL � OnlyS-SAL.Our next task is to prove that OnlyS-SAL � PMCFL. Let G = (G0;D;B;R) bean OnlyS-sag, with G0 = (N;T; P; S0), D = (f��g;�) for some alphabet � and Ghas rank function d. According to the remark just before Lemma 2.3 we may assumethat d(S0) = 1, and by Lemma 2.2 we assume that d(X) > 0 for every X 2 N . Foreach terminating production p : X0 ! w in P , R(p) = fhs1; 0i = v1; : : : ; hsd(X0); 0i =vd(X0)g, where vi 2 �� for 1 � i � d(X0). For each nonterminating production q :X0 ! w1X1w2 : : : wkXkwk+1, let 30

hsi; 0i = fi(hs1; 1i; : : : ; hsd(X1); 1i; : : : ; hs1; ki; : : : ; hsd(Xk); ki) 2 R(q)be the semantic rule for si (with 1 � i � d(X0)).(It is possible to describe every function f 2 � that occurs in R(q) as a function thattakes the attributes hs1; 1i; : : : ; hsd(X1); 1i; : : : ; hs1; ki; : : : ; hsd(Xk); ki of q in this order asits arguments, and of which the description of the result can be given as an element of(A(q) [�)�. Note that not every argument has to be used in this description!)Let m = maxfd(X) j X 2 Ng. We construct an m-pmcfg G0 = (N 0; T 0;D0; P 0; S00),with D0 = (O0; F 0), such that L(G0) = L(G). Let N 0 = N , where N and N 0 have thesame rank function d, T 0 = �, O0 = f(T 0)�; ((T 0)�)2; : : : ; ((T 0)�)mg and S00 = S0. For afunction f 2 �, that is described as above, we de�ne f((x1;1; : : : ; x1;j1); : : : ; (xn;1; : : : ; xn;jn))to be f(x1;1; : : : ; x1;j1 ; : : : ; xn;1; : : : ; xn;jn) where n � 0 and ji � 1 (for 1 � i � n). Forevery nonterminating production q : X0 ! w1X1w2 : : : wkXkwk+1 in P we add the fol-lowing rule to P 0 : X0 ! f [X1; : : : ;Xk], where f i = fi for 1 � i � d(X0), and we add fto F 0. For every terminating production p : X0 ! w in P , we add the following rule toP 0 : X0 ! (v1; : : : ; vd(X0)). Now L(G0) = L(G) and thus OnlyS-SAL � PMCFL.Consequently PMCFL = OnlyS-SAL. 2Since we now know that the pmcfg is equivalent to the OnlyS-sag, we can bring everypmcfg in a structural normal form that corresponds to the one in Lemma 2.3 (Lemma2.2 from [SMFK]). Note that it is important that the initial symbol of the pmcfg doesnot occur in the right-hand side of any rule!Corollary 3.2We can bring every pmcfg G = (N;T;D; P; S0) with D = (O;F) and rank function din structural normal form, i.e., we can adjust G in order to let it have the followingproperties :i. For every f 2 F , if f(x1; : : : ; xa(f)) = (y1; : : : ; yr(f)), then every x 2 V (f) appearsat least once in y1 : : : yr(f) (the information-lossless condition).ii. Every nonterminal that occurs in the left-hand side of a terminating rule has rank1.iii. For every nonterminating rule X0 ! f [X1; : : : ;Xk] in P , the description off(x1; : : : ; xk) can be given as an element of ((V (f))�)r(f).iv. For every nonterminal X 6= S0, if (�1; : : : ; �d(X)) 2 LG(X), then �i 6= � for 1 � i �d(X).v. For every terminating rule X ! �, with X 6= S0, j�j = 1. If X = S0, then j�j is 0or 1. 23.4 Multiple context-free grammarsIn pmcfg's, it is possible to use the elements of the generated tuples more than once tocompute the elements of another tuple (`parallellism'). We will now de�ne a class ofpmcfg's in which this duplication cannot occur : the multiple context-free grammars.31

De�nition 3.3Let m be a positive integer. An m-multiple context-free grammar (m-mcfg or mcfg) isan m-pmcfg G = (N;T;D; P; S0), with D = (O;F), where all functions in f 2 F satisfythis condition : for each variable x in V (f), the total number of occurrences of x in thedescription of f is at most one, i.e., each x is used at most once to describe the resultof f . 2Example 3.3(1) Here is an example of a 3-mcfg for the language M = fambnck j m;n; k odd g fromExample 2.5. The grammar directly corresponds to the OnlyS-sag from that example.X ! f [Y] f((x; y; z)) = axyczY ! �[Y] �((x; y; z)) = (aax; y; z)Y ! �[Y] �((x; y; z)) = (x; bby; z)Y !
[Y]
((x; y; z)) = (x; y; ccz)Y ! (�; b; �)(2) The pmcfg's in Example 3.2 (1), (2), (3) and (4) are also mcfg's, but those in (5)and (6) are not, since in the description of the functions f and g in (5) and f in (6) thevariable x is used more than once. 2It is easy to see that (p)mcfg's are generalizations of cfg's. In a cfg G = (N;T; P; S0),a nonterminal X0 that has X1; : : : ;Xk as its children will generate a string that is theconcatenation of the strings generated by X1; : : : ;Xk (in this order!) and some terminalstrings that can occur before, between and after the strings generated by X1; : : : ;Xk :X0 ! w1X1w2 : : : wkXkwk+1 (with wi 2 T � and Xj 2 N). In a pmcfg, however, anonterminal X0 that has k children X1; : : : ;Xk can generate a tuple of strings, that arealso concatenations of the strings in the tuples generated by X1; : : : ;Xk and terminals,but the order of the strings generated by the children may be disturbed, and thesestrings may be used any number of times. Since in an mcfg the strings generated by thechildren cannot be used more than once, mcfg's and cfg's are very much alike. In thenext theorem we will prove that every cfg can be simulated by a 1-mcfg and vice versa.Theorem 3.3CFL = 1-MCFLProofThe easiest part of the proof is CFL � 1-MCFL. Let G = (N;T; P; S0) be a cfg. Weconstruct a 1-mcfg G0 = (N;T;D0; P 0; S0), with D0 = (O0; F 0), and rank function d,from G as follows. Let O0 = fT �g and, for every X 2 N 0, d(X) = 1. For eachp : X0 ! w1X1w2 : : : wkXkwk+1 in P we construct the following rule in P 0 : X0 !fp[X1; : : : ;Xk] where fp(x1; : : : ; xk) = w1x1;1w2 : : : wkxk;1wk+1. Let F 0 = ffp j p 2 Pg.Now L(G) = L(G0) and thus CFL � 1-MCFL.Now we have to prove that 1-MCFL � CFL. Let G = (N;T;D; P; S0), with D =(O;F), be a 1-mcfg. We know that O = fT �g and that the rules in P are of the formr : X0 ! f [X1; : : : ;Xk] with k � 0, where f(x1;1; : : : ; xk;1) can be written as an elementof (fx1;1; : : : ; xk;1g [T)�, i.e., f(x1;1; : : : ; xk;1) = w1xi1;1w2 : : : wtxit;1wt+1 with w` 2 T �32

for 1 � ` � t + 1, ij 2 f1; : : : ; kg and ij = ij0) j = j0 (for 1 � j � t and t � k).We construct a cfg G0 = (N 0; T 0; P 0; S00) with L(G0) = L(G) as follows : let T 0 = T andS00 = S0. For each r : X0 ! f [X1; : : : ;Xk] in P we construct the following production inP 0 : X0 ! w1Xi1w2 : : : wtXitwt+1 and we add Xi1 ; : : : ;Xit and X0 to N 0. This proves1-MCFL � CFL.Consequently CFL = 1-MCFL. 2We have already proven that the pmcfg is equivalent to the OnlyS-sag. Both for-malisms have a restricted version (the mcfg and the ssag, respectively), in which du-plication is prohibited. The only di�erence left between those two restricted versionsis the fact that in mcfg's loss of information is possible, while in ssag's that is not al-lowed. In the next theorem we prove that that can be overcome with the help of theinformation-lossless condition of Corollary 3.2Theorem 3.4MCFL = SSALProofWe know that each mcfg G is equivalent to an mcfg G0 that satis�es the information-lossless condition of Corollary 3.2. This means that for G0 the following is true : for eachf 2 F 0 where f(x1; : : : ; xa(f)) = (y1; : : : ; yr(f)), every x 2 V (f) appears exactly once iny1 : : : yr(f).According to Theorem 3.1, we can construct an OnlyS-sag G00 such that L(G0) =L(G00). It is clear from the proof of that theorem that for each production p : X0 !fX1 : : : Xk in P 00 the dependency graph D(p) has the following property : for each s-attribute s of X1 through Xk there is exactly one edge from s to some s-attribute of X0.The designated attribute of an OnlyS-sag cannot have any outgoing edges. Hence thedependency graph of each derivation tree is an inverted tree.On the other hand, it is clear from the proof of Theorem 3.1 that when an OnlyS-sagis special, the equivalent pmcfg that can be constructed is also an mcfg. 2Example 3.4Using the construction in Theorem 3.1 we construct the following 2-mcfg G0 for thelanguage L given in Example 2.6(2).S ! f [X] f((x; y)) = xyX ! �[A] �((x; y)) = (bx; cy)X ! �[B] �((x; y)) = (ax; cy)X ! (�; �)A! g[X;X] g((x; y); (u; v)) = (xau; yv)B ! h[X;X] h((x; y); (u; v)) = (xbu; yv) 2
33

Chapter 4Relational grammars4.1 De�nitions and examplesWe will give an adapted version (suggested by J. Engelfriet) of the de�nition of relationalgrammars from [GR]. Our relational grammars generate strings, while in [GR] trees aregenerated.Let V be an in�nite set of variables. We will use x1; x2; x3; : : : ; y1; y2; y3; : : : ; x; y; z;: : : ; x; y; z; : : : as variable names.De�nition 4.1Let T be an alphabet of terminal symbols, and letN be a ranked alphabet of nonterminalsymbols with rank function d : N ! f1; 2; : : :g. A derivation tuple over N and T is atuple ((v1; : : : ; vk); R), with k � 1, that satis�es the following requirements :i. v1; : : : ; vk 2 (T [V)�;ii. R is a �nite subset of NV + such that each element of R is of the form Xx1 : : : xnwith n = d(X) and the x1; : : : ; xn are all distinct. Moreover, if Xx1 : : : xn andY y1 : : : ym are in R, then xi 6= yj (for 1 � i � n, 1 � j � m and m = d(Y));iii. A variable occurs in v1 : : : vk if and only if it occurs in some element of R. 2In [GR] derivation tuples are called 'parameterized relations'. We will however notuse that name, since we think that 'derivation tuple' gives a better description of itsuse.A derivation tuple is a 2-tuple ((v1; : : : ; vk); R). As we will see later in this chapter,the �rst component of this tuple, (v1; : : : ; vk), indicates what has been derived so far.The second component is a set of elements of the form Xx1 : : : xd(X). Such an elementindicates that the variables x1; : : : ; xd(X) still have to be rewritten, with the help of aproduction with left-hand side X.Moreover, a derivation of a relational grammar (de�ned below) starts with a deriva-tion tuple, and in each derivation step a new derivation tuple is generated.Note that, according to De�nition 4.1, the variables that occur in R occur at leastonce in v1 : : : vk, and that any variable occurring in v1 : : : vk appears exactly once in R.34

The rank of a derivation tuple ((v1; : : : ; vk); R) is k. Two derivation tuples that di�eronly by the names of the variables are isomorphic. Two derivation tuples are disjoint ifno variable occurs in both.De�nition 4.2A relational grammar (rg) is a 4-tuple G = (N;T; P; S0), withi. N is a ranked alphabet of nonterminals. The rank of each nonterminal is given bya total function d : N ! f1; 2; : : :g;ii. T is a �nite set of terminals, and N \ T = ;;iii. P is a �nite set of productions of the form X ! � where � is a derivation tupleover N and T with the same rank as X 2 N ;iv. S0 2 N is the initial nonterminal. 2A derivation step �1) �2 between derivation tuples is de�ned as follows. Let�1 = ((v1; : : : ; vk); R) and let Xx1 : : : xn 2 R. Let X ! � be a production in P and let((w1; : : : ; wn); R0) be an isomorphic copy of � that is disjoint with �1. Then �1) �2where �2 = ((v01; : : : ; v0k); (RnfXx1 : : : xng) [R0) and v0i = vi[x1=w1; : : : ; xn=wn], theresult of substituting wj for xj in vi (where 1 � i � k and 1 � j � m).A relational grammar G generates a set of m-tuples of terminal strings, wherem = d(S0). To be precise, the language generated by G is de�ned to be L(G) =f(v1; : : : ; vm) j ((x1; : : : ; xm); fS0x1 : : : xmg))� ((v1; : : : ; vm); ;)g.This means that every derivation is started by the derivation tuple((x1; : : : ; xm); fS0x1 : : : xmg). Then an appropriate production is applied to this deriva-tion tuple, which gives us a new derivation tuple. The process of applying productionsis executed until a derivation tuple ((v1; : : : ; vm); ;) is encountered. Note that everyderivation tuple in such a derivation has rank m.Restriction 4.1Since we are mainly interested in string languages, we will only consider rg's of whichthe initial nonterminal has rank 1.We give an example of an rg. As we did with pmcfg's, we will omit the parenthesesof tuples of dimension 1.Example 4.1Consider the relational grammarG = (fS;Xg; fag; P; S0), with P = fS0 ! (axxy; fXxyg);X ! ((ax; axxy); fXxyg);X ! ((�; �); ;)g. G generates the language fa(n2) j n > 0g(see Example 3.2 (5)). A sample derivation of G is(s; fS0sg))(axxy; fXxyg))(aaxaxax x y; fXx yg))(aaaxaaxaaxaxaxxy; fXxyg))(aaaaaaaaa; ;) 235

From this example, it is clear that variables that occur in the second component ofa derivation tuple may be used more than once in the �rst component. We have seen asimilar property with ag's and pmcfg's. Now we can impose a restriction on relationalgrammars as we did on pmcfg's and ag's : we prohibit duplication of variables.De�nition 4.3A special relational grammar (srg) is a relational grammar of which every derivation tuple((v1; : : : ; vk); R) in the right-hand side of a production satis�es the following additionalrequirement : each variable in V occurs at most once in v1 : : : vk. 2This means that every variable that occurs in an element of R occurs exactly oncein v1 : : : vk.Example 4.2Consider the special relational grammar G = (N;T; P; S0) whereN = fA;Bg,T = fa; b; c; dg,P = fA! (�; ;);A! (xyz; fBxz;Ayg);B ! ((ab; cd); ;);B ! ((axb; czd); fBxzg)g, andS0 = A.G generates the language fan1bn1 : : : ankbnkcnkdnk : : : cn1dn1 j ni � 0 for 1 � i � k andk � 0g.A sample derivation of G is(y; fAyg))(xyz; fBxz;Ayg))(abycd; fAyg))(abxyzcd; fAy;Bxzg))(abaxbyczdcd; fAy;Bx zg))(aba2b2yc2d2cd; fAyg))(aba2b2xyzc2d2cd; fAy;Bxzg))(aba2b2abycdc2d2cd; fAyg))(aba2b2abcdc2d2cd; ;),where x, y, z, x, y, and z 2 V . 2Both our rg and srg satisfy an information-lossless condition, because of the thirdrequirement of our de�nition of derivation tuples. We could however de�ne a derivationtuple in which loss of information is possible, by changing the condition in De�ni-tion 4.1 iii to 'if a variable occurs in v1 : : : vk, then it occurs in some element of R'.And then we could prove that, for every rg (or srg), we can construct an equivalent rg(or srg) that satis�es an information-lossless condition similar to the ones mentioned inLemma 2.3 and Corollary 3.2.
36

4.2 Results4.2.1 Equivalence of rg and OnlyS-sagWe can look at an rg as if it was an OnlyS-sag, as follows. In a derivation tuple((v1; : : : ; vk); R), the elements of R denote nonterminals with their s-attributes. A pro-duction X ! ((w1; : : : ; w`); R0) states that X has to be rewritten as the sequence ofnonterminals that occur in R0 (in an arbitrary order, because R0 is a set), and that the `s-attributes of X are de�ned by w1; : : : ; w`, respectively. Since the variables that occurin R0 and also in w1 : : : w` represent the s-attributes of the nonterminals in R0, we cansay that the s-attributes of X are de�ned in terms of the s-attributes of its children.The translation of an OnlyS-sag into an rg is analogous.Theorem 4.1RL = OnlyS-SAL.ProofFirst, we prove that RL � OnlyS-SAL.Let G = (N;T; P; S0) be an rg with rank function d : N ! f1; 2; : : :g. We will constructan equivalent OnlyS-sag G0 = ((N 0; T 0; P 0; S00); (fT �g;�); B0; R0) with rank function d0 :N ! N.Let N 0 = N [fS00g, S00 is a new nonterminal, � consists of all derived functionsof the free monoid T �, B0 = (S; I; �0;W) with S(X) = fs1; : : : ; sd0(X)g for all X 2 N ,I(X) = ; for all X 2 N , S(S00) = f�0g, I(S00) = ;, W (s) = T � for all s 2 S-Att0,d0jN = d and d0(S00) = 1. Let P 0 = ; and T 0 = ;.Consider a production p : X ! ((v1; : : : ; vd(X)); R) in P , and R = fX1x1;1 : : : x1;n1 ;X2x2;1 : : : x2;n2 ; : : : ;X`x`;1 : : : x`;n`g (with ` � 0 and ni = d(Xi) for 1 � i � `).We construct a production q : X ! pX1X2 : : : X` in P 0, with R0(q) = fhs1; 0i =v1[xi;j=hsj ; ii]; : : : ; hsd(X); 0i = vd(X)[xi;j=hsj ; ii]g for 1 � i � ` and 1 � j � ni, and weadd p to T 0. We execute this procedure for every p 2 P .Furthermore, to make sure that S00 does not occur in the right-hand side of anyproduction in P 0, we add to P 0 the production S00 ! S0 with semantic rule h�0; 0i =hs1; 1i. Now L(G0) = L(G).Consequently, RL � OnlyS-SAL.We still have to prove that OnlyS-SAL � RL.Let G = ((N;T; P; S0); (f��g;�); (S; I; �0 ;W); R) be an OnlyS-sag, for some alphabet�, and with rank function d. According to Lemma 2.2 we may assume that d(X) > 0for all X 2 N , and according to the remark just before Lemma 2.3 we may assumethat d(S0) = 1. We construct an equivalent rg G0 = (N;�; P 0; S0), with the same rankfunction, as follows.For every production p : X0 ! w1X1w2 : : : wkXkwk+1 in P with semantic ruleshsi; 0i = ui;1hai;1; ji;1iui;2 : : : ui;nihai;ni ; ji;niiui;ni+1 for 1 � i � d(X0), and with S(Xm) =fs1; : : : ; sd(Xm)g for 0 � m � k, we add to P 0 a productionq : X0 ! ((u1;1ha1;1; j1;1iu1;2 : : : u1;n1ha1;n1 ; j1;n1iu1;n1+1,: : :,u`;1ha`;1; j`;1iu`;2 : : : u`;n`ha`;n` ; j`;n`iu`;n`+1),fX1hs1; 1ihs2; 1i : : : hsd(X1); 1i; : : : ;Xkhs1; kihs2; ki : : : hsd(Xk); kig)37

for ` = d(X0). We let hs; ji 2 V for 1 � j � k and s 2 S(Xj). Now L(G0) = L(G), andthus OnlyS-SAL � RL.Consequently RL = OnlyS-SAL. 2Corollary 4.2RL = PMCFL. 2If the original rg is special, then the corresponding OnlyS-sag will be special as well,since from the restrictions on the derivation tuples of srg's (all the variables that occurin R0 are distinct, and they all occur exactly once in w1 : : : w`) we see that every s-attribute of a child is used exactly once to de�ne the s-attributes of X. Furthermore,the s-attribute (recall that d(S0) = 1) of the occurrence of S0 at the root of a derivationtree can never be used to de�ne another attribute, since the derivation tuple (z; fS0zg)starts the derivation. Thus the dependency graph of each derivation tree of such anOnlyS-sag is an inverted tree, and consequently the OnlyS-sag is special.Theorem 4.3SRL = SSALProofAssume that we use the construction described in Theorem 4.1 to translate a special rginto an OnlyS-sag. Because of the restrictions on the derivation tuples of the srg (fora derivation tuple ((w1; : : : ; wk); C), all the variables that occur in C are distinct, andthey all occur exactly once in w1 : : : wk) it is obvious that the resulting OnlyS-sag isspecial.The translation from OnlyS-sag into rg gives an srg if the OnlyS-sag is special,since then the tuples in the right-hand sides of the constructed productions obviouslysatisfy the requirements for derivation tuples given in De�nition 4.1 and the additionalcondition of De�nition 4.3. 2Corollary 4.4SRL = MCFL. 2Example 4.3(1) An ssag corresponding to the srg of Example 4.2 isS0 ! A �0 = �1A! p1 �0 = �A! p2AB �0 = �2�1
2B ! p3 �0 = ab
0 = cdB ! p4B �0 = a�1b
0 = c
1dwith designated attribute �.(2) An srg that is equivalent to the ssag of Example 2.6 (2) is the following :S0 ! (!
; fX!
g)X ! ((b!; c
); fA!
g)X ! ((a!; c
); fB!
g) 38

X ! ((�; �); ;)A! ((!1a!2;
1
2); fX!1
1;X!2
2g)B ! ((!1b!2;
1
2); fX!1
1;X!2
2g)A sample derivation is(s; fS0sg))(!
; fX!
g))(a! c
; fB!
g))(a!1 b !2 c
1
2; fX!1
1;X!2
2g))(aa! b!2 cc

2; fB!
;X!2
2g))(aa!1 b ! b!2 cc
1

2; fX!2
2;X!1
1;X!
g))�(aabbcc; ;).(3) The following srg, with initial symbol X, generates the same language as the 3-mcfgfrom Example 3.3 (1).X ! (axycz; fY xyzg)Y ! ((aax; y; z); fY xyzg)Y ! ((x; bby; z); fY xyzg)Y ! ((x; y; ccz); fY xyzg)Y ! ((�; b; �); ;) 24.2.2 Correctness of the constructionThroughout this thesis, we give several constructions to transform one grammar for-malism into another. We have however never given a formal proof of the correctness ofthose constructions. In this subsection we will give such a proof for the construction oftranslating an rg into an OnlyS-sag. This is the only correctness proof that we will givein this thesis, since the other ones are analogous.To prove the correctness of the construction described in Theorem 4.1, we need tode�ne the language generated by a nonterminal in an rg and an OnlyS-sag, respectively.For rg's, this de�nition is simple.De�nition 4.4Let G = (N;T; P; S0) be an rg with rank function d : N ! f1; 2; : : :g.For every X 2 N , the language generated by X in G, LG(X) � (T �)d(X), is de�ned tobe LG(X) = f(v1; : : : ; vd(X)) j ((x1; : : : ; xd(X)); fXx1 : : : xd(X)g))� ((v1; : : : ; vd(X)); ;)g.2 Consequently, LG(S0) = L(G).For OnlyS-sag's, the de�nition is somewhat more complicated, since the nonterminalshave sets of attributes (i.e., the attributes are not ordered). Therefore we use functionsto associate values with the attributes, as follows.De�nition 4.5Let G = (G0;D;B;R) be an OnlyS-sag, with G0 = (N;T; P; S0), D = (f��g;�),B = (S; I; �0;W) and rank function d : N ! N.39

For every X 2 N , the language generated by X in G, LG(X) � (��)S(X), is de�nedto be LG(X) = f� j � : S(X) ! �� is a total function, and there is a derivation treet of G of which the root r is labelled with X, such that val(h�; ri) = �(�) for every� 2 S(X), and val is a correct decoration of tg.Furthermore, for every subset U 6= ; of S(X), we de�ne LG(X)jU to be the restrictionof LG(X) to U , i.e., LG(X)jU = f�jU j � 2 LG(X)g. 2Now LG(S0)jf�0g = L(G).Let G = (N;T; P; S0) be an rg with rank function d : N ! f1; 2; : : :g. Let G0 =(G00;D0; B0; R0) be an OnlyS-sag that is created using the construction described inTheorem 4.1, with G00 = (N 0; T 0; P 0; S00), D0 = (fT �g;�), B0 = (S; I; �0;W) and rankfunction d0, where d0jN = d and d0(S00) = 1. Note that N 0 = N [fS00g. Let S(X) =fs1; : : : ; sd(X)g for all X 2 N .In the proof of the following lemma we will use the fact that, for a derivation � :((x1; : : : ; xd(X)); fXx1 : : : xd(X)g)) ((w1; : : : ; wd(X)); fX1x1;1 : : : x1;d(X1); : : : ;X`x`;1 : : : x`;d(X`)g))� ((v1; : : : ; vd(X)); ;) of G, there are unique derivations �j :((xj;1; : : : ; xj;d(Xj)); fXjxj;1 : : : xj;d(Xj)g))� ((uj;1; : : : ; uj;d(Xj)); ;) that are 'part' of �in the sense that some reordering of them is precisely �, and such that vi = wi[xj;z=uj;z]for 1 � i � d(X), 1 � j � `, ` � 0 and 1 � z � d(Xj).Lemma 4.5For all X 2 N , (v1; : : : ; vd(X)) 2 LG(X) i� � 2 LG0(X) with �(si) = vi for 1 � i � d(X).In particular, v 2 LG(S0) i� � 2 LG0(S00) with �(�0) = v, and consequently L(G) =L(G0).Proof"only if" (with induction to the length of the derivation in G)� (basis)Consider a derivation of length 1 of (v1; : : : ; vd(X)) 2 LG(X), ((x1; : : : ; xd(X));fXx1 : : : xd(X)g)) ((v1; : : : ; vd(X)); ;). This means that the production p : X !((v1; : : : ; vd(X)); ;) is in P . Then, following the construction given in Theorem 4.1,the production q : X ! p is in P 0, with R0(q) = fhs1; 0i = v1; : : : ; hsd(X); 0i =vd(X)g. And thus � 2 LG0(X), where �(si) = vi for 1 � i � d(X).� (induction hypothesis)For all X 2 N , if (v1; : : : ; vd(X)) 2 LG(X) and there is a derivation((x1; : : : ; xd(X)); fXx1 : : : xd(X)g))n ((v1; : : : ; vd(X)); ;) with n � 1, then � 2LG0(X) with �(si) = vi for 1 � i � d(X).� (induction step)Consider the derivation � : ((x1; : : : ; xd(X)); fXx1 : : : xd(X)g))n+1((v1; : : : ; vd(X)); ;) of (v1; : : : ; vd(X)) 2 LG(X). Let the �rst step of � be((x1; : : : ; xd(X)); fXx1 : : : xd(X)g)) ((w1; : : : ; wd(X)); fX1x1;1 : : : x1;d(X1); : : : ;X`x`;1 : : : x`;d(X`)g) using a production p : X ! ((w1; : : : ; wd(X)); fX1x1;1 : : : x1;d(X1);: : : ;X`x`;1 : : : x`;d(X`)g) from P . Since the derivations forX1; : : : ;X` that are 'part'of � have length� n, we know by induction that, forX1; : : : ;X`, if (uj;1; : : : ; uj;d(Xj)) 2LG(Xj), then �j 2 LG0(Xj), where �j(sz) = uj;z for 1 � j � ` and 1 � z �40

d(Xj). According to the construction given in Theorem 4.1, p is translated toq : X ! pX1 : : : X` in P 0, with R0(q) = fhs1; 0i = w1[xj;z=hsz; ji]; : : : ; hsd(X); 0i =wd(X)[xj;z=hsz; ji]g. Now we can say that � 2 LG0(X), where�(si) = wi[xj;z=�(hsz; ji)]= wi[xj;z=uj;z]= vifor 1 � i � d(X).Moreover, the production S00 ! S0 with semantic rule h�0; 0i = hs1; 1i is in P 0. Ifv 2 LG(S0), then � 2 LG0(S0) with �(s1) = v, as we just proved.Let t be a derivation tree of S0)� w (for some w 2 (T 0)�) with val(hs1; root(t)i) = v,for a correct decoration val of t. Then we can construct a derivation tree t0 of S00)S0)� w with val(h�0; root(t0)i) = v, and thus � 2 LG0(S00) with �(�0) = v."if" (with induction to the depth of the correctly decorated derivation tree of G0)� (basis)Consider � 2 LG0(X), with �(si) = vi for 1 � i � d(X). If there is a derivation treet of depth 1 of G0 of which the root r is labelled with X, and with val(hs1; ri) = viand val is a correct decoration of t, then apparently a production p : X ! wwith semantic rules hs1; 0i = v1; : : : ; hsd(X); 0i = vd(X) is in P 0. According to theconstruction of Theorem 4.1, this production is a translation from a productionq : X ! ((v1; : : : ; vd(X)); ;) in P , and thus (v1; : : : ; vd(X)) 2 LG(X).� (induction hypothesis)For all X 2 N , if � 2 LG0(X) with �(si) = vi for 1 � i � d(X) and X is the labelof the root r of a derivation tree t of depth n � 1 of G0, with val(hsi; ri) = vi andval is a correct decoration of t, then (v1; : : : ; vd(X)) 2 LG(X).� (induction step)Consider the occurrence of q : X ! pX1 : : : Xk from P 0 (for k � 0), with R0(q) =fhsi; 0i = ui;1hsi;1; ji;1iui;2 : : : ui;nihsi;ni ; ji;niiui;ni+1 j 1 � i � d(X)g, at the root r,labelled with X, of a derivation tree t of G0 with depth n+1, with val(hsi; ri) = vifor 1 � i � d(X), and val is a correct decoration of t. Then � 2 LG0(X) with�(si) = vi.By induction, since the subtrees of t of which the nonterminal children of r arethe roots (that are labelled with X1; : : : ;Xk, respectively) have depth � n, thefollowing holds : if �j 2 LG0(Xj) with �j(s`) = vj;` for 1 � j � k and 1 � ` �d(Xj), then (vj;1; : : : ; vj;d(Xj)) 2 LG(Xj).Since q is in P 0, apparently a productionp : X ! (((u1;1hs1;1; j1;1iu1;2 : : : u1;n1hs1;n1 ; j1;n1iu1;n1+1)[hs`; ji=xj;`];: : :,(um;1hsm;1; jm;1ium;2 : : : um;nmhsm;nm ; jm;nmium;nm+1)[hs`; ji=xj;`]);fX1x1;1 : : : x1;d(X1); : : : ;Xkxk;1 : : : xk;d(Xk)g)41

where m = d(X), is in P . And since (vj;1; : : : ; vj;d(Xj)) 2 LG(Xj), now((u1;1hs1;1; j1;1iu1;2 : : : u1;n1hs1;n1 ; j1;n1iu1;n1+1)[hs`; ji=vj;`];: : : ;(um;1hsm;1; jm;1ium;2 : : : um;nmhsm;nm ; jm;nmium;nm+1)[hs`; ji=vj;`]) =(v1; : : : ; vd(X)) 2 LG(X)Moreover, if � 2 LG0(S00) with �(�0) = v, then also � 2 LG0(S0), since p : S00 ! S0 isthe only production with left-hand side S00 in P 0, and since R0(p) = fh�0; 0i = hs1; 1ig.And then, as we just proved, v 2 LG(S0). 2Since the construction for the translation of an rg into an OnlyS-sag introduces a newnonterminal S00, we should also prove that v 2 L(G) i� � 2 LG0(S00), with �(�0) = v.This is obvious from the construction.

42

Chapter 5Top-down tree-to-stringtransducers5.1 PreliminariesWe will use an alphabet � with rank function d : �! N, and by �n we denote the setf� j � 2 � and d(�) = ng. A tree over � is either a symbol of rank 0 or a string of theform �(t1 : : : tn), where � has rank n, with n � 1, and ti is a tree over � (for 1 � i � n).The set of all trees over � is denoted T�, thus T� � (� [f(;)g)�. A tree language over� is a subset of T�.A tree language is recognizable if it can be accepted by a �nite tree automaton (see[T73]). The class of recognizable tree languages will be denoted by REC. (For propertiesof REC see for instance [T73], [T67], [TW] and [E75].)We use V = fx1; x2; x3; : : :g as a denumerably in�nite set of variables, V0 = ; and, forn � 1, Vn = fx1; : : : ; xng. In examples we will use x; y; z; : : : rather than x1; x2; x3; : : :.For an alphabet 	 and strings w0 2 ([Vn)� and w1; : : : ; wn 2 	� (for n � 0),w0[w1; : : : ; wn] denotes the result of substituting wi for xi in w0 (where 1 � i � n).5.2 De�nitionsWe will now give the de�nitions concerning top-down tree-to-string transducers, thatwe have found in [ERS].A top-down tree-to-string transducer translates an input tree over some ranked al-phabet into a string, by walking top-down through the input tree and meanwhile makingtranslations of the subtrees of the input tree. During this top-down walk through theinput tree, several not necessarily distinct translations can be made of one subtree, andthere can be subtrees of which no translation is made (so those subtrees are discarded).De�nition 5.1A top-down tree-to-string transducer (yT transducer) is a constructM = (Q;�;�; q0; R),wherei. Q is a �nite set of states; 43

ii. � is the ranked input alphabet;iii. � is the output alphabet;iv. q0 is the initial state;v. R is a �nite set of (transducer) rules of the formq(�(x1 : : : xk))! w1q1(xi1)w2 : : : wnqn(xin)wn+1with n; k � 0; � 2 �k; q; q1; : : : ; qn are (not necessarily distinct) elements of Q;w1; : : : ; wn+1 2 ��, and 1 � im � k for 1 � m � n.M is deterministic if di�erent rules in R have di�erent left-hand sides. 2Let M = (Q;�;�; q0; R) be a yT transducer.Let Q(S) = fq(s) j q 2 Q; s 2 Sg for some set S. A sentential form of M is anelement of (Q(T�) [�)�, i.e., a string of the form u1p1(t1)u2p2(t2) : : : umpm(tm)um+1with m � 0, pi 2 Q, ti 2 T�, 1 � i � m and, for 1 � j � m+ 1, uj 2 ��.For sentential forms s1 and s2 we write s1) s2 if s2 is obtained from s1 by replacinga substring q(�(t1 : : : tk)) of s1, for certain t1; : : : ; tk 2 T�, byw1q1(ti1)w2q2(ti2) : : : wnqn(tin)wn+1, using the rule in De�nition 5.1 v. As usual,)� isused to denote derivations, i.e., the re
exive and transitive closure of).The (tree-to-string) translation de�ned by M , also denoted by M , is de�ned byM = fht; wi 2 T� � ��j q0(t))� wg. We de�ne the language generated by M to beL(M) = fw 2 �� j q0(t))� w for some t 2 T�g.The class of (deterministic) top-down tree-to-string transducers will be denoted byyT (yDT). We will denote the class of languages they generate by yTL (yDTL).Example 5.1(1) We have found this example in [ERS].Consider the yT transducer M1 = (fq0; q1; q2g; f�; �; �g; fa; b; c; dg; q0 ; R1) such that �,� and � have ranks 2, 1 and 0, respectively, and R1 consists of the rulesq0(�(xy)) ! q1(x)q0(y)q2(x),q0(�) ! �,q1(�(x)) ! aq1(x)b,q1(�) ! �,q2(�(x)) ! cq2(x)d,q2(�) ! �M1 translates a tree of the form �(�n1(�)�(�n2(�) � � � �(�nk(�)�) � � �)) into the stringan1bn1an2bn2 : : : ankbnkcnkdnk : : : cn2dn2cn1dn1 . The language generated byM1 is L(M1) =fan1bn1an2bn2 : : : ankbnkcnkdnk : : : cn2dn2cn1dn1 j ni � 0 for 1 � i � k and k � 0g (seeExample 4.2).A sample derivation in M1 isq0(�(�2(�)�(�(�)�))))q1(�2(�))q0(�(�(�)�))q2(�2(�)))�aq1(�(�))bq1(�(�))q0(�)q2(�(�))cq2(�(�))d)�aaq1(�)bbaq1(�)bcq2(�)dccq2(�)dd)� 44

aabbabcdccdd(2) The yT transducer M2 = (fqg; f�; �g; fag; q; R2), where � has rank 1 and � has rank0, and with R2 = fq(�(x)) ! q(x)q(x); q(�) ! ag generates the language L(M2) =fa(2n) j n � 0g.A sample derivation isq(�3(�)))q(�2(�))q(�2(�)))�q(�(�))q(�(�))q(�(�))q(�(�)))�q(�)q(�)q(�)q(�)q(�)q(�)q(�)q(�))�aaaaaaaaThe translation realized by M2 is M2 = fh�m(�); a(2m)i j m � 0g.(3) LetM3 = (Q;�;�; q0; R3) be a yT transducer, withQ = fq0; q1; q2; q3g, � = fa; b; �g,�0 = f�g, �1 = fa; bg, � = f1; 2; 3g and R3 consists of the following rules :q0(a(x))! 1q1(x)2q2(x) q0(b(x)) ! q2(x)q3(x) q0(�)! �q1(a(x))! 1q1(x) q1(b(x)) ! q2(x) q1(�)! �q2(a(x))! 2q2(x) q2(b(x)) ! q3(x) q2(�)! �q3(a(x))! 3q3(x) q3(b(x)) ! q1(x) q3(�)! �M3 translates a tree of the form an1ban2b : : : ank�, with ni � 0 for 1 � i � k and k � 0,into the string 1n12n23n31n4 : : : mnk2n13n21n32n4 : : : `nk , where m and ` are symbols in� and m = 1 if (k mod 3) = 1, 2 if (k mod 3) = 2, 3 if (k mod 3) = 0, and ` = 1 if((k + 1) mod 3) = 1, 2 if ((k + 1) mod 3) = 2, and 3 if ((k + 1) mod 3) = 0.The language generated byM3 is L(M3) = f1n12n23n31n4 : : : mnk2n13n21n32n4 : : : `nk j ni �0 for 1 � i � k and k � 0g with m and ` as above.A sample derivation isq0(a2bba3ba�))1q1(abba3ba�)2q2(abba3ba�))�11q1(bba3ba�)22q2(bba3ba�))�11q2(ba3ba�)22q3(ba3ba�))�11q3(a3ba�)22q1(a3ba�))�11333q3(ba�)22111q1(ba�))�11333q1(a�)22111q2(a�))�113331q1(�)221112q2(�))�113331221112(4) Consider the yT transducerM4 = (fp; qg; f�; �g; fa; bg; p; fp(�(x)) ! q(x)q(x); p(�) !�; q(�(x)) ! aq(x); q(�(x)) ! bq(x); q(�) ! a; q(�) ! bg), with �0 = f�g and �1 = f�g.The translation de�ned by M4 is M4 = fh�m(�); ui j m � 0, u 2 fa; bg� and juj = 2mgand the language generated by M4 is L(M4) = fu j u 2 fa; bg� and juj is even g.A sample derivation isp(�4(�)))q(�3(�))q(�3(�)))�bq(�2(�))aq(�2(�)))�bbq(�(�))aaq(�(�)))� 45

bbbq(�)aaaq(�))�bbbbaaaaNote that M1, M2 and M3 are deterministic, but M4 is not, because of the rulesq(�(x)) ! aq(x), q(�(x))! bq(x) and q(�) ! a, q(�)! b. 2Until now, we could use any tree in T� as an input tree. But if we want, for instance,to generate the language fw 2 fa; bg� j jwj = 2(2n) for some n � 0g, then, intuitively,we need an input language of the form f�(2n)(�) j n � 0g, because if we use �m(�)(with m � 1) as an input tree, then we cannot be certain that m = 2n for some n � 0.Therefore in [ERS] a class of transducers is de�ned, that can have a speci�ed subset ofT� as an input language.De�nition 5.2Let C be a class of tree languages. A top-down C-tree transformation system (yT(C)transducer) is a pair (M;L), where M = (Q;�;�; q0; R) is a yT transducer, L � T�and L 2 C. (M;L) is deterministic if M is. 2The language generated by (M;L) is M(L) = fw 2 �� j q0(t))� w for some t 2 Lg.M(L) is called a top-down C-tree transformation language. L is called the input language.We will denote the class of (deterministic) top-down C-tree transformation systemsby yT(C) (yDT(C)), and the class of languages they generate by yTL(C) (yDTL(C)).Remark : the 'y' in yT transducer means 'yield'. A top-down tree-to-string trans-ducer is called a yT transducer because the C-tree transformation languages are usuallyde�ned by taking the yield of the tree languages which are images of C-tree languagesunder conventional top-down transducers ([Ro]).Example 5.2This is Example (3.1.4)(iii) from [ERS].The language fw 2 fa; bg� j jwj = 2(2n) for some n � 0g is generated by the top-downEDT0L-tree (see [ERS]) transformation system (M;L), where L = f�(2n)(�) j n � 0g,M = (fqg; f�; �g; fa; bg; q; R), with � 2 �1 and � 2 �0, and R consists of the followingrules :q(�(x)) ! q(x)q(x)q(�) ! aq(�) ! b 2In [ERS] now restrictions on the derivations of yT transducers are introduced. Inorder to do so, the concept of state-sequence of a derivation at a node of an input treeis needed. Intuitively, it is the sequence of states in which the transducer starts totranslate (the left to right sequence of copies of) the subtree which has the given nodeas its root.In the following de�nition we will use sequences of states. These sequences areelements of Q�, but for reasons of clarity we will write such a sequence between h and i.46

De�nition 5.3Let M = (Q;�;�; q0; R) be in yT. Let � : q(t))� w be a derivation of M with q 2 Q,t 2 T� and w 2 ��. Let d be a node of t.The state-sequence of � at d is a sequence hq1 : : : qmi of states ofM (withm � 0) de�nedrecursively as follows.i. If t = � 2 �0 and d is the unique node labelled by �, then the state-sequence of �at d is hqi.ii. Assume that t = �(t1 : : : tk) with � 2 �k and k � 1. If d is the root of t then thestate-sequence of � at d is hqi. Now let d be a node of ti for some i, 1 � i � k.Consider the �rst step of the derivation � : q(�(t1 : : : tk))) r[t1; : : : ; tk])� w,where q(�(x1 : : : xk)) ! r is in R. If xi does not occur in r, then the state-sequence of � at d is empty, i.e., hi. Assume now that xi occurs in r and letr = u1q1(xi)u2q2(xi) : : : unqn(xi)un+1 with n � 1 and u` 2 (� [Q(Xknfxig))� for1 � ` � n+1. It should be clear that there are unique derivations �j : qj(ti))� vj(with vj 2 �� for 1 � j � n) which are a 'part' of the derivation r[t1; : : : ; tk])� w.Let sj be the state-sequence of �j at d. Then their concatenation s1s2 : : : sn is thestate-sequence of � at d. 2In this de�nition we have used the obvious fact that ifw1q1(t1)w2 : : : wnqn(tn)wn+1)�w for some w;wi 2 ��, with 1 � i � n+ 1, and qj 2 Q, tj 2 T�, with 1 � j � n, thenthere are unique derivations qj(tj))� vj such that w = w1v1w2 : : : wnvnwn+1 and thelatter derivations are 'part' of the original one in the sense that some reordering of themis precisely the original derivation.Example 5.3(1) For the derivation and the input tree of the transducer M1 given in Example 5.1,the state-sequence at each node labelled � and at the right-most � is hq0i; at each nodelabelled � and at all other nodes labelled � the state-sequence is hq1q2i.(2) For the derivation and the input tree of the transducer M2 given in Example 5.1,the state-sequence at the top-most node labelled � (the root, that is) is hqi, the second� has state-sequence hqqi, the third hqqqqi and the node labelled � has state-sequencehqqqqqqqqi.(3) For the derivation and the input tree of the transducer M3 given in that same ex-ample, the state-sequence at the root of the input tree (the �rst a) is hq0i. The seconda has state-sequence hq1q2i, the �rst b hq1q2i, the second b hq2q3i, the third, fourth and�fth a hq3q1i, the last b hq3q1i, the last a hq1q2i, and the � also hq1q2i.(4) For the derivation and the input tree of the transducer M4 given in Example 5.1,the topmost � has state-sequence hpi, the other nodes have state-sequence hqqi. 2Since a state-sequence is not very easy to determine if we have to use the above def-inition, we will clarify the construction of state-sequences with the help of a 'derivation47

tree'. The 'derivation tree' t for the derivation of M1 given in Example 5.3 (1) can begiven as follows :
q1(�1�2(�1)) q0(�1(�1�2(�1)�2(�3(�2)�3)))

a b d
q0(�2(�3(�2)�3))

q2(�1)�
q1(�3(�2)) q0(�3)

�q1(�2)�bb�
dq1(�2(�1))q1(�1) ccq2(�3(�2))c�aa dq2(�2) q2(�2(�1))q2(�1�2(�1))

We have added subscripts to the input symbols in order to distinguish di�erentnodes with the same label. The state-sequence of this derivation at, for instance, �2,can be found at the third level of t, by simply concatenating, in the order in which theyappear in t, the states that are applied to the occurrences of the subtree with root �2 int : hq1; q2i. Note that, when we draw the 'derivation tree' of a derivation � as we didabove, the state-sequence of � at a node of the input tree can always be found at onelevel of the 'derivation tree'.We are now ready to de�ne the restrictions on yT transducers.De�nition 5.4LetM = (Q;�;�; q0; R) be in yT, and let k � 1 be an integer. A derivation � : q0(t))�w has copying-bound k if, for each node d of t, the length of the state-sequence of � atd is at most k.Let L be a tree language. (M;L) has copying-bound k if for each w 2 M(L) thereexist t 2 L and a derivation q0(t))� w with copying-bound k. (M;L) is �nite copyingif it has copying-bound k for some k. The same terminology holds for M if it is true of(M;T�). 2Finite copying is denoted by a subscript 'fc', and a copying-bound is indicated bya subscript '(k)'. Thus for instance the classes of copying-bound k and �nite copyingtop-down C-tree transformation languages are denoted by yTfc(k)L(C) and yTfcL(C),respectively.Example 5.4In this example we will discuss the transducers of Example 5.1.(1) M1 has copying-bound 2, thus M1 is �nite copying.48

(2) M2 does not have a copying-bound, because the length of the state-sequences ofnodes of an input tree grows as the depth of the input tree grows.(3) M3 is �nite copying; it has copying-bound 2.(4) M4 has copying-bound 2, so L(M) 2 yTfc(2)L. 25.3 ResultsIn this section we prove that ssag's generate the same languages as yTfc(REC) trans-ducers.The states of a transducer generate translations of the subtrees of an input tree,while the attributes of an OnlyS-sag add meanings to the subtrees of a derivation treeof the underlying cfg. Therefore it seems natural to suppose that states in a transducercorrespond to attributes in an OnlyS-sag, and that the derivation trees of an OnlyS-sagcorrespond to the input trees of a transducer. In the following lemma we will prove thatindeed for every OnlyS-sag we can construct a yT(REC) transducer that generates thesame language.We label the productions of a cfg G = (N;T; P; S0) with p1 through pjP j. An abstractsyntax tree of G is a derivation tree t of G in which the label of each nonterminal nodeis replaced by the label of the production applied at that node, and in which all theterminal nodes are removed.By encoding every derivation tree of G, we get a tree language over fp1; : : : ; pjP jg,and each pi (for 1 � i � jP j) has exactly one rank, being the number of nonterminalsin the right-hand side of the production labelled pi. Obviously, this tree language is inREC (see [ERS] p. 160).Example 5.5Consider the cfg given in Example 2.6 (2), of which we have labelled the productionsp1 through p6 (so S0 ! X has label p1 and B ! XbX has label p6), and the followingderivation tree t for a2b2 of that cfg.

49

t : t0 :
p4

p4

p1p3p6
p6p3p4

SXa BX b X�BaX b X� �The encoded version of t is t0. 2Lemma 5.1OnlyS-SAL � yDTL(REC)ProofLet G = (G0;D;B;R) be an OnlyS-sag with G0 = (N;T; P; S0), where P consists of jP jproductions that are labelled p1 through pjP j, D = (f��g;�) for some alphabet � andB = (S; I; �0;W). Let K = ft j t is an abstract syntax tree of G0g, then K 2 REC. Wewill construct a yT transducerM = (Q;�;�; q0; R0), withQ = S-Att, � = fp1; : : : ; pjP jgwhere, for n � 0, �n = fpi j 1 � i � jP j and the right-hand side of the productionlabelled pi in P contains exactly n nonterminals g, � = � and q0 = �0, such thatM(K) = L(G). Let R0 = ;.For every terminating production p : X ! w in P with semantic rules hs1; 0i =v1; : : : ; hsm; 0i = vm where m = d(X), we add the rules s1(p) ! v1; : : : ; sm(p) ! vm toR0.For every nonterminating productionq : X0 ! w1X1w2 : : : wkXkwk+1in P , with semantic ruleshs1; 0i = u1;1hs1;1; j1;1iu1;2 : : : u1;n1 hs1;n1 ; j1;n1iu1;n1+1... ...hs`; 0i = u`;1hs`;1; j`;1iu`;2 : : : u`;n` hs`;n` ; j`;n`iu`;n`+1where ` = d(X0), we add the ruless1(q(x1 : : : xk)) ! u1;1s1;1(xj1;1)u1;2 : : : u1;n1 s1;n1(xj1;n1)u1;n1+1... ...s`(q(x1 : : : xk)) ! u`;1s`;1(xj`;1)u`;2 : : : u`;n` s`;n`(xj`;n`)u`;n`+150

to R0.The resulting transducer will, with input language K, generate the same language as Gdoes. 2Example 5.6Consider the OnlyS-sag G, with the following productions and semantic rules :p1 : S0 ! X �0 = a�1�1
1p2 : X ! X �0 = a�1
0 = a�1�1
1p3 : X ! � �0 = �
0 = �and with initial symbol S0 and designated attribute �.L(G) = fa(n2) j n > 0g (see also Example 3.2 (5)).According to the construction given in the previous lemma, we can create the followingyT(REC) transducer : M = (Q;�;�; q0; R) with Q = f�; �;
g, � = fp1; p2; p3g where�1 = fp1; p2g and �0 = fp3g, � = fag, q0 = � and R consists of the rules�(p1(x))! a�(x)�(x)
(x)�(p2(x))! a�(x)
(p2(x))! a�(x)�(x)
(x)�(p3)! �
(p3)! �M translates trees of the form p1pm2 p3 into a(m+1)2 . If K = ft j t is an abstract syntaxtree of Gg, then M(K) = L(G). 2As described before Lemma 5.1, encoding a derivation tree t of an ag gives a treethat can be used as an input tree t0 of a transducer. The root of every subtree of t0corresponds to exactly one occurrence of a nonterminal, say X, in t. If the ag underconsideration is special, then we know that every (s-)attribute of X is used exactlyonce. Since, according to Lemma 5.1, there is a one-to-one correspondence between theattributes of X and the states that are applied to the subtree t00, that corresponds toX, of the input tree, there are exactly d(X) states applied to t00, where d is the rankfunction on the nonterminals of the ag. This holds for every subtree of every input treeof the transducer. Since, in an ag, every nonterminal has a �xed and �nite number ofattributes, the number of states applied to every subtree of every input tree is at mostmaxf jS(X)j j X 2 Ng, where N is the set of nonterminals of the ag.In terms of mcfg's, it is even easier to determine this copying bound : using themethod of Lemma 5.1 to translate an m-mcfg to a transducer gives a yTfc(m)(REC)transducer.This proves the following lemma.Lemma 5.2SSAL � yTfcL(REC).Example 5.7A yTfc(2)(REC) transducer that is equivalent to the ssag of Example 2.6 (2) (whichgenerates the language L = fwcn j w 2 fa; bg�; jwja = jwjb = ng) is the following :51

�(p1(x))! !(x)
(x)!(p2(x)) ! b!(x)
(p2(x)) ! c
(x)!(p3(x)) ! a!(x)
(p3(x)) ! c
(x)!(p4)! �
(p4)! �!(p5(xy)) ! !(x)a!(y)
(p5(xy)) !
(x)
(y)!(p6(xy)) ! !(x)b!(y)
(p6(xy)) !
(x)
(y)For reasons of clarity, we will label the nodes of the abstract syntax tree t0 given inExample 5.5 as follows.

b � �b � ��

p1p3p6p3 p4p6p4 p4

123 8456 7

�(1)!(2)
(2)!(3)a c
(3)!(4) !(8)
(4)
(8)a !(5) c
(5)!(6) !(7)
(6)
(7)�The rightmost tree is the 'derivation tree' of the derivation �(p1p3p6(p3p6(p4p4)p4)))�a2b2c2, in which we have replaced each subtree by the number referring to its root inthe leftmost tree.If we now draw the 'dependency graph' of this 'derivation tree', we get the inverted tree

52

!!! !! !!

�

which is exactly the same as the dependency graph of the derivation tree for a2b2c2given in Example 2.6 (2). This shows once more the similarities between ssag's and�nite copying transducers, and in particular the one-to-one correspondence betweenattributes and states. 2We will use the following terminology concerning a transducer M : we will write'state-sequence of M ' instead of 'state-sequence of a derivation of M at a node of aninput tree'. Furthermore, we call a rule q(�(x1 : : : xk)) ! �, with � 2 (� [Q(Xk))�,a 'rule for q' or a 'rule for �' or a 'rule for q and �', and we say that q 'is applied to'�(x1 : : : xk).Let M = (Q;�;�; q0; R) be in yTfc, with copying-bound c.For a ruler : q(�(x1 : : : xk))! w1q1(xi1)w2 : : : wnqn(xin)wn+1in R, we de�ne, for 1 � i � k, the state-sequence of xi in r, ss(r; i) 2 Q�, as follows :ss(r; i) = hp1 : : : p`iwhere 0 � ` � c, p1; : : : p` 2 Q, and p1(xi) : : : p`(xi) contains all occurrences of xi in theright-hand side of r, in this order (so r can be written as u1p1(xi)u2p2(xi) : : : u`p`(xi)u`+1with uj 2 (� [Q(Xknfxig))� for 1 � j � ` + 1). Thus ss(r; i) is the part of thestate-sequence of the root of the ith subtree of a tree of the form �(t1 : : : tk), witht1; : : : ; tk 2 T�, that can be derived from the applied rule (r). Again, for reasons ofclarity, we put the state-sequence between h and i.Furthermore, if ss(r; i) = hp1 : : : p`i, we de�ne ssj(r; i) to be hp1 : : : pj�1pjpj+1 : : : p`iwith 1 � j � `, which is an element of Q� �Q �Q�, where Q = fq j q 2 Qg is a disjointcopy of Q.Finally, for some m � 1, we de�ne ss(r1 : : : rm; i) to be an abbreviation ofss(r1; i) � : : : � ss(rm; i).We will now show that for every yTfc transducer M an ssag G can be constructedsuch that L(M) = L(G).If a yT transducer M has copying-bound c, this means that of each subtree of aninput tree at least 0 and at most c copies or translations can be made, some of which53

may be equal. The state-sequence of a derivation at a node d of an input tree t showsexactly how many and which copies are made of the subtree with root d of t. Often,several subtrees of the input tree will have the same state-sequence hsi, with s 2 Q�.All these subtrees together will be denoted by the nonterminal Xhsi.We will construct our OnlyS-sag such that all translations in hsi are made at thesame time. This is possible by giving Xhsi a synthesized attribute q for every state qthat occurs in hsi. Unfortunately it is possible that the same state q occurs more thanonce (say r times) in hsi. This would force us to use the attribute q r times, whichprevents the resulting OnlyS-sag from being special. The solution that we have chosento solve this problem is to construct a yTfc(c) transducer M 0 with L(M) = L(M 0), suchthat there is no state-sequence of M 0 that contains more than one occurrence of eachstate.In the following lemma we will prove that this is a normal form for determinis-tic transducers, since for deterministic transducers the proof is easier than for non-deterministic transducers. This is not a restriction, however, since from Lemma 3.2.3from [ERS] we know that, for every k � 1, yTfc(k)L(REC) = yDTfc(k)L(REC).Lemma 5.3Let M be in yDTfc(c).It is possible to construct an equivalent transducerM 0 in yDTfc(c) such that every state-sequence of length z of M 0 (2 � z � c) consists of z di�erent states.ProofLet M = (Q;�;�; q0; R), with copying-bound c. M 0 will be (Q0;�;�; q00; R0), and thestates of M 0 will be the state-sequences of M , in which the state that was applied in Mis marked.First, we will consider every rule for q0 in R. These are of the formr : q0(�(x1 : : : xk))! w1q1(xi1)w2 : : : wnqn(xin)wn+1.For each of these rules we make the same rule in R0, but we replace q0 by hq0i, and inthe right-hand side we replace, for every xi (1 � i � k), the state that is applied to theuth (1 � u � c) occurrence of xi in r by ssu(r; i). Then we add hq0i and the ssu(r; i)that we have introduced to Q0. After having done this for every rule for q0 in R, we setq00 = hq0i.We now have introduced new states in Q0, for which we have to make the appropriaterules. Let hp1 : : : pj�1pjpj+1 : : : pmi be such a new state, with 1 � j � m � c. For every� 2 �, consider the rulesr1 : p1(�(x1 : : : xk)) ! w1;1 q1;1(xi1;1) w1;2 : : : w1;n1 q1;n1(xi1;n1) w1;n1+1...rm : pm(�(x1 : : : xk)) ! wm;1 qm;1(xim;1) wm;2 : : : wm;nm qm;nm(xim;nm) wm;nm+1.Since M is deterministic these are all the possible rules for the ph (1 � h � m) and �.(If there is a ph for which there is no rule for �, we cannot make, for this �, a rule forhp1 : : : pj�1pjpj+1 : : : pmi in R0, nor for the other marked versions ofhp1 : : : pj�1pjpj+1 : : : pmi.) The rule that we can now add to R0 for hp1 : : : pj�1pjpj+1 : : : pmiis the same as rj, but in the left-hand side we replace pj by hp1 : : : pj�1pjpj+1 : : : pmi,and in the right-hand side we replace, for every xi (1 � i � k), the state that is appliedto the `th occurrence of xi in the right-hand side of rj by54

ss(r1 : : : rj�1; i) � ss`(rj ; i) � ss(rj+1 : : : rm; i).We have to execute this procedure for every newly introduced nonterminal.The above construction makes sure that each state-sequence of M 0 consists of di�erentstates, because now a state-sequence of length z of M 0 (0 � z � c) is a sequence ofz equal state-sequences of M , except that the jth state-sequence of M (in the state-sequence of M 0) has a mark on its jth element (1 � j � z). Since we only have renamedthe states of M , M 0 has the same copying-bound as M .Obviously, M 0 is deterministic. 2Example 5.8Applying the construction of Lemma 5.3 to M3 of Example 5.1 gives us the followingyDTfc(2) transducer in normal form :hq0i(a(x)) ! 1hq1q2i(x)2hq1q2i(x) hq0i(b(x)) ! hq2q3i(x)hq2q3i(x) hq0i(�) ! �hq1q2i(a(x)) ! 1hq1q2i(x) hq1q2i(b(x)) ! hq2q3i(x) hq1q2i(�) ! �hq1q2i(a(x)) ! 2hq1q2i(x) hq1q2i(b(x)) ! hq2q3i(x) hq1q2i(�) ! �hq2q3i(a(x)) ! 2hq2q3i(x) hq2q3i(b(x)) ! hq3q1i(x) hq2q3i(�) ! �hq2q3i(a(x)) ! 3hq2q3i(x) hq2q3i(b(x)) ! hq3q1i(x) hq2q3i(�) ! �hq3q1i(a(x)) ! 3hq3q1i(x) hq3q1i(b(x)) ! hq1q2i(x) hq3q1i(�) ! �hq3q1i(a(x)) ! 1hq3q1i(x) hq3q1i(b(x)) ! hq1q2i(x) hq3q1i(�) ! �with initial state hq0i. 2We use Theorem 3.2.1 from [ERS], which states that a speci�c recognizable inputlanguage can be coded as part of the transducer implying that we can consider arbitraryinput languages.Theorem 5.4For each top-down tree transformation system (M;L) with L 2 REC, there exists atop-down yT transducer M 0 such that M(L) =M 0(T�0), where �0 is the input alphabetof M 0. The construction involved preserves determinism and copying-bound.This theorem is the reason that, to reach the goal of this section, it is now su�cientto prove that for every yTfc transducer there is an equivalent ssag. Again, we will givethe proof for the translation from deterministic yTfc transducers into ssag's, becausethat is easier than the non-deterministic case.As mentioned before, we use in this proof nonterminals of the form Xhsi, whichdenotes the set of all (subtrees of) input trees that can have state-sequence hsi. Sucha nonterminal Xhsi will have an s-attribute for every state that occurs in hsi, and noother attributes.Lemma 5.5yDTfcL � SSAL.ProofLet M = (Q;�;�; q0; R), with copying-bound c, be a deterministic yTfc transducer. Wemay assume that every state-sequence of M consists of di�erent states (see Lemma 5.3).We will construct an OnlyS-sag G such that L(G) = L(M). G will be (G0;D;B;R0),with G0 = (N;T; P; S0), D = (
;�), and B = (S; I; �0;W). Since G is OnlyS, we know55

that I(X) will be the empty set for every X 2 N , and because G is an sag, we knowthat
 = f��g, W (s) = �� for all attributes s, and � consists of all derived functionsof the free monoid ��.Let N = T = P = ;.We construct G from M as follows, starting with the rules for q0. For every ruler : q0(�(x1 : : : xk))! w1q1(xi1)w2 : : : wnqn(xin)wn+1in R, we add the following production to P :p : Xhq0i ! rXss(r;1) : : : Xss(r;k),with R0(p) = fhq0; 0i = w1hq1; i1iw2 : : : wnhqn; iniwn+1g. Note that we add a new ter-minal r to the production to be able to distinguish between productions that have thesame nonterminals, but that are translations of di�erent rules of R.We add Xhq0i, Xss(r;1), . . . , Xss(r;k) to N , r to T , and we set S(Xhq0i) = fq0g andS(Xss(r;i)) = fq 2 Q j q occurs in ss(r; i)g for 1 � i � k. Furthermore, to make surethat the initial nonterminal of G does not occur in the right-hand side of any produc-tion, we add the production S0 ! Xhq0i to P , S0 to N , S(S0) = f�0g, and we setR0(S0 ! Xhq0i) = fh�0; 0i = hq0; 1ig.Now we have to make rules for the nonterminals (except for Xhq0i) that we haveintroduced. Let Xhp1:::p`i be such a nonterminal (1 � ` � c). For every � 2 �, considerthe ` rules in Rr1 : p1(�(x1 : : : xk)) ! w1;1q1;1(xi1;1)w1;2 : : : w1;n1q1;n1(xi1;n1)w1;n1+1...r` : p`(�(x1 : : : xk))! w`;1q`;1(xi`;1)w`;2 : : : w`;n`q`;n`(xi`;n`)w`;n`+1.Note that there cannot be more than one rule for pm and � (1 � m � `), because M isdeterministic. Furthermore, if for some pm there is no rule for �, then we cannot make,for this �, a production for Xhp1:::p`i.We use these ` rules to make the following production for Xhp1:::p`i :p0 : Xhp1:::p`i ! r1 : : : r`Xss(r1:::r`;1) : : : Xss(r1:::r`;k),where R0(p0) consists of the following semantic rules :hp1; 0i = w1;1hq1;1; i1;1iw1;2 : : : w1;n1hq1;n1 ; i1;n1iw1;n1+1...hp`; 0i = w`;1hq`;1; i`;1iw`;2 : : : w`;n`hq`;n` ; i`;n`iw`;n`+1.Then we addXss(r1:::r`;1); : : : ;Xss(r1:::r`;k) toN , r1; : : : ; r` to T , and we set S(Xss(r1:::r`;i)) =fq 2 Q j q occurs in ss(r1 : : : r`; i)g for 1 � i � k. When we have made, for every non-terminal, a production for every � 2 � (if possible), then L(G) = L(M).Since every state-sequence of M consists of di�erent states, and since there is a one-to-one correspondence between the s-attributes of G and the states of M , the OnlyS-sagresulting from this construction is special. 2Example 5.9(1) Using the construction of Lemma 5.5 we make an ssag that is equivalent to thetransducer in normal form of Example 5.8. To simplify notation, we will �rst renamethe states of that transducer : 56

�(a(x)) ! 1�(x)2
(x) �(b(x)) ! �(x)�(x) �(�) ! ��(a(x)) ! 1�(x) �(b(x)) ! �(x) �(�) ! �
(a(x)) ! 2
(x)
(b(x)) ! �(x)
(�) ! ��(a(x)) ! 2�(x) �(b(x)) ! �(x) �(�) ! ��(a(x))! 3�(x) �(b(x)) ! #(x) �(�)! ��(a(x)) ! 3�(x) �(b(x)) ! �(x) �(�) ! �#(a(x)) ! 1#(x) #(b(x)) !
(x) #(�) ! �with initial state �.We number these rules p1 through p21 (from left to right and from top to bottom).The corresponding ssag is the following :Xh�i ! p1Xh�
i �0 = 1�12
1Xh�i ! p2Xh��i �0 = �1�1Xh�i ! p3 �0 = �Xh�
i ! p4p7Xh�
i �0 = 1�1
0 = 2
1Xh�
i ! p5p8Xh��i �0 = �1
0 = �1Xh�
i ! p6p9 �0 = �
0 = �Xh��i ! p10p13Xh��i �0 = 2�1 �0 = 3�1Xh��i ! p11p14Xh�#i �0 = �1 �0 = #1Xh��i ! p12p15 �0 = � �0 = �Xh�#i ! p16p19Xh�#i �0 = 3�1 #0 = 1#1Xh�#i ! p17p20Xh�
i �0 = �1 #0 =
1Xh�#i ! p18p21 �0 = � #0 = �(2) Consider the yDTfc(2) transducer M1 of Example 5.1. We label the rules p1 throughp6. Since hq0i and hq1q2i are the only possible state-sequences of M1, M1 is alreadyin the normal form described in Lemma 5.3. The construction of Lemma 5.5 gives thefollowing ssag :S0 ! Xhq0i h�0; 0i = hq0; 1iXhq0i ! p1Xhq1q2iXhq0i hq0; 0i = hq1; 1ihq0; 2ihq2; 1iXhq0i ! p2 hq0; 0i = �Xhq1q2i ! p3p5Xhq1q2i hq1; 0i = ahq1; 1ib hq2; 0i = chq2; 1idXhq1q2i ! p4p6 hq1; 0i = � hq2; 0i = � 2By Lemma's 5.2 and 5.5 we have now reached the goal of this section.Theorem 5.6yTfc(REC) = SSAL.Corollary 5.7yTfc(REC) = MCFL. 2
57

Chapter 6Conclusion and further researchIn this thesis we have proven the equivalence of mcfg's, srg's, ssag's and yTfc(REC)transducers. Additional results are PMCFL = OnlyS-SAL = RL � yTL(REC), andsome normal forms for the grammar formalisms under consideration.Of course, this is only a small part of the work that could be done in this area. Asinteresting subjects for further research we propose :� Comparison of mcfg's with local unordered scattered context grammars and controlgrammars (see [RS], [RS94], [W], [PS]).� Comparison of pumping lemma's for mcfg's and yTfc(REC) transducers (see [SMFK]and [ERS]).� Carrying over normal forms for cfg's to ag's.� Carrying over some of the results we proved for OnlyS-sag's (e.g., the information-lossless condition) to ag's with i- and s-attributes.� Is there a generalization of the combinatory categorial grammar (see [VW]) thatis equivalent to the mcfg?� Is there a kind of relational grammar, that generates trees instead of strings (see[R], [GR]), that generates the same tree languages as the tree adjoining grammar([VW])?

58

Bibliography[A] K. Ajdukiewicz; Die syntaktische Konnexit�at; Studia Philosophica, 1:1-27,1935. English translation in: S. McCall, editor, Polish Logic, 1920-1939, 207-231, Oxford University Press, Oxford.[B] G. V. Bochmann; Semantic evaluation from left to right, Communications ofthe ACM 19 (1976).[DJL] P. Deransart, M. Jourdan, B. Lorho; Attribute Grammars, De�nitions, Systemsand Bibliography; Lecture Notes in Computer Science 323, 1-51 (1988).[E86] J. Engelfriet; The complexity of languages generated by attribute grammars;SIAM J. Comput. 15 (1986), 70-86.[E94] J. Engelfriet; Lecture notes for the course Formele Talen en Automaten 2 (inDutch), Leiden University, Fall 1994.[ERS] J. Engelfriet, G. Rozenberg, G. Slutzki; Tree transducers, L-systems, and two-way machines; J. of Comput. Syst. Sciences 20 (1980), 150-202.[Ga] G. Gazdar; Applicability of indexed grammars to natural languages. In:U. Reyle and C. Rohrer, editors; Natural Language Parsing and LinguisticTheories, 69-94, Reidel, Dordrecht, 1988.[Gi] R. Giegerich; Composition and evaluation of Attribute Coupled Grammars;Acta Informatica 25, 355-423 (1988).[GR] A. Grazon, J.-C. Raoult; Equational relations on trees; manuscript, Rennes,June 1992.[HU] J. E. Hopcroft, J. D. Ullman; Introduction to Automata Theory, Languages,and Computation; Addison-Wesley (1980).[J] A. K. Joshi; How much context-sensitivity is necessary for characterizing struc-tural descriptions - Tree adjoining grammars?. In: D. Dowty, L. Karttunen,and A. Zwicky, editors; Natural Language Processing - Theoretical, Compu-tational and Psychological Perspective, 206-250, Cambridge University Press,New York, 1985. (Originally presented in 1983.)[JLT] A. K. Joshi, L. S. Levy, and M. Takahashi; Tree adjunct grammars; J. Comput.System Sciences, 19(1):136-163, 1975.59

[K] D. E. Knuth; Semantics of context-free languages; Mathematical Systems The-ory 2 (1968), 127-145.[P] C. Pollard; Generalized Phrase Structure Grammars, Head Grammars, andNatural Language; Ph.D. thesis, Stanford University, CA, 1984.[PS] M. A. Palis, S. M. Shende; Pumping lemmas for the control hierarchy ; to appearin Math. Systems Theory.[RS] O. Rambow, G. Satta; A two-dimensional hierarchy for parallel rewriting sys-tems; submitted to Theor. Comp. Science.[RS94] O. Rambow, G. Satta; A rank hierarchy for deterministic tree-walking trans-ducers; Proc. CAAP '94, Lecture Notes in Computer Science 787, 308-321.[R] J. C. Raoult; A survey of tree transductions; in 'Tree automata and languages',M. Nivat, A. Podelski, editors, Elsevier, 1992.[Ro] W. C. Rounds; Mappings and Grammars on trees; Math. Systems theory 4(1970), 257-287.[SMFK] H. Seki, T. Matsumura, M. Fujii, T. Kasami; On multiple context-free gram-mars; Theor. Comp. Science 88 (1991), 191-229.[S85] M. J. Steedman; Dependency and coordination in the grammar of Dutch andEnglish; Language, 61: 523-568, 1985.[S86] M. J. Steedman; Combinators and grammars; In: R. Oehrle, E. Bach, andD. Wheeler, editors; Categorial Grammars and Natural Language Structures,417-442, Foris, Dordrecht, 1986.[T73] J. W. Thatcher; Tree automata: an informal survey; in 'Currents in the Theoryof Computing' (A. V. Aho, Ed.),143-172, Prentice Hall, Englewood Cli�s, 1973.[T67] J. W. Thatcher; Characterizing derivation trees of context-free grammarsthrough a generalization of �nite automata theory; J. Comput. System Sci.1 (1967), 317-322.[TW] J. W. Thatcher, J. B. Wright; Generalized �nite automata theory with an ap-plication to a decision problem of second-order logic; Math. Systems Theory 2(1968), 57-81.[V] K. Vijay-Shanker; A study of tree adjoining grammars; Ph.D.thesis, Universityof Pennsylvania, Philadelphia, PA, 1987.[VW] K. Vijay-Shanker, D. J. Weir; The equivalence of four extensions of context-freegrammars; Math. Systems Theory 27 (1994), 511-546.[W] D. J. Weir; A geometric hierarchy beyond context-free languages; Theor. Comp.Science 104 (1992), 235-261. 60

